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2017 Stock Assessment and Fishery Evaluation Report for the King 
and Tanner Crab Fisheries in the Bering Sea and Aleutian Islands 

Introduction 

The annual stock assessment and fishery evaluation (SAFE) report is a requirement of the North Pacific 

Fishery Management Council's Fishery Management Plan for Bering Sea/Aleutian Islands King and 

Tanner Crabs (FMP), and a federal requirement [50 CFR Section 602.12(e)].  The SAFE report summarizes 

the current biological and economic status of fisheries, total allowable catch (TAC) or Guideline Harvest 

Level (GHL), and analytical information used for management decisions.  Additional information on Bering 

Sea/Aleutian Islands (BSAI) king and Tanner crab is available on the National Marine Fisheries Service 

(NMFS) web page at http://www.fakr.noaa.gov and the Alaska Department of Fish and Game (ADF&G) 

Westward Region Shellfish web page at: http://www.cf.adfg.state.ak.us/region4/shellfsh/shelhom4.php.   

Paralithodes camtschaticus, stocks (Bristol Bay, Pribilof Islands, Norton Sound and Adak), 2 blue king 

crab, Paralithodes platypus, stocks (Pribilof Islands and St Matthew Island), 2 golden (or brown) king crab, 

Lithodes aequispinus, stocks (Aleutian Islands and Pribilof Islands), southern Tanner crab Chionoecetes 

bairdi hereafter referred to as Tanner crab, and snow crab Chionoecetes opilio.  All other crab stocks in the 

BSAI are exclusively managed by the State of Alaska (SOA). 

The Crab Plan Team (CPT) annually assembles the SAFE report with contributions from ADF&G and the 

NMFS.  This SAFE report is presented to the North Pacific Fishery Management Council (NPFMC) and is 

available to the public on the NPFMC web page at:  

http://fakr.noaa.gov/npfmc/membership/plan_teams/CRAB_team.htm. 

Due to a process to accommodate specific fishery and data availability needs to determine overfishing level 

(OFL) determinations, and annual catch limit (ACL) requirements, the CPT reviews assessments in a 

staggered time frame. Additionally, based upon consideration of stock prioritization including assessment 

methods and data availability, some stocks are assessed on an annual basis while others are assessed less 

frequently. The CPT reviews one assessment in January (Norton Sound red king crab), two assessments in 

May on a three-year cycle (WAI red king crab and Pribilof Islands golden king crab) and the remaining 

assessments (Bristol Bay red king crab, EBS snow crab, EBS Tanner crab, Saint Matthew blue king crab, 

Pribilof Island red king crab and Pribilof Island blue king crab, Aleutian Islands golden king crab,) in 

September (Table 1). Pribilof red king crab is assessed biennially while Pribilof blue king crab is assessed 

on a three-year cycle.  Stocks can be assessed more frequently on a case-by-case basis should data indicate 

that it is necessary. 
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Table 1  Ten BSAI crab stocks: Schedule for review by the CPT and SSC and Assessment frequency 

Stock 

CPT review and 

recommendations 

to SSC 

SSC review and 

recommendations 

to Council 

Assessment 

frequency 

Year of 

next 

Assessment 
Norton Sound red king crab 

(NSRKC) January February Annual 2018 

Aleutian Is. golden king crab 

(AIGKC) May June Annual 2018 

Pribilof Is. golden king crab 

(PIGKC) May June Triennial 2020 

Western Aleutian Is. red king 

crab (WAIRKC) May June Triennial 2020 

EBS snow crab 

September October Annual 2018 

Bristol Bay red king 

crab(BBRKC) September October Annual 2018 

EBS Tanner crab 

September October Annual 2018 

Pribilof Is. red king crab 

(PIRKC) September October Biennial 2019 

Pribilof Is. blue king crab 

(PIBKC) September October Triennial 2020 

Saint Matthew blue king crab 

(SMBKC) September October Annual 2018 

Based upon the assessment frequency described in Table 1, the CPT provides recommendations on OFL, 

acceptable biological catch (ABC) and stock status specifications for review by the NPFMC Science and 

Statistical Committee (SSC) in February (NSRKC) and June (WAIRKC, PIGKC) and October (BBRKC, 

EBS Snow crab, EBS Tanner crab, SMBKC, PIRKC, PIBKC, AIGKC).  The rationale for this staggered 

review process is the following: The stocks with summer fisheries as well as those established on catch data 

only have specifications set in June.  The stocks which employ data from the EBS NMFS trawl survey thus 

cannot be assessed until survey data are available in early September. Summer catch data for NSRKC 

however are not available in time for fall specifications, nor is assessing this stock with the June timing 

feasible as the CDQ fishery can open as early as May thus this stock is assessed in the winter. Additional 

information on the OFL and ABC determination process is contained in this report.   

The CPT met from September 18-21, 2017 in Seattle, WA to review the final stock assessments as well as 

additional related issues, in order to provide the recommendations and status determinations contained in 

this SAFE report. This final 2017 Crab SAFE report contains all recommendations for all 10 stocks 

including those whose OFL and ABC were previously determined in February and June 2017.  This SAFE 

report will be presented to the NPFMC in October for their annual review of the status of BSAI Crab stocks.  

Members of the team who participated in this review include the following:  Bob Foy (Chair), Karla Bush 

(Vice-Chair), Katie Pavlof, Miranda Westphal, Brian Garber-Yonts, Ginny Eckert, Krista Milani, André 

Punt, Buck Stockhausen, Ben Daly, Martin Dorn, Shareef Siddeek, Jack Turnock and Diana Stram. 
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Stock Status Definitions 

The FMP (incorporating all changes made following adoption of Amendment 24) contains the following 

stock status definitions: 

Acceptable biological catch (ABC) is a level of annual catch of a stock that accounts for the scientific 

uncertainty in the estimate of OFL and any other specified scientific uncertainty and is set to prevent, with 

a greater than 50 percent probability, the OFL from being exceeded.  The ABC is set below the OFL. 

ABC Control Rule is the specified approach in the five-tier system for setting the maximum permissible 

ABC for each stock as a function of the scientific uncertainty in the estimate of OFL and any other specified 

scientific uncertainty. 

Annual catch limit (ACL) is the level of annual catch of a stock that serves as the basis for invoking 

accountability measures.  For EBS crab stocks, the ACL will be set at the ABC. 

Total allowable catch (TAC) is the annual catch target for the directed fishery for a stock, set to prevent 

exceeding the ACL for that stock and in accordance with section 8.2.2 of the FMP. 

Guideline harvest level (GHL) means the preseason estimated level of allowable fish harvest which will not 

jeopardize the sustained yield of the fish stocks. A GHL may be expressed as a range of allowable harvests 

for a species or species group of crab for each registration area, district, subdistrict, or section. 

Maximum sustainable yield (MSY) is the largest long-term average catch or yield that can be taken from a 

stock or stock complex under prevailing ecological and environmental conditions.  MSY is estimated from 

the best information available.   

FMSY control rule means a harvest strategy which, if implemented, would be expected to result in a long-

term average catch approximating MSY. 

BMSY stock size is the biomass that results from fishing at constant FMSY and is the minimum standard for a 

rebuilding target when a rebuilding plan is required. 

Maximum fishing mortality threshold (MFMT) is defined by the FOFL control rule, and is expressed as the 

fishing mortality rate.  

Minimum stock size threshold (MSST) is one half the BMSY stock size.  

Overfished is determined by comparing annual biomass estimates to the established MSST.  For stocks 

where MSST (or proxies) are defined, if the biomass drops below the MSST (or proxy thereof) then the 

stock is considered to be overfished. For crab stocks, biomass for determining overfished status is estimated 

on February 15 of the current year and compared to the MSST established by the NPFMC in October of 

the previous year. 

Overfishing is defined as any amount of catch in excess of the overfishing level (OFL).  The OFL is 

calculated by applying abundance estimates to the FOFL control rule which is annually estimated according 

the tier system (see Chapter 6.0 in the FMP). 
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Status Determination Criteria 

The FMP defines the following status determination criteria and the process by which these are defined 

following adoption of Amendment 24 and 38. 

Status determination criteria for crab stocks are calculated using a five-tier system that accommodates 

varying levels of uncertainty of information.  The five-tier system incorporates new scientific information 

and provides a mechanism to continually improve the status determination criteria as new information 

becomes available.  Under the five-tier system, overfishing and overfished criteria and ABC levels for most 

stocks are annually formulated.  The ACL for each stock equals the ABC for that stock.  Each crab stock is 

annually assessed to determine its status and whether (1) overfishing is occurring or the rate or level of 

fishing mortality for the stock is approaching overfishing, (2) the stock is overfished or the stock is 

approaching an overfished condition, and (3) the catch has exceeded the ACL.   

For crab stocks, the OFL equals the maximum sustainable yield (MSY) and is derived through the annual 

assessment process, under the framework of the tier system.  Overfishing is determined by comparing the 

OFL with the catch estimates for that crab fishing year.  For the previous crab fishing year, NMFS will 

determine whether overfishing occurred by comparing the previous year’s OFL with the catch from the 

previous crab fishing year.  For the previous crab fishing year, NMFS will also determine whether the ACL 

was exceeded by comparing the ACL with the catch estimates for that crab fishing year.  Catch includes all 

fishery removals, including retained catch and discard losses, for those stocks where non-target fishery 

removal data are available.  Discard losses are determined by multiplying the appropriate handling mortality 

rate by observer estimates of bycatch discards.  For stocks where only retained catch information is 

available, the OFL and ACL will be set for and compared to the retained catch. 

The NMFS will determine whether a stock is in an overfished condition by comparing annual biomass 

estimates to the established MSST.  For stocks where MSST (or proxies) are defined, if the biomass drops 

below the MSST (or proxy thereof) then the stock is considered to be overfished.  MSSTs or proxies are 

set for stocks in Tiers 1-4.  For Tier 5 stocks, it is not possible to set an MSST because there are no reliable 

estimates of biomass.   

If overfishing occurred or the stock is overfished, section 304(e)(3)(A) of the Magnuson-Stevens Act, as 

amended, requires the NPFMC to immediately end overfishing and rebuild affected stocks.   

The Magnuson-Stevens Act requires that FMPs include accountability measures to prevent ACLs from 

being exceeded and to correct overages of the ACL if they do occur.  Accountability measures to prevent 

TACs and GHLs from being exceeded have been used under this FMP for the management of the BSAI 

crab fisheries and will continue to be used to prevent ACLs from being exceeded.  These include: individual 

fishing quotas and the measures to ensure that individual fishing quotas are not exceeded, measures to 

minimize crab bycatch in directed crab fisheries, and monitoring and catch accounting measures.  

Accountability measures in the harvest specification process include downward adjustments to the ACL 

and TAC in the fishing year after an ACL has been exceeded.   

Annually, the NPFMC, SSC, and CPT will review (1) the stock assessment documents, (2) the OFLs and 

ABCs, and TACs or GHLs, (3) NMFS’s determination of whether overfishing occurred in the previous 

crab fishing year, (4) NMFS’s determination of whether any stocks are overfished and (5) NMFS’s 

determination of whether catch exceeded the ACL in the previous crab fishing year.   

Optimum yield is defined in Chapter 4 of the FMP.  Information pertaining to economic, social and 

ecological factors relevant to the determination of optimum yield is provided in several sections of the FMP, 

including sections 7.2 (Management Objectives), Chapter 11, Appendix D (Biological and Environmental 

Characteristics of the Resource), and Appendix H (Community Profiles). 
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For each crab fishery, the optimum yield range is 0 to < OFL catch.  For crab stocks, the OFL is the 

annualized MSY and is derived through the annual assessment process, under the framework of the tier 

system.  Recognizing the relatively volatile reproductive potential of crab stocks, the cooperative 

management structure of the FMP, and the past practice of restricting or even prohibiting directed harvests 

of some stocks out of ecological considerations, this optimum yield range is intended to facilitate the 

achievement of the biological objectives and economic and social objectives of the FMP (see sections 7.2.1 

and 7.2.2) under a variety of future biological and ecological conditions.  It enables the SOA to determine 

the appropriate TAC levels below the OFL to prevent overfishing or address other biological concerns that 

may affect the reproductive potential of a stock but that are not reflected in the OFL itself.  Under FMP 

section 8.2.2, the SOA establishes TACs at levels that maximize harvests, and associated economic and 

social benefits, when biological and ecological conditions warrant doing so. 

Five-Tier System 

The OFL and ABC for each stock are estimated for the upcoming crab fishing year using the five-tier 

system, detailed in Table 6-1 and 6-2.  First, a stock is assigned to one of the five tiers based on the 

availability of information for that stock and model parameter choices are made.  Tier assignments and 

model parameter choices are recommended through the CPT process to the SSC.  The SSC recommends 

tier assignments, stock assessment and model structure, and parameter choices, including whether 

information is "reliable," for the assessment authors to use for calculating the proposed OFLs and ABCs 

based on the five-tier system. 

For Tiers 1 through 4, once a stock is assigned to a tier, the determination of stock status level is based on 

recent survey data and assessment models, as available.  The stock status level determines the equation used 

in calculating the FOFL.  Three levels of stock status are specified and denoted by “a,” “b,” and “c” (see 

Table 6-1).  The FMSY control rule reduces the FOFL as biomass declines by stock status level.  At stock 

status level “a,” current stock biomass exceeds the BMSY.  For stocks in status level “b,” current biomass is 

less than BMSY but greater than a level specified as the “critical biomass threshold” (β).   

In stock status level “c,” the ratio of current biomass to BMSY (or a proxy for BMSY) is below β.  At stock 

status level “c,” directed fishing is prohibited and an FOFL at or below FMSY would be determined for all 

other sources of fishing mortality in the development of the rebuilding plan.  The Council will develop a 

rebuilding plan once a stock level falls below the MSST.   

For Tiers 1 through 3, the coefficient α is set at a default value of 0.1, and β set at a default value of 0.25, 

with the understanding that the SSC may recommend different values for a specific stock or stock complex 

as merited by the best available scientific information.  

In Tier 4, a default value of natural mortality rate (M) or an M proxy, and a scalar, γ, are used in the 

calculation of the FOFL.   

In Tier 5, the OFL is specified in terms of an average catch value over an historical time period, unless the 

SSC recommends an alternative value based on the best available scientific information.   

Second, the assessment author prepares the stock assessment and calculates the proposed OFLs by applying 

the FOFL and using the most recent abundance estimates.  The assessment authors calculate the proposed 

ABCs by applying the ABC control rule to the proposed OFL. 
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Stock assessment documents shall:  

• use risk-neutral assumptions; 

• specify how the probability distribution of the OFL used in the ABC control rule is calculated for 

each stock; and 

• specify the factors influencing scientific uncertainty that are accounted for in calculation of the 

probability distribution of the OFL. 

Second, the CPT annually reviews stock assessment documents, the most recent abundance estimates, the 

proposed OFLs and ABCs, and complies the SAFE.  The CPT then makes recommendations to the SSC on 

the OFLs, ABCs, and any other issues related to the crab stocks.  

Third, the SSC annually reviews the SAFE report, including the stock assessment documents, 

recommendations from the CPT, and the methods to address scientific uncertainty.   

In reviewing the SAFE, the CPT and the SSC shall evaluate and make recommendations, as necessary, on: 

• the assumptions made for stock assessment models and estimation of OFLs; 

• the specifications of the probability distribution of the OFL; 

• the methods to appropriately quantify uncertainty in the ABC control rule; and 

• the factors influencing scientific uncertainty that the SOA has accounted for and will account for 

on an annual basis in TAC setting. 

The SSC will then set the final OFLs and ABCs for the upcoming crab fishing year.  The SSC may set an 

ABC lower than the result of the ABC control rule, but it must provide an explanation for setting the ABC 

less than the maximum ABC.   

As an accountability measure, the total catch estimate used in the stock assessment will include any amount 

of harvest that may have exceeded the ACL in the previous fishing season.  For stocks managed under Tiers 

1 through 4, this would result in a lower maximum ABC in the subsequent year, all else being equal, because 

maximum ABC varies directly with biomass.  For Tier 5 stocks, the information used to establish the ABC 

is insufficient to reliably estimate abundance or discern the existence or extent of biological consequences 

caused by an overage in the preceding year.  Consequently, the subsequent year's maximum ABC will not 

automatically decrease.  However, when the ACL for a Tier 5 stock has been exceeded, the SSC may 

decrease the ABC for the subsequent fishing season as an accountability measure.   

Tiers 1 through 3 

For Tiers 1 through 3, reliable estimates of B, BMSY, and FMSY, or their respective proxy values, are available.  

Tiers 1 and 2 are for stocks with a reliable estimate of the spawner/recruit relationship, thereby enabling 

the estimation of the limit reference points BMSY and FMSY.   

• Tier 1 is for stocks with assessment models in which the probability density function (pdf) of FMSY 

is estimated.  

• Tier 2 is for stocks with assessment models in which a reliable point estimate, but not the pdf, of 

FMSY is made.   

• Tier 3 is for stocks where reliable estimates of the spawner/recruit relationship are not available, 

but proxies for FMSY and BMSY can be estimated.   
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For Tier 3 stocks, maturity and other essential life-history information are available to estimate proxy limit 

reference points.  For Tier 3, a designation of the form “FX” refers to the fishing mortality rate associated 

with an equilibrium level of fertilized egg production (or its proxy such as mature male biomass at mating) 

per recruit equal to X% of the equilibrium level in the absence of any fishing.   

The OFL and ABC calculation accounts for all losses to the stock not attributable to natural mortality.  The 

OFL and ACL are total catch limits comprised of three catch components: (1) non-directed fishery discard 

losses; (2) directed fishery discard losses; and (3) directed fishery retained catch.  To determine the discard 

losses, the handling mortality rate is multiplied by bycatch discards in each fishery.  Overfishing would 

occur if, in any year, the sum of all three catch components exceeds the OFL.   

Tier 4 

Tier 4 is for stocks where essential life-history, recruitment information, and understanding are insufficient 

to achieve Tier 3.  Therefore, it is not possible to estimate the spawner-recruit relationship.  However, there 

is sufficient information for simulation modeling that captures the essential population dynamics of the 

stock as well as the performance of the fisheries.  The simulation modeling approach employed in the 

derivation of the annual OFLs captures the historical performance of the fisheries as seen in observer data 

from the early 1990s to present and thus borrows information from other stocks as necessary to estimate 

biological parameters such as γ. 

In Tier 4, a default value of natural mortality rate (M) or an M proxy, and a scalar, γ, are used in the 

calculation of the FOFL.  Explicit to Tier 4 are reliable estimates of current survey biomass and the 

instantaneous M.  The proxy BMSY is the average biomass over a specified time period, with the 

understanding that the Council’s Scientific and Statistical Committee may recommend a different value for 

a specific stock or stock complex as merited by the best available scientific information.  A scalar, γ, is 

multiplied by M to estimate the FOFL for stocks at status levels “a” and “b,” and γ is allowed to be less than 

or greater than unity.  Use of the scalar γ is intended to allow adjustments in the overfishing definitions to 

account for differences in biomass measures.  A default value of γ is set at 1.0, with the understanding that 

the Council’s Scientific and Statistical Committee may recommend a different value for a specific stock or 

stock complex as merited by the best available scientific information.   

If the information necessary to determine total catch OFLs and ACLs is available for a Tier 4 stock, then 

the OFL and ACL will be total catch limits comprised of three catch components: (1) non-directed fishery 

discard losses; (2) directed fishery discard losses; and (3) directed fishery retained catch.  If the information 

necessary to determine total catch OFLs and ACLs is not available for a Tier 4 stock, then the OFL and 

ACL are determined for retained catch.  In the future, as information improves, data would be available for 

some stocks to allow the formulation and use of selectivity curves for the discard fisheries (directed and 

non-directed losses) as well as the directed fishery (retained catch) in the models.  The resulting OFL and 

ACL from this approach, therefore, would be the total catch OFL and ACL.   

Tier 5 

Tier 5 stocks have no reliable estimates of biomass and only historical catch data are available.  For Tier 5 

stocks, the OFL is set equal to the average catch from a time period determined to be representative of the 

production potential of the stock, unless the Scientific and Statistical Committee recommends an alternative 

value based on the best available scientific information.  The ABC control rule sets the maximum ABC at 

less than or equal to 90 percent of the OFL and the ACL equals the ABC.   

For Tier 5 stocks where only retained catch information is available, the OFL and ACL will be set for the 

retained catch portion only, with the corresponding limits applying to the retained catch only.  For Tier 5 

stocks where information on bycatch mortality is available, the OFL and ACL calculations could include 
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discard losses, at which point the OFL and ACL would be applied to the retained catch plus the discard 

losses from directed and non-directed fisheries.   

Figure 1.  Overfishing control rule for Tiers 1 through 4.  Directed fishing mortality is 0 below β. 
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Table 1.  Five-Tier System for setting overfishing limits (OFLs) and Acceptable Biological Catches (ABCs) 
for crab stocks.  The tiers are listed in descending order of information availability. Table 2 contains a guide 
for understanding the five-tier system.  

Information 

available 
Tier Stock status level FOFL ABC control rule 

B, BMSY, FMSY, 

and pdf of FMSY 

 

1 

a.  

1
msy

B

B


 

OFL AF  =arithmetic 

mean of the pdf 

 

 

b.  

1
msy

B

B
b  

 1

msy

OFL A

B
B

F

a


a




  

ABC≤(1-by) * OFL 

 

c.  msy

B

B
b

 

Directed fishery F = 0  

FOFL ≤ FMSY
†  

 

B, BMSY, FMSY 2 

a.  

1
msy

B

B


 
OFL msyF F

 

 

 

b.  

1
msy

B

B
b  

 1

msy

OFL msy

B
B

F F

a

a




  

ABC≤(1-by) * OFL 

 

c.  msy

B

B
b

 

Directed fishery F = 0  

FOFL ≤ FMSY
†  

 

B, F35%
*, B35%

* 

 

3 

a.  

1
%*35


B

B

 
*%35FFOFL   

 

 

b.  

1
*%35


B

B
b

 a

a






1

%35
*

%35
* B

B

FFOFL

 

ABC≤(1-by) * OFL 

 

c.  

b
*%35B

B

 

Directed fishery F = 0  

FOFL ≤ FMSY
†  

 

Table continued on next page -- 
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Table 1 (continued)  

     

B, M, 
proxmsy

B
 

4 

a.  

1
proxmsy

B

B


 
OFLF M  

 

 

b.  

1
proxmsy

B

B
b  

 1

proxmsy

OFL

B
B

F M

a


a




  

ABC≤(1-by) * OFL 

 

c.  
proxmsy

B

B
b

 

Directed fishery F = 0  

FOFL ≤ FMSY
†  

 

Stocks with no 

reliable 

estimates of 

biomass or M. 

5  OFL = average catch from 

a time period to be 

determined, unless the SSC 

recommends an alternative 

value based on the best 

available scientific 

information. 

ABC≤0.90 * OFL 

*35% is the default value unless the SSC recommends a different value based on the best available scientific 

information. 

† An FOFL ≤ FMSY will be determined in the development of the rebuilding plan for an overfished stock. 
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Table 2.  A guide for understanding the five-tier system. 

• FOFL — the instantaneous fishing mortality (F) from the directed fishery that is used in the 

calculation of the overfishing limit (OFL).  FOFL is determined as a function of:  

o FMSY — the instantaneous F that will produce MSY at the MSY-producing biomass 

▪ A proxy of FMSY may be used; e.g., Fx%, the instantaneous F that results in 

x% of the equilibrium spawning per recruit relative to the unfished value 

o B — a measure of the productive capacity of the stock, such as spawning biomass 

or fertilized egg production.   

▪ A proxy of B may be used; e.g., mature male biomass  

o BMSY — the value of B at the MSY-producing level 

▪ A proxy of BMSY may be used; e.g., mature male biomass at the MSY-

producing level 

o β — a parameter with restriction that 0 ≤ β < 1. 

o α — a parameter with restriction that 0 ≤ α ≤ β. 

• The maximum value of FOFL is FMSY.  FOFL = FMSY when B > BMSY. 

• FOFL decreases linearly from FMSY to FMSY·(β-α)/(1-α) as B decreases from BMSY to β· BMSY 

• When B ≤ β· BMSY, F = 0 for the directed fishery and FOFL ≤ FMSY for the non-directed 

fisheries, which will be determined in the development of the rebuilding plan.  

• The parameter, β, determines the threshold level of B at or below which directed fishing is 

prohibited. 

• The parameter, α, determines the value of FOFL when B decreases to β· BMSY and the rate at 

which FOFL decreases with decreasing values of B when β· BMSY < B ≤ BMSY. 

o Larger values of α result in a smaller value of FOFL when B decreases to β· BMSY. 

o Larger values of α result in FOFL decreasing at a higher rate with decreasing values 

of B when β· BMSY < B ≤ BMSY. 

• The parameter, by, is the value for the annual buffer calculated from a P* of 0.49 and a 

probability distribution for the OFL that accounts for scientific uncertainty in the estimate 

of OFL. 

• P* is the probability that the estimate of ABC, which is calculated from the estimate of 

OFL, exceeds the “true” OFL (noted as OFL’) (P(ABC>OFL’). 
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Crab Plan Team Recommendations 

Table 3 lists the team’s recommendations for 2017/2018 on Tier assignments, model parameterizations, 

time periods for reference biomass estimation or appropriate catch averages, OFLs and ABCs.  The team 

recommends four stocks be placed in Tier 3 (EBS snow crab, Bristol Bay red king crab, EBS Tanner crab 

and Aleutian Island golden king crab), four stocks in Tier 4 (St. Matthew blue king crab, Pribilof Islands 

blue king crab, Pribilof Islands red king crab, and Norton Sound red king crab) and two stocks in Tier 5 

(Pribilof Islands golden king crab, and Adak red king crab).  Table 4 lists those stocks for which the team 

recommends an ABC less than the maximum permissible ABC for 2017/18.  Stock status in relation to 

status determination criteria are evaluated in this report (Table 5).  Status of stocks in relation to status 

determination criteria for stocks in Tiers 3 and 4 are shown in Figure 2.  EBS Tanner crab and Pribilof 

Island red king crab are estimated to be above BMSY for 2017/18 while EBS snow crab, Bristol Bay red king 

crab, Saint Matthew blue king crab and Norton Sound red king crab are estimated below BMSY.  Pribilof 

Islands blue king crab stock remains overfished and estimated to be well below its MSST.   

The CPT has general recommendations for all assessments and specific comments related to individual 

assessments.  All recommendations are for consideration for the 2018 assessments.  The general comments 

are listed below while the comments related to individual assessments are contained within the summary 

of CPT deliberations and recommendations contained in the stock specific summary section.  Additional 

details regarding recommendations are contained in the Crab Plan Team Report (September 2017 CPT 

Report).   

General recommendations for all assessments 

1. The CPT recommends that all assessment authors document assumptions and simulate data under those 

assumptions to test the ability of the model to estimate key parameters in an unbiased manner.  These 

simulations would be used to demonstrate precision and bias in estimated model parameters.   

2. The CPT recommends that weighting factors be expressed as sigmas or CVs or effective sample sizes.  

The team requests all authors to follow the Guidelines for SAFE preparation and to follow the Terms 

of Reference as listed therein as applicable by individual assessment for both content and diagnostics. 

3. Authors should focus on displaying information on revised models as compared to last year’s model 

rather than focusing on aspects of the assessment that have not changed from the previous year.  

4. The current approach for fitting length-composition data accounts for sampling error but ignores the 

fact that selectivity among size classes is not constant within years; a small change in the selectivity on 

small animals could lead to a very large change in the catch of such animals (as may have happened 

for NSRKC). Authors are encouraged to develop approaches for accounting for this source of process 

error. This issue is generic to assessments of crab and groundfish stocks. 

5. Authors are reminded that assessments should include the time series of stock estimates at the time of 

survey for at least the author's recommended model in that year. 

6. Consider stepwise changes to data as individual model runs instead of changing multiple parameters at 

once so that changes in model performance may be attributed to specific data 

By convention the CPT used the following conversions to include tables in both lb and t in the status 

summary sections: 

• million lb to 1000 t  [/2.204624] 

• 1000 t to million lb  [/0.453592] 
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Stock Status Summaries 

1 Eastern Bering Sea Snow crab 

Fishery information relative to OFL setting 

Total catch mortality in 2016/17 was 11,000 t (with discard mortality rates applied), while the retained 

catch in the directed fishery was 9,700 t. This was below the 2016/17 OFL of 23,700 t. Snow crab bycatch 

occurs in the directed fishery and to a lesser extent in the groundfish trawl fisheries. Estimates of trawl 

bycatch in recent years are less than 1% of the total snow crab catch. Estimates of stock status were above 

the BMSY proxy for this stock (B35%) in 2010/11-2012/13, but below the BMSY proxy more recently. For 

2017/18, the ratio of projected MMB (99.6 t) fishing at the FOFL to BMSY (139,400 t) remains less than 1 but 

above 0.5. 

Data and assessment methodology 

The stock assessment is based on a size- and sex-structured model in which crabs are categorized into 

immature or mature and new or old shell. The model is fitted to abundance and size frequency data from 

the NMFS trawl survey, total catch data from the directed fishery, bycatch data from the trawl fishery, size 

frequency data for male retained catch in the directed fishery, and male and female bycatch in the directed 

and trawl fisheries. The model is also fitted to biomass estimates and size frequency data from the 2009 and 

2010 BSFRF surveys. Updated data in the model include biomass and length frequency data from the 2017 

NMFS Eastern Bering Sea trawl survey, retained and discard catch and length frequencies from the 2016/17 

directed fishery, and discard catch and length frequencies from the 2016/17 groundfish fisheries.  

The model estimation structure was similar to the 2016 assessment incorporating the status determination 

and OFL calculations directly within the model code which allowed the author to employ a Bayesian 

approach to determining OFL, by using Markov Chain Monte Carlo (MCMC) techniques to sample the 

posterior distributions of relevant quantities that more fully incorporated model uncertainty than was 

possible with the methods used previously. In this assessment, a jittering approach within a maximum 

likelihood framework was also used. 

The assessment author examined eight model runs based on six model scenarios in this assessment. Model 

M16.D16 was equivalent to the September 2016 assessment model. Model M16.D17 included new survey 

data. Model M16.D17a dropped survey data prior to 1982 due to catchability coefficients prior to 1982 in 

spite of a smaller surveyed area. A larger model change was made in M17A.D17a to change the survey 

selectivity periods to before and after 1987 which is in line with the survey station distribution. 

M17Aa.D17a also included estimating the BSFRF data in logit space with a penalty because those 

parameters were hitting bounds. M17Ab.D17a was a separate model run provided in an appendix that 

considered the posterior distribution based on an alternate minimum of the likelihood function that 

produced bimodal management quantities. The results of this additional run differed substantially from the 

original run indicating that the posterior was not adequately sampled in either MCMC run based on 

M17Aa.D17a. Model M17B.D17a fit a straight line for growth removing data associated with the two 

smallest length bins. This model was not considered due to poor estimates of the probability of maturing 

and survey selectivity. Model M17C.D17a was recommended by the author and estimated M for females 

in addition to males and immature crab. All models except M17C.D17a had significant bimodal posterior 

distributions in reference points. The CPT concurred with the author recommended model M17C.D17a due 

to the large improvement in likelihood estimates and the lack of the bimodal posterior issues.   
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Stock biomass and recruitment trends 

Survey mature male biomass based on a maturity ogive decreased from 167,100 t in 2011 to 97,500 t in 

2013, increased to 163,500 t in 2014, fell to 63,200 t in 2016, and then increased to 83,960 t in 2017. The 

2017 model estimates of mature male biomass showed trends similar to survey biomass during 2011–2017, 

except that the model failed to match the 1-year spike in survey biomass observed in 2014. Observed survey 

mature female biomass rose quickly from 52,200 t in 2009 to 175,800 t in 2011, its highest value since 

1991, decreased steadily to 55,400 t in 2016, then increased to 106,800 t in 2017. Although the model 

matches the observed mature female survey biomass fairly well in 2016 and 2017, the model estimates do 

not follow the observed rise and fall that started in 2009; instead, they indicate that mature female biomass 

was fairly constant across the 2009–2016 time period. The model estimates a 3-year trend of increasing 

recruitment starting in 2014, with very high values for 2016 (> 6 million), and then decreases in 2017. This 

increase is supported by the associated NMFS EBS survey size compositions, particularly for males. 

Tier determination/Plan Team discussion and resulting OFL/ABC determination Status and 

catch specifications 

The CPT recommends that the EBS snow crab is a Tier 3 stock so the OFL will be determined by the FOFL 

control rule using F35% as the proxy for FMSY. The proxy for BMSY (B35%) is the mature male biomass at 

mating (139.4 thousand t) based on average recruitment over 1978 to 2017. Consequently, the minimum 

stock size threshold (MSST) is 69.7 thousand t. The CPT recommends that the ABC be less than maximum 

permissible ABC. The CPT recommends increasing the buffer previously used for snow crab (10%) to 20% 

for setting the 2017/18 ABC. The recommended increase is due to model uncertainties and contradictions 

between model trends and survey and fishery observations. In addition, model uncertainty is greater for 

2017/18 because the chosen model had questionable selectivity estimates for mature females. 

Historical status and catch specifications for snow crab (thousand t). Shaded values are new estimates or 

projections based on the current assessment. Other table entries are based on historical assessments and 

are not updated except for total and retained catch. 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 71.5 126.5 24.5 24.5 28.1 78.1 70.3 

2014/15 78.9 168.0 30.8 30.8 34.3 69.0 62.1 

2015/16 75.8 91.6 18.4 18.4 21.4 83.1 62.3 

2016/17 69.7 94.4 9.7 9.7 11.0 23.7 21.3 

2017/18  99.6    28.4 22.7 
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Historical status and catch specifications for snow crab (million lb). Shaded values are new estimates or 

projections based on the current assessment. Other table entries are based on historical assessments and 

are not updated except for total and retained catch. 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 157.6 279.0 54.0 54.0 62.0 172.2 155.0 

2014/15 173.9 370.4 67.9 67.9 75.4 152.1 137.0 

2015/16 167.1 201.9 40.6 40.6 47.2 183.2 137.4 

2016/17 153.7 208.1 21.4 21.4 24.3 52.3 47.0 

2017/18  219.6    62.6 50.1 
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2 Bristol Bay Red King Crab 

Fishery information relative to OFL setting.  

The commercial harvest of Bristol Bay red king crab (BBRKC) dates to the 1930s, and the fishery was 

initially prosecuted mostly by foreign fleets, but shifted to a largely domestic fishery in the early 1970s. 

Retained catch peaked in 1980 at 129.9 million lb (58.9 thousand t), but harvests dropped sharply in the 

early 1980s, and population abundance has remained at relatively low levels over the last two decades 

compared to those seen in the 1970s. The fishery is managed for a total allowable catch (TAC) coupled 

with restrictions for sex (males only), a minimum size for legal retention (6.5-in carapace width; 135-mm 

carapace length is used a proxy for 6.5-in carapace width in the assessment), and season (no fishing during 

mating/molting periods). In addition to the retained catch that occurs during the commercial fishery, which 

is limited by the TAC, there is also retained catch that occurs in the ADF&G cost-recovery fishery. 

The current SOA harvest strategy allows a maximum harvest rate of 15% of mature-sized (≥120 mm CL) 

males, but also incorporates a maximum harvest rate of 50% of legal males and a threshold of 8.4 million 

mature-sized (≥90 mm CL) females and 14.5 million lb (6.6 thousand t) of effective spawning biomass 

(ESB), to prosecute a fishery. Annual non-retained catch of female and sublegal male RKC during the 

fishery averaged less than 3.9 million lb (8.6 thousand t) since data collection began in 1990. Total catch 

(retained and bycatch mortality) increased from 16.9 million lb (7.6 thousand t) in 2004/05 to 23.4 million 

lb (10.6 thousand t) in 2007/08, but has decreased since then; retained catch in 2016/17 was 8.64 million lb 

(3.92 thousand t) and total catch mortality was 9.44 million lb (4.28 thousand t). 

Data and assessment methodology  

The stock assessment is based on a sex- and size-structured population dynamics model incorporating data 

from the NMFS eastern Bering Sea trawl survey, the Bering Sea Fisheries Research Foundation (BSFRF) 

trawl survey, landings of commercial catch, at-sea observer sampling, and dockside retained catch 

sampling. In the model recommended by the CPT, annual stock abundance was estimated for male and 

female crabs ≥ 65-mm carapace length from 1975 to the time of the 2017 survey and mature male (males 

≥120 mm CL) biomass was projected to 15 February 2018. Catch data (retained catch numbers, retained 

catch weight, and pot lifts by statistical area and landing date) from the directed fishery, which targets males 

≥ 135 mm (6.5 in carapace length), were obtained from ADF&G fish tickets and reports, red king crab and 

Tanner crab fisheries bycatch data from the ADF&G observer database, and groundfish trawl bycatch data 

from the NMFS groundfish observer database. NMFS trawl survey data were updated with data from the 

2017 survey and new estimates of survey variance provided by NMFS; catch and bycatch data were updated 

with data from the 2016/17 crab fishery year. The estimate of biomass from the BSFRF survey for 2016 

was updated to reflect correction of a calculation error. 

Three principal model scenarios were evaluated in the 2017 assessment: Scenario 2a, a minor revision to 

the Scenario 2 from the 2016 assessment, and two new model scenarios that 1) explored alternative ways 

to incorporate groundfish fisheries bycatch into the assessment (Scenario 2b)  and 2) removed constraints 

on model parameters (Scenario 2d) . Scenario 2b was identical to scenario 2a, except that it separated 

bycatch of BBRKC in the groundfish fisheries by gear type (trawl and fixed) and fit these data using 

separate likelihood components. Scenario 2d was identical to 2b, but dropped the prior on trawl survey 

catchability from the double-bag experiment and used a logit transformation to ensure survey catchability 

was less than or equal to 1. The authors also evaluated the application of two approaches developed by 

Chris Francis to iteratively adjust the sample sizes applied to size composition data for each of the major 

alternative scenarios. 
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The CPT selected model 2b as its recommended model as the basis for status determination and OFL setting.  

The six model scenarios that included iterative re-weighting applied to size composition data (2a1, 2a2, 

2b1, 2b2, 2d1, 2d2) were not selected because the iterative re-weighting resulted in greatly reduced effective 

sample sizes that led to problems with model convergence and parameter estimation. Scenario 2d 

implements the recommendation that the prior for survey catchability be removed because it only accounts 

for one factor impacting catchability. In particular, the prior ignores the impact of availability, which would 

be expected to reduce survey catchability. The BSFRF survey data suggest that the NMFS survey 

catchability is less than 1 (~0.6). However, Scenario 2d led to an estimate of survey catchability equal to 

the upper bound of 1 (and would have been even higher had the bound not been imposed). In addition, the 

uncertainty associated with the estimated parameter value was extremely large. Scenario 2d also under-

predicted most of the BSFRF survey estimates while over-predicting most of the recent NMFS survey 

estimates. Although Scenario 2b also had an estimated value for NMFS survey catchability close to 1, it 

was lower than that for Scenario 2d and had a much smaller associated uncertainty. In addition, because 

the prior on NMFS survey catchability was informed by experimental results, it was felt that dropping the 

prior was equivalent to removing data from the assessment. The CPT speculates that the high NMFS survey 

catchability is a consequence of the model needing to replicate the rapid decline in survey abundance in the 

1980s given the observed catches. Thus, the CPT selected Scenario 2b as its recommended model. 

Stock biomass and recruitment trends  

Model (scenario 2b) estimates of total survey biomass increased from 252 thousand t in 1975 to 297 

thousand t in 1977, fell to 34.6 thousand t in 1985, generally increased to 91.9 thousand t in 2008, and 

subsequently declined to 60.3 thousand t in 2017. Estimated recruitment was high during the 1970s and 

early 1980s and has been generally low since 1985. The near-term outlook for this stock is a continued 

gradual declining trend. Recruitment has been poor (less than the mean from 1984-2016) since 2006. The 

2011 survey produced a high catch of juvenile males and females <65 mm CL in one survey tow, but that 

catch did not track into the 2012−2017 surveys. The survey area-swept estimates for abundance and 

biomass in 2015-2017 were more consistent with previous surveys, in comparison to 2014, when the 

estimates were anomalously high.  

Tier determination/Plan Team discussion and resulting OFL and ABC determination  

Bristol Bay red king crab is in Tier 3. Based on the author’s discussion regarding an apparent reduction in 

stock productivity associated with the 1976/77 climate regime shift in the EBS, the CPT recommends 

computing average recruitment as has been done in recent assessments (i.e., based on model recruitment 

using the time period 1984 (corresponding to fertilization in 1977) to the last year of the assessment) 

pending a more comprehensive discussion on this topic at the January 2018 CPT meeting. The estimated 

B35% is 25.1 thousand t. MMB projected for 2017/18 is 21.31 thousand t, 85% of B35%.  Consequently, the 

BBRKC stock is in Tier 3b in 2017/18. 

The CPT recommends that the OFL for 2017/18 be set according to model scenario 2b, for which the 

calculated OFL is 5.60 thousand t (12.35 million lb). The team recommends that the ABC for 2017/18 be 

set below the maximum permissible ABC. The team recommends that a 10% buffer from the OFL be used 

to set the ABC at 5.04 thousand t (11.11 million lb).  

MMB for 2016/17 was estimated to be 25.81 thousand t and above MSST (12.53 thousand t); hence the 

stock was not overfished in 2016/17. The total catch in 2016/17 (4.28 thousand t) was less than the 2016/17 

OFL (6.64 thousand t); hence overfishing did not occur in 2016/17. The stock at 2017/18 time of mating is 

projected to be above the MSST and 85% of B35% (see above); hence the stock is not approaching an 

overfished condition in 2017/18. 
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Historical status and catch specifications for Bristol Bay red king crab (thousand t). Shaded values are new 

estimates or projections based on the current assessment. Other table entries are based on historical 

assessments and are not updated except for total and retained catch. 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 12.85 27.12 3.90 3.99 4.56 7.07 6.36 

2014/15 13.03 27.25 4.49 4.54 5.44 6.82 6.14 

2015/16 12.89 27.68 4.52 4.61 5.34 6.73 6.06 

2016/17 12.53 25.81 3.84 3.92 4.28 6.64 5.97 

2016/17  21.31    5.60 5.04 

 

Historical status and catch specifications for Bristol Bay red king crab (million lb). Shaded values are new 

estimates or projections based on the current assessment. Other table entries are based on historical 

assessments and are not updated except for total and retained catch. 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 28.3 59.9 8.60 8.80 10.05 15.58 14.02 

2014/15 28.7 60.1 9.99 10.01 11.99 15.04 13.53 

2015/16 28.4 61.0 9.97 10.17 11.77 14.84 13.36 

2015/16 27.6 56.9 8.47 8.65 9.45 14.63 13.17 

2016/17  47.0    12.35 11.11 
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3 Eastern Bering Sea Tanner crab 

Fishery information relative to OFL setting. 

Eastern Bering Sea (EBS) Tanner crab are caught in directed Tanner crab fisheries, as bycatch in the 

groundfish fisheries, scallop fisheries, as bycatch in the directed Tanner crab fishery (mainly as non-

retained females and sublegal males), and other crab fisheries (notably, eastern Bering Sea snow crab and, 

to a lesser extent, Bristol Bay red king crab). A single OFL is set for Tanner crab in the EBS. Under the 

Crab Rationalization Program, ADF&G sets separate TACs for directed fisheries east and west of 166° W 

longitude. The mature male biomass was estimated to be below the Minimum Stock Size Threshold 

(0.5BMSY) in February 2010 (the assumed time of mating) based on trends in mature male biomass from the 

survey, and NMFS declared the stock overfished in September 2010. The directed fishery was closed from 

2010/11 through 2012/13 crab fishery years. 

NMFS determined the stock was not overfished in 2012 based on a new assessment model with a revised 

estimate of BMSY. The directed fishery was open for the 2013/14 to 2015/16 seasons with a total allowable 

catch (TAC) of 1,410 t in 2013/14, 6,850 t in 2014/15, and 8,920 t in 2015/16. The total retained catch in 

2015/16 (8,910 t) was the largest taken in the fishery since 1992/93. In 2016/17, ADF&G determined that 

mature female biomass did not meet the criteria for opening a fishery according to the regulatory harvest 

strategy, and the TAC was set at zero. Consequently, there was no directed harvest in 2016/17.   

Data and assessment methodology 

The SSC accepted a size-structured assessment model for use in harvest specifications in 2012, and 

classified the EBS Tanner stock as a Tier 3 stock. This year’s assessment used a new modeling framework, 

TCSAM02, which was endorsed by the SSC in June. TCSAM02 is similar to previous Tanner crab 

assessment models, but includes improvements to the modeling of fishery and population processes. The 

model is structured by crab size, sex, shell condition, and maturity. The model uses available data on 

quantity and size-composition from: the NMFS trawl survey; landings and discards by the directed fishery; 

bycatch in the Bristol Bay red king crab, EBS snow crab, and groundfish fisheries. The model includes 

prior distributions on parameters related to natural mortality and catchability, and penalties on changes in 

recruitment and in the proportion maturing. Input data sets were updated with the most recent information, 

including the NMFS EBS trawl survey in 2017; bycatch, and size composition data from the 2016/17 crab 

fisheries; and data on Tanner crab bycatch in the groundfish fisheries in 2016/17. A new data set was added 

which reflects Tanner crab growth in the eastern Bering Sea. 

Stock biomass and recruitment trends 

The MMB at the time of mating is estimated to have been highest early in the early 1970s (approximately 

300 thousand t), with secondary peaks in 1989 (60 thousand t) and 2008–2009 (57–58 thousand t). The 

estimated MMB at time of mating in 2016/17 was 77.96 thousand t and the projection for the 2017/18 time 

of mating is 43.31 thousand t. Estimates of recruitment since 1999 have been generally low relative to the 

peaks estimated for the period prior to 1990. There was a relatively strong recruitment estimated for 2017, 

but this estimate is very uncertain and will need to be confirmed by subsequent assessments.  

Tier determination/Plan Team discussion and resulting OFL and ABC determination 

The CPT recommends the OFL for this stock be based on the Tier 3 control rule. Application of the Tier 3 

control rule requires a set of years for defining RMSY, the mean recruitment corresponding to BMSY under 

prevailing environmental conditions. The recommended time period for defining RMSY is 1982–2017; the 

1982-and-onwards time period has been used in previous OFL determination and follows the most-recent 

recommendation of the SSC.   
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Based on the estimated biomass at 15 February 2017, the stock is at Tier 3 level a. The FMSY proxy (F35%) 

is 0.75 yr-1, and the 2017/18 FOFL is 0.75 yr-1 under the Tier 3 level a OFL Control Rule, which results in a 

total male and female OFL of 25.42 thousand t. The CPT recommends a 20% buffer to account for model 

uncertainty and stock productivity uncertainty be applied to the OFL, to set ABC = 20.33 thousand t. The 

20% buffer is the same that the SSC recommended for determination of the 2016/17 ABC. 

Historical status and catch specifications for Eastern Bering Sea Tanner crab (thousand t). Shaded values 

are new estimates or projections based on the current assessment. Other table entries are based on 

historical assessments and are not updated except for total and retained catch. 

Year MSST 

Biomass 

(MMB) 

TAC (East + 

West) 

Retained 

Catch 

Total 

Catch 

Mortality OFL ABC 

2013/14 16.98 72.70 1.41 1.26 2.78 25.35 17.82 

2014/15 13.40 71.57 6.85 6.16 9.16 31.48 25.18 

2015/16 12.82 73.93 8.92 8.91 11.38 27.19 21.75 

2016/17 14.58 77.96 0.00 0.00 1.14 25.61 20.49 

2017/18  43.31    25.42 20.33 

 

Historical status and catch specifications for Eastern Bering Sea Tanner crab (million lb). Shaded values 

are new estimates or projections based on the current assessment. Other table entries are based on 

historical assessments and are not updated except for total and retained catch. 

Year MSST 

Biomass 

(MMB) 

TAC (East + 

West) 

Retained 

Catch 

Total 

Catch 

Mortality OFL ABC 

2013/14 37.43 160.28 3.12 2.78 6.13 55.89 39.29 

2014/15 29.53 157.78  15.10 13.58 20.19 69.40 55.51 

2015/16 28.27 162.99 19.67 19.64 25.09 59.94 47.95 

2016/17 32.15 171.87 0.00 0.00 2.52 56.46 45.17 

2017/18  95.49    56.03 44.83 
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4 Pribilof Islands red king crab 

Fishery information relative to OFL setting 

The Pribilof Islands red king crab fishery began in 1973 as bycatch during the blue king crab fishery. In 

1993 and 1994 the red king crab fishery was open to directed fishing, and blue king crab was closed. From 

1995 through 1998, combined Pribilof Islands red and blue king crab GHLs were used. Declines in crab 

abundance of both red and blue king crab stocks from 1996 to 1998 resulted in poor fishery performance 

with annual harvests below the GHLs. The Pribilof red king crab fishery has been closed since 1999 due to 

uncertainty in estimated red king crab abundance and concerns for bycatch mortality of blue king crab, 

which is overfished and severely depressed. Fishery closures near the Pribilof Islands have resulted in low 

bycatch, recent bycatch has been well below the OFL, ranging from 0.32 to 13.1 t (<0.001 to 0.029 million 

pounds; 2012/13–2016/17).  

Data and assessment methodology 

The 2017 assessment is based on trends in male mature biomass (MMB) at the time of mating inferred from 

NMFS bottom trawl survey from 1975-2017 and commercial catch and observer data from 1973/74 to 

2016/17. Two assessment methods using a Tier 4 harvest control rule were presented for evaluation: one 

calculated an annual index of MMB derived as the 3-yr running average using inverse variance weighting, 

and the second was a random effects model. The random effects model was presented with three variations: 

1) λ fixed, 2) a prior on λ estimated from bootstrap (with CV=2.24) and 2) a prior on λ with CV 4.0.  

Stock biomass and recruitment trends   

Male and female abundance varies widely over the history of the survey time series and uncertainty around 

area-swept estimates of abundance are large due to relatively low sample sizes. Recruitment for this stock 

is generally low and episodic. Numbers at length vary dramatically from year to year; however, two 

(possibly three) cohorts can be seen moving through the length frequencies over time. MMBmating increased 

over 2012 to 2016. Estimates for the 3-year moving average for MMBmating in recent years approached those 

estimated during the early 1990s, peaking in 2014/15 at 9,963 t (21.96 million pounds).  

Tier determination/Plan Team discussion and resulting OFL and ABC determination 

The CPT recommended the Tier 4 stock status determination and selected the random effects model with a 

prior on λ estimated from a simple exponential model. A bootstrap analysis was used to obtain a prior 

CV=2.24. This model was selected because it is a better smoother of extreme survey values. For 2017/18 

the BMSY = 4,604 t (10.15 million pounds) derived as the mean MMBmating from 1991/92 to 2016/17 from 

the random effects model. Male mature biomass at the time of mating for 2017/18 was estimated at 3,364 t 

(7.416 million pounds). The B/ BMSY = 0.73 and FOFL= 0.13.  B/ BMSY Proxy is < 1, therefore the stock status 

level is Tier 4b. For the 2017/17 fishery, the OFL is 482 t (1.063 million lb).  The CPT recommended a 

25% buffer for an ABC from the OFL as in previous years. 
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Historical status and catch specifications for Pribilof Islands red king crab (t). Shaded values are new 

estimates or projections based on the current assessment. Other table entries are based on historical 

assessments and are not updated except for total and retained catch. 

Year MSST 
Biomass 

(MMBmating) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 2,582 4,679 0 0 2.25 903 718 

2014/15 2,871 8,894 0 0 1.76 1,359 1,019 

2015/16 2,756 9,062 0 0 0.32 2,119 1,467 

2016/17 2,302 4,788 0 0 0.49 1,492 1,096 

2017/18  3,364    482 362 

2018/19      482 362 

 

Historical status and catch specifications for Pribilof Islands red king crab (million lb). Shaded values are 

new estimates or projections based on the current assessment. Other table entries are based on historical 

assessments and are not updated except for total and retained catch. 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 5.66 10.32 0 0 0.005 1.99 1.58 

2014/15 6.33 19.61 0 0 0.002 3.00 2.25 

2015/16 6.23 19.98 0 0 <0.001 4.67 3.23 

2016/17 5.07 10.56 0 0 0.001 3.22 2.42 

2017/18  7.42    1.06 0.80 

2018/19      1.06 0.80 

 

The stock was above MSST in 2016/17 and is hence not overfished. Overfishing did not occur during the 

2016/17 fishing year. 
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5 Pribilof Islands blue king crab 

Fishery information relative to OFL setting.  

The Pribilof Islands blue king crab fishery began in 1973, with peak landings of 11.0 million lb during the 

1980/81 season. A steep decline in landings occurred after the 1980/81 season. Directed fishery harvest 

from 1984/85 until 1987/88 was annually less than 1.0 million lb with low CPUE. The fishery was closed 

from 1988/89 through 1994/95 fishing seasons. The fishery reopened for the 1995/96 to 1998/99 seasons. 

Fishery harvests during this period ranged from 1.3 to 2.5 million lb. The fishery closed again for the 

1999/00 season due to declining stock abundance and has remained closed to the present.  

The stock was declared overfished in 2002 and a rebuilding plan implemented in 2004. The rebuilding plan 

closed directed fishing for Pribilof blue king crab until the stock was rebuilt. In 2009, NMFS determined 

the stock would not meet its 10-year rebuilding horizon. Subsequently, Amendment 43 to the King and 

Tanner Crab FMP and Amendment 103 to the BSAI Groundfish FMP were approved by the Secretary of 

Commerce in 2014. This action, a revised rebuilding plan, closed the Pribilof Island Habitat Conservation 

Zone to Pacific cod pot fishing, which accounts for the highest recent rates of bycatch of this stock. This 

area was already closed to groundfish trawl fishing. To prevent overfishing in the future, ADF&G will 

implement closure areas for the commercial crab fisheries to reduce the blue king crab bycatch. NMFS 

recently implemented a procedure to account for blue king crab bycatch in the groundfish fisheries inseason 

and will take inseason action to prevent overfishing.  

Data and assessment methodology  

The calculation of the 2017/18 survey biomass uses the stock area definition established in 2012/13 that 

includes an additional 20 nm strip east of the Pribilof District. This assessment uses the 2016/17 

methodology to project MMB and calculate BMSY. Prior to 2016/17, MMB for the current year was estimated 

from the NMFS EBS bottom trawl survey using a three-year running average weighted by the inverse of 

the variance of the area-swept estimate. The new methodology to calculate MMB and BMSY was 

recommended by the CPT and uses a random effects model to smooth the survey time series. This model 

smooths the MMB estimates without low abundance estimates having undue influence. Differences in 

abundance estimates from the two methods were largest during periods of high inter-annual variability. 

Differences between the methods were small in recent years. Results from this method are shown starting 

with the 2015/16 MMB and 2016/2017 projected MMB.  

Stock biomass and recruitment trends  

The 2017/18 MMB at mating is projected to be 230 t, which is approximately 6% of the proxy for BMSY. 

The Pribilof blue king crab stock biomass continues to be low with no indication of recruitment.  

Tier determination/Plan Team discussion and resulting OFL and ABC determination  

This stock is recommended for placement into Tier 4. BMSY was estimated using the time periods 1980/81 -

1984/85 and 1990/91-1997/98. This range was chosen because it eliminates periods of extremely low 

abundance that may not be representative of the production potential of the stock. BMSY is estimated at 4,108 

t (9.06 million pounds) for 2017/18.  

Because the projected 2017/18 estimate of MMB is less than 25% BMSY, the stock is in stock status c and 

the directed fishery F is 0. However, an FOFL must be determined for the non-directed catch. Ideally this 

should be based on the rebuilding strategy. For this stock, the FOFL is based on average groundfish bycatch 

between 1999/00 and 2005/06. The recommended OFL for 2017/18 is 1.16 t (0.0026 million lb).  
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The CPT recommended setting the ABC less than the maximum permissible by employing a 25% buffer 

on the OFL. This recommendation was based upon continuing concerns with stock status and consistency 

with relative buffer levels for other stocks for which the OFL is based upon average catch.  

Historical status and catch specifications for Pribilof Islands blue king crab (t). Shaded values are new 

estimates or projections based on the current assessment. Other table entries are based on historical 

assessments and are not updated except for total and retained catch.  

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 2,001 225 Closed 0 0.03 1.16 1.04 

2014/15 2,055 344 Closed 0 0.07 1.16 0.87 

2015/16 2,058 361 Closed 0 1.18 1.16 0.87 

2016/17 2,054 232 Closed 0 0.38 1.16 0.87 

2017/18  230    1.16 0.87 

2018/19      1.16 0.87 

2019/20      1.16 0.87 

 

Historical status and catch specifications for Pribilof Islands blue king crab (million lb). Shaded values 

are new estimates or projections based on the current assessment. Other table entries are based on 

historical assessments and are not updated except for total and retained catch.  

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 4.411 0.496 Closed 0 0.0001 0.0026 0.002 

2014/15 4.531 0.758 Closed 0 0.0002 0.0026 0.002 

2015/16 4.537 0.796 Closed 0 0.0026 0.0026 0.002 

2016/17 4.528 0.511 Closed 0 0.0008 0.0026 0.002 

2017/18  0.507    0.0026 0.002 

2018/19      0.0026 0.002 

2019/20      0.0026 0.002 

 

The total catch for 2016/17 (0.38 t, 0.0008 million lb) was less than the 2016/17 OFL (1.16 t, 0.0026 million 

lb) so overfishing did not occur during 2016/17. The 2017/18 projected MMB estimate of 230 t (0.507 

million lb) is below the proxy for MSST (MMB/BMSY = 0.06) so the stock is projected to continue to be in 

an overfished condition. 
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6 St. Matthew blue king crab 

Fishery information relative to OFL setting  

The fishery was prosecuted as a directed fishery from 1977 to 1998.  Harvests peaked in 1983/84 when 

4,288 t (9.453 million lb) were landed by 164 vessels.  Harvest was fairly stable from 1986/87 to 1990/91, 

averaging 568 t (1.252 million lb) annually.  Harvest increased to a mean catch of 1,496 t (3.298 million 

lb) during the 1991/92 to 1998/99 seasons until the fishery was declared overfished and closed in 1999 

when the stock size estimate was below the MSST.  In November of 2000, Amendment 15 to the FMP was 

approved to implement a rebuilding plan for the St. Matthew Island blue king crab stock.  The rebuilding 

plan included a harvest strategy identified in regulation by the Alaska Board of Fisheries, an area closure 

to control bycatch, and gear modifications. In 2008/09 and 2009/10, the MMB was estimated to be above 

BMSY for two years and the stock declared rebuilt in 2009.  

The fishery re-opened in 2009/10 with a TAC of 529 t (1.166 million lb) and 209 t (0.461 million lb) of 

retained catch were harvested. The 2010/11 TAC was 726 t (1.601 million lb) and the fishery reported a 

retained catch of 573 t (1.263 million lb).  The 2011/12 harvest of 853 t (1.881 million lb) represented 80% 

of the 1,152 t (2.540 million lb) TAC. In 2012/13, by contrast, harvesters landed 99% (733 t, 1.616 million 

lb) of a reduced TAC of 740 t (1.630 million lb), though fishery efficiency, at about 10 crab per pot, was 

little changed from what it had been in each of the previous three years.  The directed fishery was closed in 

2013/14 due to declining trawl survey estimates of abundance and concerns about the health of the stock.  

The directed fishery resumed again in 2014/15 with a TAC of 300 t (0.655 million pounds), but the fishery 

performance was relatively poor with the retained catch of 140 t (0.309 million pounds).  The TAC in 

2015/16 was 190 t (0.410 million pounds) with a retained catch of 47 t (0.105 million pounds).  The fishery 

was closed in 2016/17.  Bycatch of non-retained blue king crab has occurred in the St. Matthew blue king 

crab fishery, the eastern Bering Sea snow crab fishery, and trawl and fixed-gear groundfish fisheries.  Based 

on limited observer data, bycatch of sublegal male and female crabs in the directed blue king crab fishery 

off St. Matthew Island was relatively high when the fishery was prosecuted in the 1990s, and total bycatch 

(in terms of number of crabs captured) was often twice as high or higher than total catch of legal crabs. 

Data and assessment methodology 

This assessment is conducted in the General Model for Alaska Crab Stocks (GMACS) framework, which 

was accepted for use by the CPT in May 2016 and the SSC in June 2016.  This assessment differs from the 

original GMACS model in that natural and fishing mortality are continuous within 5 discrete seasons.  In 

addition, the model estimates a dynamic B0 computed as spawning biomass relative to spawning biomass 

if no fishing harvests had occurred.  Season length in GMACS is controlled by changing the proportion of 

natural mortality that is applied during each season. 

The GMACS assesses male crab ≥90 mm CL.  The three length categories are: 90–104 mm CL; 105–119 

mm CL; and ≥120 mm CL.  Males ≥ 105 mm CL are used as a proxy for mature males, and males ≥120 

mm CL are used as a proxy for legal males (≥5.5-inch carapace width).  The model incorporates the 

following data: (1) commercial catch data from 1978/79–1998/99, 2009/10–2012/13, 2015/16; (2) annual 

trawl survey data from 1978 to 2017; (3) triennial pot survey data from 1995 to 2013 and annually from 

2015 to 2017; (4) bycatch data in the groundfish trawl and groundfish fixed-gear fisheries from 1991 to 

2016; and (5) ADF&G crab-observer composition data for the years 1990/91–1998/99, 2009/10–2012/13, 

2014/15, and 2015/16. 

The NMFS summer trawl survey data are from stations within the St. Matthew Island Section and comprise 

56 stations compared to the 96 stations covered by the ADF&G pot survey.  The pot surveys occur during 

July and August in areas of high-relief habitat important to blue king crab (particularly females) in areas 
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missed by the NMFS trawl survey.  Groundfish discard information for trawl and fixed gear is derived from 

NMFS observer data for Bering Sea reporting areas 521 and 524.   

Stock biomass and recruitment trends 

Following a period of low values (~30% of the 1978-2017 mean of 5,762 t) after the stock was declared 

overfished in 1999, trawl-survey indices of stock abundance and biomass generally increased to well above 

average during 2007-2012.  In 2013 survey biomass declined (~40% of the mean value) but was followed 

by average biomass estimates in 2014 and 2015, but with survey CVs of 77% and 45%, respectively). The 

2016 survey biomass fell to 3,485 t (7.7 million lb with a CV of 39%), and the 2017 survey estimate declined 

again to 1,794 t (3.955 million lb, with a CV of 60%). This value represents 31% of the long term mean 

with the most recent 3-year average surveys at 65% of the historical mean. This suggests a general decline 

in biomass since 2010.  

Because little information about the abundance of small crab is available for this stock, recruitment has 

been assessed in terms of the number of male crab within the 90-104 mm CL size class in each year. The 

2017 trawl-survey area-swept estimate of 0.091 million males in this size class is the lowest in the 40-year 

time series since 1978 and only 9% of the long-term average recruitment.  The 2017 abundance of this size 

group was also the second-lowest in the time series of the pot survey and 22% of the average. 

Tier determination/Plan Team discussion and resulting OFL and ABC determination 

The stock assessment examines 4 model configurations: (1) also referred to as the “reference case,” the 

September 2016 model with the 2017 bottom trawl survey data and the 2017 pot survey data included; (2) 

VAST - a geo-spatial delta-GLMM application to the BTS data; (3) Fit survey - an exploratory scenario 

equivalent to the reference model except the NMFS trawl survey is up-weighted by 1.5 and the ADF&G 

pot survey is up-weighted by 2.0; and (4) Francis weights - similar to the reference model but with Francis’ 

iterative re-weighting of the size-composition data.  The assessment also evaluated reference model 

sensitivity to new survey data by running scenarios: (5) without the 2017 trawl survey or 2017 pot survey 

data included; and (6) with the trawl survey data included but without the pot survey data.  

The CPT concurs with the author’s recommendation to use the reference case model for the 2016/17 crab 

year.  This stock is in Tier 4. The CPT recommended model uses the full assessment period (1978/79-

2016/17) to define the proxy for BMSY in terms of average estimated MMBmating.  The projected MMB 

estimated for 2017/18 under the recommended model is 2,180 t (4.806 million lb) and the FMSY proxy is the 

natural mortality rate (0.18-1
 year) and FOFL is 0.079, resulting in a mature male biomass OFL of 123 t (0.273 

million lb). The MMB/BMSY ratio is 0.55. The author recommended and the CPT concurred with a 20% 

buffer on the OFL for the ABC which was consistent with the approach used last year.  The ABC based on 

this buffer is 99 t (0.218 million lb). 
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Historical status and catch specifications for Saint Matthew blue king crab (thousand t). Shaded values are 

new estimates or projections based on the current assessment. Other table entries are based on historical 

assessments and are not updated except for total and retained catch. 

 

 

Historical status and catch specifications for Saint Matthew blue king crab (million lb). Shaded values are 

new estimates or projections based on the current assessment. Other table entries are based on historical 

assessments and are not updated except for total and retained catch. 

 

 

The stock was above MSST in 2016/17 and is hence not overfished. The total catch was less than the OFL 

in 2016/17 and hence overfishing did not occur. 

 

 

  

Year MSST 
Biomass 

(MMBmating) 
TAC 

Retained 

Catch 

Total Male 

Catch 
OFL ABC 

2013/14 1.50 3.01 0.00 0.00 0.0003 0.56 0.45 

2014/15 1.86 2.48 0.30 0.14 0.15 0.43 0.34 

2015/16 1.84 2.11 0.19 0.05 0.05 0.28 0.22 

2016/17 1.97 2.23 0.00 0.00 0.05 0.14 0.11 

2017/18  2.18    0.12 0.10 

Year MSST 

Biomass 

(MMBmating) TAC 

Retained 

Catch 

Total Male 

Catch OFL ABC 

2013/14 3.4 6.64 0.00 0.00 0.0006 1.24 0.99 

2014/15 4.1 5.47 0.655 0.309 0.329 0.94 0.75 

2015/16 4.0 4.65 0.41 0.105 0.105 0.62 0.49 

2016/17 4.30 4.91 0.00 0.000 0.000 0.31 0.25 

2017/18  4.81    0.27 0.22 
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7 Norton Sound Red King Crab 

Fishery information relative to OFL setting 

This stock supports three main fisheries: summer commercial, winter commercial, and winter subsistence. 

The summer commercial fishery, which accounts for the majority of the catch, reached a peak in the late 

1970s at a little over 2.9 million pounds retained catch. Retained catches since 1982 have been below 0.5 

million pounds, averaging 0.3 million pounds, including several low years in the 1990s. As the crab 

population rebounded, retained catches have increased to around 0.4 million pounds in recent years. 

Data and assessment methodology 

Four types of surveys have occurred periodically during the last three decades: summer trawl, summer pot, 

winter pot, and preseason summer pot, but none of these surveys have been conducted every year. The 

assessment is based on a male-only length-based model of male crab abundance that combines multiple 

sources of data. A maximum likelihood approach was used to estimate abundance, recruitment, and 

selectivity and catchability of the commercial pot gear. The model has been updated to include the following 

data: total catch, catch length composition, discard length composition data from the 2016 summer 

commercial fishery, and 2015/16 winter commercial and subsistence catch. In addition, the standardized 

commercial catch CPUE indices were updated to include data for 1977-2016 and the annual proportions of 

the commercial catch before the survey were recalculated based on fishticket data. The current model 

assumes a constant M=0.18yr-1 for all length classes except the > 134mm CL length-class, which had an 

estimated value of 0.590yr-1. Logistic functions are used to describe fishery and survey selectivities, except 

for a dome-shaped function examined for the winter pot fishery.   

The author summarized six model run alternatives, in conjunction with the 2016 base model (Model 0). 

The author recommended, and the CPT selected, Model 3 as the recommended configuration.  This model 

estimated the molt probability for the 64-73mm CL length class.  Other attributes were similar to the base 

model from the previous assessment. Model 3 fitted the compositional data better than the 2016 base model 

with one additional parameter.  

Stock biomass and recruitment trends 

Mature male biomass was estimated to be at an historic low in 1982 following a crash from the peak biomass 

in 1977. The MMB then exhibited an increase from a recent low in 1997 to a peak in 2010, before declining 

and then rebuilding. Estimated recruitment was weak during the late 1970s and high during the early 1980s, 

with a slight downward trend from 1983 to 1993. Estimated recruitment has generally been variable, with 

a slight increase in recent years.  

Tier determination/Plan Team discussion and resulting OFL and ABC determination 

The team recommended Tier 4, stock status a, for Norton Sound red king crab. The estimated abundance 

and biomass in 2016 using Model 3 are: Mature male biomass on Feb. 1: 5.14million lb (2.33 thousand t). 

The BMSY proxy, calculated as the average of mature male biomass on Feb. 1 during 1980-2017, was BMSY proxy 

= 4.62 million lb. The FMSY proxy is M =0.18 yr-1 and the FOFL=0.18yr-1, because the 2017 mature male 

biomass is larger than BMSY proxy, with the CPT choosing the default of gamma =1.0. 

The maximum permissible ABC would be 0.66 million lb, based on projected retained catch on July 1. The 

OFL is retained catch OFL although a total catch OFL is computed as part of the assessment. The CPT 

recommended an ABC less than the maximum permissible due to concerns with model specification, 

unresolved competing hypotheses about whether the lack of large animals in catches and surveys is due to 

higher mortality or migration from the area, lack of bycatch data as well as issues noted with the M 

30



employed for the largest length group.  The CPT recommended an ABC = 80% of the OFL (20% buffer) 

of 0.54 million lb. 

Status and catch specifications (1000t). Shaded values are new estimates or projections based on the current 

assessment. Other table entries are based on historical assessments and are not updated except for total 

and retained catch. 

Year MSST 
Biomass 

(MMB) 
GHL 

Retained 

Catch 1 

Total 

Catch 2 

Retained 

Catch 

OFL 

Retained 

Catch 

ABC 

2013/14 0.93 2.27 0.23 0.16 0.16 0.26 0.24 

2014/15 0.96 1.68 0.17 0.18 0.18 0.21 0.19 

2015 1.09 2.33 0.18 0.18 0.24 0.33 0.26 

2016 1.03 2.66 0.24 0.23 0.24 0.32  0.26 

2017 1.05 2.33 0.50 0.49 0.50 0.30 0.24 

1: Summer commercial fishery. 

2: Summer commercial fishery, winter commercial fishery and subsistence fishery. 

 

Status and catch specifications (million lb.) Shaded values are new estimates or projections based on the 

current assessment. Other table entries are based on historical assessments and are not updated except for 

total and retained catch. 

Year MSST 
Biomass 

(MMB)  
GHL 

Retained 

Catch 1 

Total  

Catch 2 

Retained  

Catch  

OFL 

Retained 

Catch 

ABC 

2013/14 2.06 5.00 0.50 0.35 0.35 0.58 0.52 

2014/15 2.11 3.71 0.38 0.39 0.39 0.46 0.42 

2015 2.41 5.13 0.39 0.40 0.52 0.72 0.58 

2016 2.26  5.87 0.52 0.51 0.52 0.71 0.57 

2017 2.31 5.14 0.23 0.22 0.24 0.67 0.54 

1: Summer commercial fishery. 

2: Summer commercial fishery, winter commercial fishery and subsistence fishery. 

 

Total retained catch during 2016/17 did not exceed the OFL for this stock, thus overfishing is not occurring.  

Stock biomass is above MSST; thus, the stock is not overfished. 
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8 Aleutian Islands Golden King Crab 

Fishery information relative to OFL setting 

The directed fishery has been prosecuted annually since the 1981/82 season.  Retained catch peaked in 

1986/87 at 14.7 million lb and averaged 11.9 million lb over the 1985/86-1989/90 seasons.  Average 

harvests dropped sharply from 1989/90 to 1990/91 to a level of 6.9 million lb for the period 1990/91–

1995/96.  Management based on a formally established GHL began with the 1996/97 season.  The 5.9 

million lb GHL established for the 1996/97 season, which was based on the previous five-year average 

catch, was subsequently reduced to 5.7 million lb beginning in 1998/99.  The GHL (or TAC, since 2005/06) 

remained at 5.700 million lb for 2007/08, but was increased to 5.985 million lb for the 2008/09-2011/12 

seasons, and to 6.290 million lb starting with the 2012/13 season. The TAC was reduced to 5.545 million 

lb for the 2016/17 season. This fishery is rationalized under the Crab Rationalization Program.  

Non-retained bycatch occurs mainly in the directed fishery, and to a minor extent in other crab fisheries.  

Bycatch also occurs in fixed-gear and trawl groundfish fisheries although that bycatch is low relative to 

bycatch in the directed fishery.  Total annual non-retained catch of golden king crab during crab fisheries 

decreased relative to the retained catch after the 1990s. Bycatch in the post-rationalized fishery (2005/06-

2016/17) has ranged from 2.5 million lb in 2005/06 (46% of the retained catch) to 3.2 million lb for 2013/14 

(50% of the retained catch). Estimated total mortality (retained catch plus bycatch in crab and groundfish 

fisheries) ranged from 5.8 to 9.4 million lb since 1995/96.  

Data and assessment methodology 

The assessment for AI golden king crab establishes a single OFL and ABC for the whole stock however 

separate models are evaluated for EAG and WAG owing to different spatial trends in the fishery. Through 

the 2016/17 fishing year, the assessment was based on a Tier 5 methodology applied to data from ADF&G 

fish tickets, size-frequencies from samples of landed crabs, at-sea observations from pot lifts sampled 

during the fishery, and bycatch estimates from the groundfish fisheries.  The modeling framework has been 

under development for several years, with model assumptions and data inputs refined by reviews by the 

SSC and CPT. The modeling framework was recommended by the CPT in September 2016 and approved 

by the SSC in October 2016 for use in the 2017/18 specifications cycle. 

The model-based stock assessment involves fitting male-only population dynamics models to data on 

catches and discards in the directed fishery, discards in the groundfish fishery, standardized indices of 

abundance based on observer data, fish ticket CPUE data, length-frequency data for the directed fishery 

(landing and total catch), and mark-recapture data. These data are available through the 2015/16 season. 

The assessment author examined 11 model scenarios for this assessment. Model 1 assumed that the 

proportion mature was a logistic function of length, was fitted to observer CPUE data for 1995/96 – 2015/16 

and fish ticket data from 1985/86 to 1998/99, and fixed M for both stocks to be 0.224yr-1. Models 2 – 11 

varied the assumptions of Model 1 by: omitting the fish ticket data (Model 2), including additional observer 

CPUE data for 1991/92-1994/95 (Model 3), considering three rather than two selectivity patterns (Model 

4), assuming higher and lower values for M (Models 5 and 6), assuming knife-edged maturity at 111 mm 

CL (Model 9), area-specific values for M (Model 10), and area-specific values of M with knife-edged 

maturity at 111 mm CL (Model 11). Models 7 and 8 are identical to Model 1, except they consider different 

definitions for the mean recruitment used to define BMSY.  The CPT recommended Model 9 which concurs 

with the author’s recommendation, noting that the data on maturity at length were not reliable enough to 

estimate a logistic function which forms the basis for models other than Model 9 and 11 but could estimate 

a knife-edged length at maturity. Model 9 was preferred to Model 11 because the evidence for area 

differences in M is weak.  
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This is the only crab assessment that relies solely on fishery CPUE as an index of abundance, with the 

CPUE index standardization process subject to past CPT and SSC review. The CPT recommended that the 

model be used to provide management reference points based on the Tier 3 control rule in January 2017 

and this tier recommendation was endorsed by the SSC in February 2017. 

An industry-ADF&G collaborative survey was implemented for this stock in 2015. 

Stock biomass and recruitment trends 

Estimated mature male biomass (MMB) for the EAG decreased from high levels until the 1990s after which 

the trend has been increasing. In contrast, the MMB for WAG increased from a low in the 1990s until 

2007/08 and then declined again. Recruitment for the EAG is variable with a generally increasing trend 

while recruitment for WAG is lower in recent years than during the 1980s. Stock trends reflected the fishery 

standardized CPUE trends in both areas. 

Summary of major changes 

The assessment is based on a male-only population dynamics model rather than the Tier 5 methodology. 

The changes to the assessment from the January 2017 modeling workshop were specification of maturity-

at-length and refinement of the proposed models. 

Tier determination/Plan Team discussion and resulting OFL and ABC determination 

The CPT recommends that this stock be managed as a Tier 3 stock in 2017/18. A single OFL and ABC is 

defined for AIGKC. However, separate models are available by area. The CPT considered two ways for 

computing an OFL for AIGKC.  

• Apply the OFL control rule by area and sum the OFLs by area.  

• Determine stock status for the stock by adding the estimates of current MMB and BMSY by area. 

This stock status is then used to determine the ratio of FOFL to F35% by area, which is then used to 

calculate the OFLs by area which are then added together to calculate an OFL for the entire stock. 

The CPT recommended the second alternative because it relies on a single stock status determination rather 

than for area specific status determinations for the EAG and WAG. In contrast, use of the first alternative 

would lead to the EAG area being in tier 3a and the WAG area being in tier 3b, which would not result in 

a unique tier level for the stock. The SSC concurred with this approach. 

The CPT recommends that the BMSYproxy for the Tier 3 harvest control rule be based on the average 

recruitment from 1987-2012, years for which recruitment is relatively precisely estimated.  
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Status and catch specifications (1000 t) of Aleutian Islands golden king crab. 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch a 

Total 

Catcha 
OFL ABC 

2013/14 N/A N/A 2.853 2.894 3.192 5.69 5.12 

2014/15 N/A N/A 2.853 2.771 3.079 5.69 4.26 

2015/16 N/A N/A 2.853 2.729 3.073 5.69 4.26 

2016/17 N/A N/A 2.515 2.593 2.829 5.69 4.26 

2017/18b 6.044 14.205    6.048 4.838 

a. Total retained catch plus estimated bycatch mortality of discarded bycatch during crab  

fisheries and groundfish fisheries. 

b. Approach 2 above. 

 

Status and catch specifications (million lb) of Aleutian Islands golden king crab. 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catcha 
OFL ABC 

2013/14 N/A N/A 6.290 6.38 7.04 12.54 11.28 

2014/15 N/A N/A 6.290 6.11 6.79 12.53 9.40 

2015/16 N/A N/A 6.290 6.016 6.78 12.53 9.40 

2016/17 N/A N/A 5.545   12.53 9.40 

2017/18b 13.325 31.315    13.33 10.67 

a. Total retained catch plus estimated bycatch mortality of discarded bycatch during crab  

fisheries and groundfish fisheries. 

b. Approach 2 above. 

Overfishing did not occur during 2015/16 because the estimated total catch did not exceed the Tier 5 

overfishing limit (OFL) of 12.53-million lb (5.69 kt).  

 

Additional Plan Team recommendations 

The CPT recommended that for the next assessment, the assessment author pre-specify the maturity ogive 

rather than estimating it along with other model parameters, and consider estimating rather the pre-

specifying the 1960 recruitment, which would then be used to calculate BMSY. The CPT was informed about 

analyses to explore the impact of changes to the area fished. Further work was encouraged on this topic, 

which will help the CPT understand the extent of uncertainty associated with the assessment. 

While the CPT recommended the use of the second alternative OFL calculation as listed above, the 

calculations for the OFL and ABC based upon the first alternative are shown below. 
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Status and catch specifications (1000 t) of Aleutian Islands golden king crab 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catcha 

Total 

Catcha 
OFL ABC 

2017/18 6.044 14.233    6.018 4.815 

 

Status and catch specifications (million lb) of Aleutian Islands golden king crab 

Year MSST 
Biomass 

(MMB) 
TAC 

Retained 

Catcha 

Total 

Catcha 
OFL ABC 

2017/18c 13.325 31.378    13.27 10.61 
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9 Pribilof District Golden King Crab 

Fishery information relative to OFL setting  

The Pribilof District golden king crab fishery began in the 1981/82 season, but is currently managed by 

calendar year. The directed fishery mainly occurs in Pribilof Canyon of the continental slope. Peak directed 

harvest was 0.856 million lb (388 t) by 50 vessels during the 1983/84 season; fishery participation has since 

been sporadic and retained catches vary from 0 to 0.342 million lb (155 t). A guideline harvest level (GHL) 

was first established in 1999 at 0.200 million lb (91 t) and the fishery has been managed with a GHL of 

0.150 million lb (68 t) since 2000. No directed fishery occurred during 2006–2009, but one vessel landed 

catch in 2010, two vessels landed catch in 2011, and one vessel landed catch each year from 2012 to 2014. 

No vessels participated in the directed fishery during 2015 or 2016.  Discarded (non-retained) catch has 

occurred in the directed golden king crab fishery, the eastern Bering Sea snow crab fishery, the Bering Sea 

grooved Tanner crab fishery, and in Bering Sea groundfish fisheries. Estimates of annual total fishery 

mortality during 2001–2016 due to crab fisheries range from 0 0.160 million lb (73 t). There was no 

discarded catch during crab fisheries in 2016. Estimates of annual fishery mortality during 1991/92–2016 

due to groundfish fisheries range from <0.001 to 0.019 million lb (8.84 t). Total fishery mortality in 

groundfish fisheries during the 2016 crab fishing year was 0.24 t.  

Data and assessment methodology 

There is no assessment model for this stock. Fish ticket and observer data are available, size-frequency data 

from samples of landed crabs, and pot lifts sampled during the fishery, and from the groundfish fisheries. 

Much of the directed fishery data are confidential due to low participation levels.  A random effects model 

using slope survey data was explored; however, the model fit was poor for mature and legal size male, 

likely due to small number of data points and the high variance.   

Stock biomass and recruitment trends 

There is no stock biomass data used in this Tier 5 assessment.  

Tier determination/Plan Team discussion and resulting OFL and ABC determination 

The CPT recommends this stock be managed under Tier 5 in 2018, 2019, and 2020. The CPT concurs with 

the author’s recommended status quo OFL of 0.20 million lb and an ABC of 0.15 million lb. The ABC was 

derived by applying a 25% buffer of the OFL, ABC = 0.75 * OFL, the same buffer used for other Tier 5 

stocks with similar levels of concern. The 2018–2020 OFL calculation is the same as recommended by the 

SSC for 2012−2017: 

OFL2018–2020 = (1+R2001–2010)*RET1993-1998 + BMNC,1994-1998 + BMGF,1992/93–1998/99   

where,  

• R2001–2010 is the average of the estimated annual ratio of lb of bycatch mortality to lb of retained in 

the directed fishery during 2001–2010. 

• RET1993-1998 is the average annual retained catch in the directed crab fishery during 1993–1998. 

• BMNC,1994-1998 is the estimated average annual bycatch mortality in non-directed crab fisheries 

during 1994–1998. 

• BMGF,1992/93–1998/99 is the estimated average annual bycatch mortality in groundfish fisheries during 

1992/93–1998/99. 
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Status and catch specifications (t) of Pribilof District golden king crab. 

N/A = not available 

Conf. = confidential 

TBA = to be announced 

 

Status and catch specifications (millions lb) of Pribilof District golden king crab. 

Calendar  

Year 
MSST 

Biomass 

(MMB) 
GHL 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013 N/A N/A 150,000 Conf. Conf. 0.20  0.18 

2014 N/A N/A 150,000 Conf. Conf. 0.20  0.18  

2015 N/A N/A 130,000 0 0.004 0.20 0.15 

2016 N/A N/A 130,000 0 <0.001 0.20 0.15 

2017 N/A N/A 130,000   0.20 0.15 

2018 N/A N/A    0.20 0.15 

2019 N/A N/A    0.20 0.15 

2020 N/A N/A    0.20 0.15 

N/A = not available 

Conf. = confidential 

TBA = to be announced 

 

  

Calendar 

Year 
MSST 

Biomass  

(MMB) 
GHL 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013 N/A N/A 68 Conf.  Conf.  91 82 

2014 N/A N/A 68 Conf.  Conf.  91 82 

2015 N/A N/A 59 0 1.92 91 68 

2016 N/A N/A 59 0 0.24 91 68 

2017 N/A N/A 59   93 70 

2018 N/A N/A    93 70 

2019 N/A N/A    93 70 

2020 N/A N/A    93 70 
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10 Western Aleutian Islands red king crab 

Fishery information relative to OFL and ABC setting  

The domestic fishery has been prosecuted every season from 1960/61 to 1995/96. During the early years of 

the fishery through the late 1970s, most or all of the retained catch was harvested in the area between 172° 

W longitude and 179°15' W longitude.  Peak harvest occurred during the 1964/65 season with a retained 

catch of 21.19 million lb. As the annual retained catch decreased into the mid-1970s and the early-1980s, 

the area west of 179°15' W longitude began to account for a larger portion of the retained catch. After 

1995/96, the fishery was opened only occasionally.  There was an exploratory fishery in 1998/99, three 

commissioner’s permit fisheries in limited areas during 2000/01–2002/03 to allow for ADF&G-Industry 

surveys, and two commercial fisheries with a GHL of 0.5 million lb in 2002/03 and 2003/04 in the Petrel 

Bank area.  The fishery has been closed since 2003/04. 

Retained catch from 1985/86 to 1994/95 averaged 0.94 million lb, but the retained catch during the 1995/96 

season dropped to 0.04 million lb. Most of the catch since the 1990/91 season was harvested in the Petrel 

Bank area (between 179° W longitude and 179° E longitude) and the last two commercial fishery seasons 

were opened only in the Petrel Bank area with 0.51 million lb in 2002/03 and 0.48 million lb in 2003/04. 

Non-retained catch of red king crabs occurs in both the directed red king crab fishery, the Aleutian Islands 

golden king crab fishery, and in groundfish fisheries. Estimated bycatch mortality in the crab fisheries 

during the 1995/96 to 2015/16 seasons averaged 0.002 million lb in crab fisheries and 0.020 million lb in 

groundfish fisheries. Estimated annual total fishing mortality from 1995/96 to 2015/16 averaged 0.079 

million lb. The average retained catch during that period was 0.060 million lb. This fishery is rationalized 

under the Crab Rationalization Program only for the area west of 179° W longitude.  

Data and assessment methodology  

The 1960/61 to 2007/08 time series of retained catch (number and pounds of crabs), effort (vessels, landings 

and pot lifts), average weight and average carapace length of landed crabs, and catch-per-unit effort 

(number of crabs per pot lift) are available. Bycatch from crab fisheries from 1995/96 to 2016/17 and from 

groundfish fisheries from 1993/94 to 2016/17 are available. There is no assessment model for this stock. 

The standardized surveys of the Petrel Bank area conducted by ADF&G in 2006 and 2009 and the ADF&G-

Industry Petrel Bank surveys conducted in 2001 were too limited in geographic scope and too infrequent 

for reliable estimation of abundance for the entire western Aleutian Islands area.  

Stock biomass and recruitment trends  

Estimates of stock biomass, recruitment trends, and current levels relative to virgin or historic levels are 

not available for this stock. The fishery has been closed since 2003/04 due to apparent poor recruitment. A 

2009 survey conducted by ADF&G in the Petrel Bank area encountered an ageing population of legal male 

crab occurring in a more limited area and at lower densities than were found in a 2006 survey and provided 

no expectations for recruitment. A test fishery conducted by a commercial vessel during October-December 

2009 in the area west of Petrel Bank yielded only one legal male red king crab. A cooperative red king crab 

survey was performed by the Aleutian Islands King Crab Foundation and ADF&G in the Petrel Bank area 

in November 2016 averaged less than one crab per pot lift suggesting that the stock is in poor condition. 

Tier determination/Plan Team discussion and resulting OFL and ABC determination  

The CPT recommends that this stock be managed under Tier 5 for the 2017/18, 2018/19, and 2019/20 

seasons. The CPT concurs with the assessment author’s recommendation of an OFL based on the 1995/96–

2007/08 average total catch following the recommendation of the SSC in June 2010 to set the time period 

for computing the OFL at 1995/96–2007/08. The CPT recommends an OFL for 2017/18 to 2019/20 of 

0.123867 million lb.  
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The CPT continues to have concerns regarding the depleted condition of this stock. Groundfish bycatch in 

recent years has accounted for the majority of the total catch. The CPT recommends an ABC of 0.030967 

million lb for 2017/18, 2018/19, and 2019/20 which is equivalent to a 75% buffer on OFL. The 

recommended ABC is less than that which was recommended by the SSC for 2012/13–2016/17 because 

1) the industry has not expressed interest in a small test fishery, and 2) because the stock is severely 

depressed as indicated by the 2016 Petrel survey (CPT minutes for May 2017). 

Status and catch specifications t of Western Aleutian Islands red king crab. 

Fishing 

Year 
MSST 

Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 N/A N/A Closed 0 <1 56 34 

2014/15 N/A N/A Closed 0 <1 56 34 

2015/16 N/A N/A Closed 0 1.3 56 34 

2016/17 N/A N/A Closed 0 <1 56 34 

2017/18 N/A N/A    56 14 

2018/19 N/A N/A    56 14 

2019/20 N/A N/A    56 14 

 

Status and catch specifications (million lb) of Western Aleutian Islands red king crab. 

Fishing 

Year 
MSST 

Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2013/14 N/A N/A Closed 0 0.00073 0.124 0.074 

2014/15 N/A N/A Closed 0 0.00047 0.124 0.074 

2015/16 N/A N/A Closed 0 0.00296 0.124 0.074 

2016/17 N/A N/A Closed 0 0.00045 0.124 0.074 

2017/18 N/A N/A       0.124 0.074 

2018/19 N/A N/A    0.124 0.074 

2019/20 N/A N/A    0.124 0.074 
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Figures and Tables 

 

 

 

 

Figure 1.  Status of 7 Bering Sea crab stocks in relation to status determination criteria (BMSY, MSST, 
overfishing).  Note that information is insufficient to assess Tier 5 stocks according to these criteria 
(WAIRKC, AIGKC, PIGKC). 
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Table 3.  Crab Plan Team recommendations for September 2017. Note that recommendations for stocks 7, 8, 9, 10 represent those final values recommended by the  
SSC in February and June 2017. (Note: diagonal fill indicates parameters are not applicable for that tier.) Biomass units are 1000 t. 

Chapter Stock Tier 
Status 
(a,b,c) 

FOFL 
BMSY or 
BMSY 

proxy 

Years[1] 
(biomass  
or catch) 

2017/18[2] 
MMB 

2017/18 
MMB / 
MMBMSY 

γ Mortality (M) 
2017/18[3] 

OFL 
2017/18 

ABC 
ABC 

Buffer 

1 EBS snow crab 3  0.89 139.4 
1979-current 
[recruitment] 

99.6 0.71   
0.23(females) 
0.417 (imm) 
0.259 (mat males) 

28.41 25.6 20% 

2 
BB red king 
crab 

3 b 0.24 25.1 
1984-current 
[recruitment] 

21.31 0.85   
0.18 default; 
estimated 

5.6 5.04 10% 

3 
EBS Tanner 
crab 

3 b 0.75 29.17 1982-current 43.31 1.49   

0.34 (females), 
0.25 (mat male), 
0.247 (imm males 
and female 

25.42 20.33 10% 

4 
Pribilof Islands  
red king crab 

4 a 0.18 4.6 
1991/92-
2016/17 

3.36 0.73 1 0.18 0.48 0.36 20% 

5 
Pribilof Islands  
blue king crab 

4 c 0.18 4.11 

1980/81-
1984/85 & 
1990/91-
1997/98 

0.23 0.05 1 0.18 0.00116 0.00087 25% 

6 
St. Matthew 
Island blue 
king crab 

4 b 0.079 3.93 1978-current 2.18 0.55 1 0.18 0.12 0.09 20% 

7 
Norton Sound  
red king crab 

4 a 0.18 2.1 1980-current 2.33 1.11 1 0.18 0.3 0.24 20% 

8 
AI golden  
king crab 

3 a 

EAG 
(0.75) 
WAG 
(0.68) 

12.09 
1987/88-
2012/13 

14.21 1.17   0.22 6.05 4.54 25% 

9 
Pribilof Islands 
golden king 
crab 

5     
See intro 
chapter 

      0.09 0.07 25% 

10 
Western AI  
red king crab 

5     
1995/96-
2007/08 

      0.06 0.01 75% 

[1] For Tiers 3 and 4 where BMSY or BMSYproxy is estimable, the years refer to the time period over which the estimate is made. For Tier 5 stocks it is the years upon which the catch average for OFL is obtained.   
[2] MMB as projected for 2/1/2017 for Norton Sound red king crab, 2/15/2017 for AIGKC, and 2/15/2018 for other stocks.  [3] AIGKC OFL and ABC calculated by author outside the chapter for using the  
Approach 2 combination of EAG and WAG and 25% buffer between OFL and ABC.  [4] Additional mortality males: two periods-1980-1985; 1968-1979 and 1986-2013.  Females three periods: 1980-1984;  
1976-1979; 1985 to 1993 and 1968-1975; 1994-2013.  See assessment for mortality rates associated with these time periods. 
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Table 4.  Maximum permissible ABCs for 2017/18[1] and Crab Plan Team recommended ABCs for those 
stocks where the Plan Team recommendation is below the maximum permissible ABC[2] as defined by 
Amendment 38 to the Crab FMP. Note that the rationale is provided in the individual introduction 
chapters for recommending an ABC less than the maximum permissible for these stocks.  

 
Stock 

 
Tier 

2016/17 
MaxABC (1000 t) 

2016/17 
ABC (1000 t) 

EBS Snow Crab 3 28.4 25.6 

Bristol Bay red king crab 3 5.6 5.04 

EBS Tanner Crab 3 25.57 20.33 

Pribilof Islands red king crab 4 0.39 0.36 

Pribilof Islands blue king crab 4 0.00116 0.00087 

Saint Matthew blue king crab 4 0.12 0.09 

Norton Sound red king crab 4 0.3 0.24 

Aleutian Islands golden king crab 3 6.02 4.54 

Pribilof Islands golden king crab[1] 5 0.08 0.07 

WAI red king crab 5 0.05 0.01 

[1] For Pribilof Islands golden king crab, this is for the 2018 calendar year instead of the 2017-2018 crab 
fishing year. 

[2] For Tier 5 stocks this is 0.90 while all other stocks P*. 
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Table 5.  Stock status in relation to status determination criteria for 2016/17 as estimated in September 2017. (Note: shaded portion indicates 
parameters not applicable for this tier level). 

Chapter Stock Tier MSST 
BMSY or 
BMSYproxy 

2015/16 1 

MMB 
2016/17 

MMB / MMBMSY 
2016/17 

OFL 1000 t 
2016/17 

Total catch 
Rebuilding 

Status 

1 EBS snow crab 3 78.9 157.8 208.1 1.32 83.1 24.3  

2 BB red king crab 3 13.05 26.1 25.8 0.99 6.73 4.28  

3 EBS Tanner crab 3 13.4 26.8 77.96 2.91 27.18 1.14  

4 
Pribilof Islands red  
king crab 

4 2.83 5.65 4.79 0.85 1.36 0.49  

5 
Pribilof Islands blue  
king crab 

4 2.05 4.1 0.23 0.06 1.16 0.00038 overfished 

6 
St. Matthew Island  
blue king crab 

4 1.86 3.72 2.23 0.60 0.28 0.05  

7 
Norton Sound red  
king crab 

4 1.03 2.06 1.9 1.29 0.32 0.24  

8 
Aleutian Islands  
golden king crab 

5 

 
 
 

   

9 
Pribilof Islands golden  
king crab 

5    

10 Adak red king crab 5    

1-For stocks 1-6 MMB on 2/15/2016 is estimated using the current assessment in September 2016. For Norton Sound red king crab MMB on 2/1/2016 is estimated  
using the current assessment in January 2017. 
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1. Stock: Eastern Bering Sea snow crab, Chionoecetes opilio.

2. Catches: trends and current levels

Retained catches increased from relatively low levels in the early 1980s (e.g. retained catch of 13.32 kt during
1981) to historical highs in the early and mid-nineties (retained catch during 1991, 1992, and 1998 were
143.02, 104.68, and 88.09 kt, respectively). The stock was declared overfished in 1999 at which time retained
catches dropped to levels similar to the early 1980s (e.g. retained catch during 2000 was 11.46 kt). Retained
catches have slowly increased since 1999 as the stock rebuilt, although retained catch during 2016 was low
(9.67 kt).

Discard mortality is the next largest source of mortality after retained catch and approximately tracks the
retained catch. The highest estimated discard mortality occurred during 1992 at 17.06 kt which was 16% of
the retained catch. The most recent estimated mortality was 1.31 kt which was 14% of the retained catch.

3. Stock Biomass:

Observed mature male biomass (MMB) at the time of the survey increased from an average of 160.81 kt in
the early to mid-1980s to historical highs in the early and mid-nineties (observed MMB during 1990, 1991,
and 1997 were 443.79, 466.61, and 326.75 kt, respectively). The stock was declared overfished in 1999 in
response to the total mature biomass dropping below the minimum stock size threshold. MMB in that year
decreased to 95.85 kt. Observed MMB slowly increased after 1999, and the stock was declared rebuilt in 2011
when estimated MMB at mating was above B35%. However, since 2011, the stock has declined again and the
observed MMB at the time of survey dropped to an all time low in 2016 of 63.21 kt.

4. Recruitment

Estimated recruitment shifts from a period of high recruitment to a period of low recruitment in the mid
1990s (late 1980s when lagged to fertilization). Recent estimated recruitments have generally been above the
average of the ‘low’ period , but are still beneath the average of the ‘high’ recruitment period. However, a
large year class recruited to the survey gear in 2014 and has persisted to the present, which suggests large
exploitable biomasses may be available in the near future.

5. Management

Table 1: Historical status and catch specifications for snow crab
(1,000t).

Year MSST
Biomass
(MMB) TAC

Retained
catch

Total
catch OFL ABC

2011/2012 77.3 165.2 40.3 40.5 42 73.5 66.2
2012/2013 77.1 170.1 30.1 30.1 32.4 67.8 61
2013/2014 71.5 126.5 24.5 24.5 27.7 78.1 69.3
2014/2015 73.2 129.3 30.8 30.8 34.3 69 62.1
2015/2016 75.8 91.6 18.4 18.4 21.4 61.5 55.4
2016/2017 69.7 94.4 9.7 9.7 11 23.7 21.3
2017/2018 69.7 99.6 28.4 25.6
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Table 2: Historical status and catch specifications for snow crab
(millions of lbs).

Year MSST
Biomass
(MMB) TAC

Retained
catch

Total
catch OFL ABC

2011/2012 170.4 364.2 88.85 89.29 92.59 162 145.9
2012/2013 170 375 66.36 66.36 71.43 149.5 134.5
2013/2014 157.6 278.9 54.01 54.01 61.07 172.2 152.8
2014/2015 161.4 285.1 67.9 67.9 75.62 152.1 136.9
2015/2016 167.1 201.9 40.57 40.57 47.18 135.6 122.1
2016/2017 153.7 208.1 21.38 21.38 24.25 52.25 46.96
2017/2018 153.7 219.6 62.61 56.44

6. Basis for the OFL

The OFL for 2017 from the chosen model (M17C D17a)was 28.41 kt fishing at FOFL = 0.89 (68 % of the
calculated F35%, 1.31). The calculated OFL was a 20% change from the 2016 OFL of 23.7 kt. The reported
OFL is the median posterior value, but differs from the ML estimate by only 0.4 kt. The projected ratio of
MMB at the time of mating to B35% is 0.71.

7. Probability Density Function of the OFL

The probability density function of the OFL was characterized by using a Markov Chain Monte Carlo
algorithm to sample from the a posterior distribution of the OFL. This allows all uncertainty to be propagated
forward into the OFL calculation. The chosen OFL was calculated as the median of its posterior distribution.

8. Basis for ABC

The ABC for the chosen model for 2016/2017 was 25.57 kt, calculated by subtracting a 10% buffer from the
OFL as recommended by the SSC.
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A. Summary of Major Changes

1. Management: None

2. Input data:

Data added to the assessment included: 2017 Bering Sea survey biomass and length frequency data, 2016
directed fishery retained and discard catch and length frequencies for retained and discard catch, and
groundfish discard length frequency and discard from 2016.

3. Assessment methodology:

The recommended OFL was calculated using Bayesian methodologies in 2016, which was a departure from the
previous projection framework (but still provided similar management advice). Both a ‘jittering’ approach
within a maximum likelihood framework and a Bayesian treatment of the data were completed this year.
Management quantities from the selected model are reported as the medians of posterior distributions resulting
from application of a Markov Chain Monte Carlo.

4. Assessment results

The updated estimates of MMB (February 15, 2016) were 94.43 which placed the stock at 67% of B35%.
Projected MMB on February 15, 2017 from the chosen model this assessment after fishing at the OFL was
99.57 kt, which will place the stock at 71% of B35%. Fits to all data sources were acceptable for the chosen
model and estimated population processes were credible.
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B. CPT May 2017 comments, SSC comments, and author response:

CPT and SSC comments

Five scenarios were recommended by the CPT, based on analyses presented during the May 2017 CPT
meeting:

• Leave out length bins below the kink in growth and fit one straight line for growth.
• Estimate M for females, males, and immature crab. Change the prior on the multiplier to work in log

space with a zero mean and an appropriate standard deviation.
• Start the model in 1982 and drop all data data before 1982.
• Split the survey selectivity periods in 1987 or 1988 - check the distribution of survey sampling to have a

consistent area for each era.
• Estimate survey availability parameters for the BSFRF survey in logit space with a penalty.

The CPT also recommended resolving problems with any parameters hitting bounds.

The authors present 8 runs based on these 5 scenarios:

• “M16.D16” – Last year’s accepted model fit to last year’s data.
• “M16.D17” – Last year’s accepted model fit to this year’s data.
• “M16.D17a” – Last year’s accepted model fit to this year’s data, but dropping all survey data before

1982.
• “M17A.D17a” – Split survey selectivity periods in 1987, based on distribution of survey stations.
• “M17Aa.D17a” – Estimate survey availability parameters for BSFRF survey in logit space with a

penalty
• “M17B.D17a” – Remove data in length bins below the kink in growth and fit a straight line for growth.
• “M17C.D17a” – Estimate M for females, males, and immature, change prior to be suitable in log space

with zero mean and appropriate standard deviation. Retains all changes to this point.
• “M17BC.D17a” – Combines ‘M17B.D17A’ and ‘M17C.D17A’

The CPT also asked for:

• Bycatch from different sources presented in a figure in the assessment chapter.
• Documentation of the jittering approach.

Authors response

All changes were undertaken in a step-wise fashion and management quantities were calculated both via
maximum likelihood methods and Bayesian methods. M17C D17a is the author preferred model based on fit
to the data, number of assumptions placed on the data, and the stability of the model when jittered. Model
scenarios include all CPT recommended models. ‘Jittering’ was performed for all models, but ultimately did
not resolve all of the problems introduced by incomplete growth data (bimodal estimates of management
quantities and poor convergence). Consequently, Bayesian posteriors were also used to calculated management
quantities for all models.

Models in which smaller length bins were removed did not produce viable models. Removing the length
bins was done to attempt to avoid the problem of estimating a breakpoint in the growth model. However,
after removal of the length bins, estimates of survey selectivity and probability of maturing were no longer
reasonable. It appears that the very low counts in the smallest length bins, coupled with a constant (and
fairly well-informed via priors) natural mortality provided an anchor for selectivity, catchability, and maturity.
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C. Introduction

Distribution

Snow crab (Chionoecetes opilio) are distributed on the continental shelf of the Bering Sea, Chukchi Sea, and
in the western Atlantic Ocean as far south as Maine. In the Bering Sea, snow crab are distributed widely
over the shelf and are common at depths less than ~200 meters (Figure 1 & Figure 2). Smaller crabs tend to
occupy more inshore northern regions (Figure 3) and mature crabs occupy deeper areas to the south of the
juveniles (Figure 4 & Figure 5; Zheng et al. 2001). The eastern Bering Sea population within U.S. waters is
managed as a single stock; however, the distribution of the population may extend into Russian waters to an
unknown degree.

Life history characteristics

Studies relevant to key population and fishery processes are discussed below to provide background for the
model description in appendix A.

Natural Mortality

Natural mortality for snow crab in the Bering Sea is poorly known, due to relatively few targeted studies. In
one of these studies, Nevissi, et al. (1995) used radiometric techniques to estimate shell age from last molt.
The total sample size was 21 male crabs (a combination of Tanner and snow crab) from a collection of 105
male crabs from various hauls in the 1992 and 1993 NMFS Bering Sea survey. Representative samples for the
5 shell condition categories were collected that made up the 105 samples. The oldest looking crab within
shell conditions 4 and 5 were selected from the total sample of SC4 and SC5 crabs to radiometrically age
(Orensanz, Univ. of Washington, pers comm.). Shell condition 5 crab (SC5 = very, very old shell) had a
maximum age of 6.85 years (s.d. 0.58, 95% CI approximately 5.69 to 8.01 years). The average age of 6 crabs
with SC4 (very old shell) and SC5, was 4.95 years (range: 2.70 to 6.85 years). Given the small sample size,
this maximum age may not represent the 1.5% percentile of the population that is approximately equivalent
to Hoenig’s method (1983). Maximum life span defined for a virgin stock is reasonably expected to be longer
than these observed maximum ages from exploited populations, particularly because fishing mortality was
high before and during the time period during which this study was performed. Radiometric ages estimated
by Nevissi, et al. (1995) may also be underestimated by several years, due to the continued exchange of
material in crab shells even after shells have hardened (Craig Kastelle, pers. comm., Alaska Fisheries Science
Center, Seattle, WA).

Tag recovery evidence from eastern Canada revealed observed maximum ages in exploited populations of
17-19 years (Nevissi, et al. 1995, Sainte-Marie 2002). A maximum time at large of 11 years for tag returns
of terminally molted mature male snow crab in the North Atlantic has been recorded since tagging started
about 1993 (Fonseca, et al. 2008). Fonseca, et al. (2008) estimated a maximum age of 7.8 years post terminal
molt using data on dactal wear.

The mean for the prior for natural mortality used in this assessment is based on the assumption (informed
by the studies above) that longevity would be at least 20 years in a virgin population of snow crab. Under
negative exponential depletion, the 99th percentile corresponding to age 20 of an unexploited population
corresponds to a natural mortality rate of 0.23. Using Hoenig’s (1983) method a natural mortality equal to
0.23 corresponds to a maximum age of 18 years. Consequently, natural mortality for mature females was set
to 0.23 yr-1 in the base model. Mature male natural mortality was estimated in the base model with a prior
constraint of mean of 0.23 yr-1 with a standard error equal to 0.054 (estimated from using the 95% CI of
+-1.7 years on maximum age estimates from dactal wear and tag return analysis in Fonseca, et al. (2008)).
Natural mortality for immature males and females was estimated in the model with a mean of 0.23 yr-1 and
a standard error of 0.154 in all models, save M17C D17A, which used a standard error of 0.054 for immature
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crab to be consistent with the rationale above for maximum age estimates. Mature female natural mortality
was also estimated in M17C D17A with the same prior.

Weight at length

Weight at length is calculated by a power function, the parameters for which were recalculated by the Kodiak
lab in August 2016 and resulted in very small changes in weight at length for males, but rather large changes
for females. New weight at length parameters were applied to all years of data, rather than just the most
recent observations and were used starting in 2016 for calculation of the OFL. To provide context for the
change, a juvenile female crab of carapace width 52.5 mm was previously estimated to weigh 65 g and now 48
g; a mature female crab of carapace width 57.5 mm was estimated to previously weigh 102 g and now 67.7 g;
and a male of carapace width 92.5 mm was previously estimated to weigh 450 g and now weighs 451 g.

Maturity

Maturity of females collected during the NMFS summer survey was determined by the shape of the abdomen,
by the presence of brooded eggs, or egg remnants. Morphometric maturity for males was determined by chela
height measurements, which were available starting from the 1989 survey (Otto 1998). Mature male biomass
referenced throughout this document refers to a morphometrically mature male. A maturity curve for males
was estimated using the average fraction mature based on chela height data and applied to all years of survey
data to estimate mature survey numbers. The separation of mature and immature males by chela height may
not be adequately refined given the current measurement to the nearest millimeter. Chela height measured
to the nearest tenth of a millimeter (by Canadian researchers on North Atlantic snow crab) shows a clear
break in chela height at small and large widths and shows fewer mature animals at small widths than the
Bering Sea data measured to the nearest millimeter. Measurements taken in 2004-2005 on Bering Sea snow
crab chela to the nearest tenth of a millimeter show a similar break in chela height to the Canadian data
(Rugolo et al. 2005). The probability of maturing (which is different from the fraction mature at length) is
estimated within the model for both sexes as a freely estimated (but smoothed) function of length.

Molting probability

Bering Sea male snow crab appear to have a terminal molt to maturity based on hormone level data and
findings from molt stage analysis via setagenesis (Tamone et al. 2005). The models presented here assume a
terminal molt for both males and females, which is supported by research on populations in the Bering Sea
and the Atlantic Ocean (e.g., Dawe, et al. 1991).

Male snow crabs that do not molt (old shell) may be important in reproduction. Paul et al. (1995) found that
old shell mature male Tanner crab out-competed new shell crab of the same size in breeding in a laboratory
study. Recently molted males did not breed even with no competition and may not breed until after ~100
days from molting (Paul et al. 1995). Sainte-Marie et al. (2002) stated that only old shell males take part in
mating for North Atlantic snow crab. If molting precludes males from breeding for a three month period, then
males that are new shell at the time of the survey (June to July), would have molted during the preceding
spring (March to April), and would not have participated in mating. The fishery targets new shell males,
resulting in those animals that molted to maturity and to a size acceptable to the fishery of being removed
from the population before the chance to mate. However, new shell males will be a mixture of crab less than
1 year from terminal molt and 1+ years from terminal molt due to the inaccuracy of shell condition as a
measure of shell age.

Crabs in their first few years of life may molt more than once per year, however, the smallest crabs included in
the model are approximately 3 to 4 years old and would be expected to molt annually. The growth transition
matrix was applied to animals that molt, resulting in new shell animals. Crab that do not molt become old
shell animals. Further research on the relationship between shell condition and time from last molt is needed.
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Mating ratio and reproductive success

Bering Sea snow crabs are managed using mature male biomass (MMB) as a proxy for reproductive potential.
MMB is used as the currency for management because the fishery only retains male crabs. Male snow crabs
are sperm conservers, using less than 4% of their sperm at each mating and females also will mate with more
than one male. The amount of stored sperm and clutch fullness varies with sex ratio (Sainte-Marie 2002). If
mating with only one male is inadequate to fertilize a full clutch, then females will need to mate with more
than one male, necessitating a sex ratio closer to 1:1 in the mature population, than if one male is assumed
to be able to adequately fertilize multiple females. Although mature male biomass is currently the currency
of management, female biomass may also be an important indicator of reproductive potential of the stock.

Quantifying the reproductive potential of the female population from survey data can be less than straightfor-
ward. For example, full clutches of unfertilized eggs may be extruded and appear normal to visual examination,
and may be retained for several weeks or months by snow crab. Resorption of eggs may occur if not all eggs
are extruded resulting in less than a full clutch. Female snow crabs at the time of the survey may have a full
clutch of eggs that are unfertilized, resulting in overestimation of reproductive potential. Barren females are
a more obvious indication of low reproductive potential and increased in the early 1990s then decreased in
the mid- 1990s then increased again in the late 1990s. The highest levels of barren females coincides with
the peaks in catch and exploitation rates that occurred in 1992 and 1993 fishery seasons and the 1998 and
1999 fishery seasons. While the biomass of mature females was high in the early 1990s, it is possible the
production may have been impacted by the spatial distribution of the catch and the resulting sex ratio in
areas of highest reproductive potential. Biennial spawning is another confounding factor in determining the
reproductive potential of snow crab. Laboratory analysis showed that female snow crab collected in waters
colder than 1.5 degrees C from the Bering Sea spawn only every two years.

Further complicating the process of quantifying reproductive capacity, clutch fullness and fraction of unmated
females may not account for the fraction of females that may have unfertilized eggs, since these cannot be
detected by the naked eye at the time of the survey. The fraction of barren females observed in the survey
may not be an accurate measure of fertilization success because females may retain unfertilized eggs for
months after extrusion. To examine this hypothesis, RACE personnel sampled mature females from the
Bering Sea in winter and held them in tanks until their eggs hatched in March of the same year (Rugolo et
al. 2005). All females then extruded a new clutch of eggs in the absence of males. All eggs were retained
until the crabs were sacrificed near the end of August. Approximately 20% of the females had full clutches of
unfertilized eggs. The unfertilized eggs could not be distinguished from fertilized eggs by visual inspection at
the time they were sacrificed. Indices of fertilized females based on the visual inspection method of assessing
clutch fullness and percent unmated females may overestimate fertilized females and not an accurate index of
reproductive success.

Growth

Little information exists on growth for Bering Sea snow crab, though further analyses are underway. Tagging
experiments were conducted on snow crab in 1980 with recoveries occurring in the Tanner crab (Chionoecetes
bairdi) fishery in 1980 to 1982 (Mcbride 1982). However, data from this study are not used due to uncertainty
about the effect of tagging on growth. Currently, 40 data points from 5 studies are used to estimate the
post-molt length from pre-molt length for females and males (Table 4). The studies include:

1. Transit study (Rugolo unpublished data, 2003); 14 crab
2. Cooperative seasonality study (Rugolo); 6 crab
3. Dutch harbor holding study; 9 crab
4. NMFS Kodiak holding study held less than 30 days; 6 crab
5. NMFS Kodiak holding study 2016; 5 crab

Data from the NMFS Kodiak holding study 2016 are new for this year’s study and up to 70 new observations
will be available soon. In the “Transit study”, pre- and post-molt measurements of 14 male crabs that molted
soon after being captured were collected. The crabs were measured when shells were still soft because all
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died after molting, so measurements may be underestimates of postmolt width (Rugolo, pers. com.). The
holding studies include only data for crab held less than 30 days because growth of crabs held until the next
spring’s molting was much lower. Females molting to maturity were excluded from all data sets, since the
molt increment is usually smaller. Crab missing more than two limbs were excluded due to other studies
showing lower growth. Crab from Rugolo’s seasonal study were excluded that were measured less than 3
days after molting due to difficulty in measuring soft crab accurately. In general, growth of snow crab in the
Bering Sea appears to be greater than growth of some North Atlantic snow crab stocks (Sainte-Marie 1995).

Management history

ADFG harvest strategy

Before the year 2000, the Guideline Harvest Level (GHL) for retained crab only was a harvest rate 58% of
the number of male crab over 101 mm CW estimated from the survey. The minimum legal size limit for
snow crab is 78 mm, however, the snow crab market generally accepts animals greater than 101 mm. In
2000, due to the decline in abundance and the declaration of the stock as overfished, the harvest rate for
calculation of the GHL was reduced to 20% of male crab over 101 mm. After 2000, a rebuilding strategy
was developed based on simulations by Zheng (2002) using survey biomass estimates. The realized retained
catch typically exceeded the GHL historically, resulting in exploitation rates for the retained catch on males
>101mm ranging from about 10% to 80%. The estimated exploitation rate for total catch divided by mature
male biomass ranged from 5% to 52% for the chosen model in this assessment (Figure 6).

The harvest strategy since 2000 sets harvest rate based on estimated mature biomass. The harvest rate
scales with the status of the population relative to BMSY , which is calculated as the average total mature
biomass at the time of the survey from 1983 to 1997 and MSST is one half BMSY . The harvest rate begins at
0.10 when total mature biomass exceeded 50% MSST (230 million lbs) and increases linearly to 0.225 when
biomass is equal to or greater than BMSY (Zheng et al. 2002).

u =



Bycatch if TMB
TMBMSY

≤ 0.25

0.225( TMB
TMBMSY

−α)
1−α if0.25 < TMB

TMBMSY
< 1

0.225 ifTMB > TMBMSY

(1)

The maximum retained catch is set as the product of the exploitation rate, u, calculated from the above
control rule and survey mature male biomass. If the retained catch in numbers is greater than 58% of the
estimated number of new shell crabs greater than 101 mm plus 25% of the old shell crab greater than 101
mm, the catch is capped at 58%.

History of BMSY

Prior to adoption of Amendment 24, BMSY was defined as the average total mature biomass (males and
females) estimated from the survey for the years 1983 to 1997 (921.6 million lbs; NPFMC 1998) and MSST
was defined as 50% of BMSY . Definitions of biological reference points based on the biomass over a range
of years make a host of assumptions that may or may not be fulfilled. Currently, the biological reference
point for biomass is calculated using a spawning biomass per recruit proxy, B35% (Clark, 1993). B35% is the
biomass at which spawning biomass per recruit is 35% of unfished levels and has been shown to provide close
to maximum sustainable yield for a range of steepnesses (Clark, 1993). Consequently, it is an often used
target when a stock recruit relationship is unknown or unreliable.
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Fishery history

Snow crab were harvested in the Bering Sea by the Japanese from the 1960s until 1980 when the Magnuson
Act prohibited foreign fishing. After the closure to foreign fleets, retained catches increased from relatively
low levels in the early 1980s (e.g. retained catch of 11.85 kt during 1982) to historical highs in the early and
mid-nineties (retained catch during 1991, 1992, and 1998 were 143.02, 104.68, and 88.09 kt, respectively).
The stock was declared overfished in 1999 at which time retained catches dropped to levels similar to the
early 1980s (e.g. retained catch during 2000 was 11.46 kt). Retained catches have slowly increased since 1999
as the stock rebuilt, although retained catch during 2016 was low (9.67 kt).

Discard mortality is the next largest source of mortality after retained catch and approximately tracks the
retained catch. The highest estimated discard mortality occurred during 1992 at 17.06 kt which was 16% of
the retained catch. The most recent estimated mortality was 1.31 kt which was 14% of the retained catch.

Discard from the directed pot fishery has been estimated from observer data since 1992 and ranged from 11%
to 64% (average 33%) of the retained catch of male crab biomass (Table 5). Female discard catch has been
very low compared to male discard catch and has not been a significant source of mortality. Discard of snow
crab in groundfish fisheries has been highest in the yellowfin sole trawl fishery, and decreases down through
the flathead sole trawl fishery, Pacific cod bottom trawl fishery, rock sole trawl fishery, and the Pacific cod
hook-and-line and pot fisheries, respectively (Figure 7). Bycatch in fisheries other than the groundfish trawl
fishery has historically been relatively low, but in 2015 bycatch from sources other than the groundfish trawl
fishery reached almost ~25% of the reported bycatch. Size frequency data and catch per pot have been
collected by observers on snow crab fishery vessels since 1992. Observer coverage has been 10% on catcher
vessels larger than 125 ft (since 2001), and 100% coverage on catcher processors (since 1992).

Several modifications to pot gear have been introduced to reduce bycatch mortality. In the 1978/79 season,
escape panels were introduced to pots used in the snow crab fishery to prevent ghost fishing. Escape panels
consisted of an opening with one-half the perimeter of the tunnel eye laced with untreated cotton twine. The
size of the cotton laced panel was increased in 1991 to at least 18 inches in length. No escape mechanisms for
undersized crab were required until the 1997 season when at least one-third of one vertical surface of pots
had to contain not less than 5 inches stretched mesh webbing or have no less than four circular rings of no
less than 3 3/4 inches inside diameter. In the 2001 season the escapement for undersize crab was increased to
at least eight escape rings of no less than 4 inches placed within one mesh measurement from the bottom of
the pot, with four escape rings on each side of the two sides of a four-sided pot, or one-half of one side of the
pot must have a side panel composed of not less than 5 1/4 inch stretched mesh webbing.

D. Data

New time series of survey indices and size compositions were calculated from data downloaded from the
AKFIN database. Bycatch data (biomass and size composition) were updated for the most recent year from
the AKFIN database. Retained, total, and discarded catch (in numbers and biomass) and size composition
data for each of these data sources were updated for the most recent year based on files provided by the State
of Alaska.

Catch data

Catch data and size composition of retained crab from the directed snow crab pot fishery from survey year
1978 to the 2016 were used in this analysis (Table 5). Size composition data on the total catch (retained plus
discarded) in the directed crab fishery were available from survey year 1992 to 2016. Total discarded catch
was estimated from observer data from 1992 to 2016 (Table 1). The discarded male catch was estimated for
survey year 1978 to 1991 in the model using the estimated fishery selectivities based on the observer data for
the period of survey year 1992 to 2016. The discard catch estimate was multiplied by the assumed mortality
of discards from the pot fishery. The mortality of discarded crab was 30% for all model scenarios. This
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estimate differs from the currently used strategy (since 2001) to the present by ADFG to set the TAC, which
assumes a discard mortality of 25% (Zheng, et al. 2002). The discards prior to 1992 may be underestimated
due to the lack of escape mechanisms for undersized crab in the pots before 1997. See Table 3 for a summary
of catch data.

Table 3: Data included in the assessment. Dates indicate survey
year.

Data component Years
Retained male crab pot fishery size frequency by shell condition 1978 - 2016
Discarded Males and female crab pot fishery size frequencey 1992 - 2016
Trawl fishery bycatch size frequencies by sex 1991 - 2016
Survey size frequencies by sex and shell condition 1978 - 2017
Retained catch estimates 1978 - 2016
Discard catch estimates from crab pot fishery 1992 - 2016
Trawl bycatch estimates 1973 - 2016
Total survey biomass estimates and coefficients of variation 1978 - 2017
2009 study area biomass estimates, CVs, and size frequencey for BSFRF and NMFS
tows

2009

2010 study area biomass estimates, CVs, and size frequencey for BSFRF and NMFS
tows

2010

Survey biomass and size composition data

Abundance was estimated from the annual eastern Bering Sea (EBS) bottom trawl survey conducted by
NMFS (see Rugolo et al. 2003 for design and methods). Since 1988, the survey has sampled more stations
than pre-1988 (compare Figure 8 to Figure 9)). In 1982 the survey net was changed resulting in a potential
change in catchability. Consequently, survey selectivity has been historically modeled in three ‘eras’ in the
assessment (1978-1981, 1982-1988, 1989-present, Figure 10). All survey data in this assessment used measured
net widths instead of the fixed 50 ft net width based on Chilton et al.’s (2009) survey estimates. Carapace
width and shell conditions were measured and reported for snow crab caught in the survey.

Mature biomass for males and females at the time of the survey were the primary indices of population size
fit to in this assessment. Total survey numbers (Figure 11 & Figure 12) were input to the model via the .DAT
file, after which MMB and FMB at the time of the survey were calculated based on the size composition
data, which were delineated by shell condition, maturity state, and sex. Distinguishing between mature
and immature crab for the size composition was accomplished by demarcating any female that had eggs
reported in the survey as ‘mature’. Mature male size composition data were calculated by multiplying the
total numbers at length for new shell male crab by a vector of observed proportion of mature males at length.
The observed proportion of mature males at length was calculated by chelae height and therefore refers only
to ‘morphometrically’ mature males. All old shell crab of both sexes were assumed to be mature. New shell
crab were demarcated as any crab with shell condition index <= 2. The biomass of new and old shell mature
individuals was calculated by multiplying the vector of numbers at length by weight at length. These vectors
were then summed by sex to provide the index to which the model was fit (Table 6). The size composition
data were also fit within the assessment.

Spatial distribution of survey abundance and catch

Spatial gradients exist in the survey data by maturity and size for both sexes. For example, larger males
have been more prevalent on the south west portion of the shelf (Figure 4) while smaller males have been
more prevalent on the north west portion of the shelf (Figure 1). Females have exhibited a similar pattern
(compare Figure 2 to Figure 5). In addition to changing spatially over the size and shelf, distributions of crab
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by size and maturity also changed temporally. The centroids of abundance in the summer survey moved over
time (Figure 13 & Figure 14). Centroids of mature female abundance early in the history of the survey were
the farther south, but moved north during the 1990s. Since the late 1990s and early 2000s, the centroids
moved south again, but not to the extent seen in the early 1980s. This phenomenon was mirrored in centroids
of abundance for large males (Figure 14).

Centroids of the catch were generally south of 58.5 N, even when ice cover did not restrict the fishery moving
farther north. This is possibly due to proximity to port and practical constraints of meeting delivery schedules.
The majority of catch was taken west and north of the Pribilof Islands, but this rule has had exceptions.

The distribution of large males during the summer survey and the fishery catch are different. The origin
of this difference is unknown. It is possible that crab move between the fishery and the survey, but it is
also possible that fishers did not target the centroids of abundance. The underlying explanation of this
phenomenon could hold implications for relative exploitation rates spatially and it has been suggested that
high exploitation rates in the southern portion of the snow crab range may have resulted in a northward shift
in snow crab distribution (Orensanz, 2004). Snow crab larvae likely drift north and east after hatching in
spring. Snow crab appear to move south and west as they age (Parada et al., 2010), however, no tagging
studies have been conducted to fully characterize the ontogenetic or annual migration patterns of this stock
(Murphy et al. 2010).

Experimental study of survey selectivity

The Bering Sea Fisheries Research Foundation (BSFRF) conducted a survey of 108 tows in 27 survey stations
(hereafter referred to as the “study area”) in the Bering Sea in summer 2009 (Figure 15). The BSFRF
performed a similar study during 2010 in which the study area covered a larger portion of the distribution
of snow crab than the 2009 study area. The mature biomass and size composition data gleaned from each
of these experiments (and their complimentary NMFS survey observations; Figure 16 & Figure 17) are
incorporated into the model by fitting them as an extra survey that is linked to the NMFS survey through
a shared selectivity (see appendix A for a description of the way in which the surveys are related in the
assessment model). Abundances estimated by the industry surveys were generally higher than the NMFS
estimates, which provides evidence that the catchability of the NMFS survey gear is less than 1. Larger
females are an exceptions to this observation, but this difference may be due to different towing locations for
the two nets within the study area, or to variable catchability of females due to aggregation behavior.

E. Analytic approach

History of modeling approaches for the stock

Historically, survey estimates of large males (>101 mm) were the basis for calculating the Guideline Harvest
Level (GHL) for retained catch. A harvest strategy was developed using a simulation model that pre-dated the
current stock assessment model (Zheng et al. 2002). This model has been used to set the GHL (renamed total
allowable catch, ‘TAC’ since 2009) by Alaska Department of Fish and Game (ADFG) since the 2000/2001
fishery. Currently, NMFS uses an integrated size-structured assessment to calculate the overfishing level
(OFL), which constrains the ADFG harvest strategy.

Model description

The integrated size-structured model used by NMFS (and presented here) was developed following Fournier
and Archibald’s (1982) methods, with many similarities to Methot (1990). The model was implemented using
automatic differentiation software developed as a set of libraries under C++ (ADModel Builder). ADModel
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Builder can estimate a large number of parameters in a non-linear model using automatic differentiation
software extended from Greiwank and Corliss (1991) and developed into C++ class libraries.

The snow crab population dynamics model tracked the number of crab of sex s, shell condition v, maturity
state m, during year y at length l, Ns,v,m,y,l . A terminal molt was modeled in which crab move from an
immature to a mature state, after which no further molting occurred. The mid-points of the size bins tracked
in the model spanned from 27.5 to 132.5mm carapace width, with 5 mm size classes. For the base assessment
(M16 D17), 338 parameters were estimated. Parameters estimated within the assessment included those
associated with the population processes recruitment, growth, natural mortality (subject to a fairly informative
prior), fishing mortality, selectivity (fishery and survey), catchability, and maturity (also sometimes subject
to a prior; see Table 7 & Table 8). Molting probability, weight at length, discard mortality, bycatch mortality,
and parameters associated with the variance in growth and proportion of recruitment allocated to size bin
were estimated outside of the model or specified. See appendix A for a complete description of the population
dynamics.

In its current formulation, a gap in observations of premolt sizes from ~25 to ~35 mm carapace width impedes
estimation of the change point in the growth function. This data gap results in unstable behavior of the
model. In the past a ‘jittering’ approach was explored in order to find the parameter vector that produced
the smallest negative log likelihood (Turnock, 2016). A jittering approach was implemented here by running
each model to produce a .PAR file, then creating 100 replicates of a .PIN file using that .PAR file. Each .PIN
file consisted of the values in the .PAR file multiplied by a random normal error term with a mean of 1 and
a standard deviations of 0.1. Each of the .PIN files were used as starting values to run the model and the
output was stored and compared among model scenarios.

Samples were also drawn from the posterior distributions of estimated parameters and derived quantities used
in management (e.g. MMB and OFL) via MCMC. This involved conducting 2,000,000 cycles of the MCMC
algorithm, implementing a 5% burn-in period, and saving every 500th draw. Chains were then thinned
until diagnostic statistics (e.g. Geweke statistics and autocorrelation) demonstrated a lack of evidence of
non-convergence (if possible).

Model selection and evaluation

Models were evaluated based on their fit to the data (Table 9), the credibility of the estimated population
processes, stability of the model (Figure 18, Figure 19, Figure 20), and the strength of the influence of the
assumptions of the model on the outcomes of the assessment. Maximum likelihood estimates of parameters
can be seen in Table 8 and their posterior distributions can be seen in Figure 21, Figure 22, Figure 23, and
Figure 24.

Results

Several of the models exhibited unstable behavior when undergoing ‘jittering’ (Figure 18). Models appeared
to ‘converge’ (i.e. small gradients) over a wide range of likelihood values and derived management quantities
exhibited bimodality. This bimodality can be linked to the interaction of the change point in the growth model
with a fixed natural mortality for females, because when natural mortality for mature females is estimated
(M17C.D17a), the bimodality disappears (Figure 18). In addition to jittering, MCMC was performed for all
models. Models in which the two smallest length bins were removed and the growth curve was estimated
without a change point did not have stationary traces of the objective function (i.e. they did not converge
(Figure 19) and most parameters were poorly behaved (Figure 20)). Below, the results for seven models are
described. Only the total likelihoods for M16.D17, M17A.D17a, and M17Aa.D17a are directly comparable
because they have the same data and weighting schemes. Individual likelihood components can be compared
among models with the understanding that changing the weighting or data for one likelihood component
influences others.
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Fits to data

Survey biomass data

Fits to the survey mature male biomass were visually similar for all models for the majority of years in the
the time series (Figure 25), yet model M17C.D17a fit the survey biomass better than other models according
to the likelihoods (Table 9). Estimates of survey MMB in the final year ranged from 101.5 to 109.8 kt. All
models overestimated the final year of survey MMB (83.9572 kt).

Fits to the survey mature female biomass were also similar for all models, particularly in recent years (Figure 25).
Models in which natural mortality for mature females was estimated (M17C.D17a & M17BC.D17a) fit the
mature female biomass better than others in the earlier years. Estimates of survey MFB in the final year
ranged from 131.9 to 143.7 kt. All models overestimated the final year of survey MFB (106.847 kt).

Growth data

All models provided adequate fits to the female and male growth data, but model M17C.D17a returned the
lowest likelihood for the male data and the second lowest for female (Figure 26).

Catch data

Retained catch data were fit by all models well, with no little discernible differences among models (Figure 27).
Female discard data were fit adequately given the specified uncertainty (Figure 27 & (Table 9)). Male discard
data during the period for which data exist (early 1990s to the present) were well fit by every model with little
discernible difference (Figure 27 ). M17C.D17a returned a significantly lower likelihood for male discard data
(Table 9). Fits to the trawl data were adequate for all models given the uncertainty in the data (Figure 27).
Fits to the fishery CPUE data were poor for all models, but vaguely reflected the trends in observed cpue
(Figure 28).

Size composition data

Retained catch size composition data were fit well by all models (Figure 29); trawl size composition data were
generally well fit, with several exceptions. All models performed similarly in fitting the trawl size composition
data (Figure 30 & Table 9).

Fits to the size composition data for the BSFRF data were qualitatively similar for all models (Figure 31 &
(Table 9)). The number of males was underestimated by the industry survey in 2009 and overestimated by the
NMFS survey, while the opposite pattern was seen for females. Fits to the 2010 survey size composition data
were better than the 2009 fits. Fits to female survey composition data were similar for all models in most
years, although fits for the models in which lower length bins were excluded depart from the other models in
some years (Figure 32). Similar patterns in fits among models can be seen for the male survey composition
data (Figure 33). The distribution of residuals for male and female survey composition data for the chosen
model varied by sex. Female and male size composition data from the survey sum to 1 in a given year and
females tended to be overestimated (Figure 34), whereas males tended to be underestimated (Figure 35).

Estimated population processes and derived quantities

The fits to the data were similar for all models, but the credibility of the estimated population processes
varied. Estimates of mature male biomass at the time of mating varied by 6-44% among models over the
history of the fishery. Projected MMB for 2017 ranged from 95.88 to 123.74 kt. Estimated mature female
biomass at the time of mating varied by 6-35% over the length of the time series among models. Projected
FMB for 2017 ranged from 125.7 to 189.9 kt (Figure 36). In general, estimated fishing mortality in the recent
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past has been well below F35%, save the years 2012-2014, which were close to F35%. Estimated MMB has
been less than B35% since 2010, but never below MSST (Figure 37).

Estimates of selectivity and catchability varied widely among models (Figure 38). For models that estimated
selectivity parameters in era 1 (only 2 models), catchability for males and females was essentially 1 with very
narrow posteriors (Figure 22). Size at 50% selection in the survey gear during era 1 ranged from ~40 mm to
~46 mm for both females and males (Figure 22 & Figure 23). All models estimated selectivity parameters
for era 2, and removing the ‘anchor’ of the survey data in era 1 resulted in lower estimated of catchability
for males (e.g. 0.49 to 0.33-0.44) and higher estimated catchability for females (e.g. from 0.32 to 0.38-0.52;
Figure 23). Size at 50% selection in the survey gear ranged from ~39 mm to ~41 mm for both females and
males (Figure 22 & Figure 23). Estimated catchability for males during survey era 3 ranged from 0.52 to
0.7; estimated female catchability increased from 0.61 to 0.64-0.72. Size at 50% selection in the survey gear
ranged from 31 mm to 35 mm for females and 35 mm to 37 mm for males (Figure 22 & Figure 23). BSFRF
‘availability’ curves varied widely from 2009 to 2010 and among models, with the availability of crab to the
experimental survey generally increasing in 2010 (Figure 39).

The probability of maturing by size was fairly consistent among scenarios for both males and females, except
the scenarios in which the first two length bins were removed. Aside from these two models, the probability
of maturing by size for female crab was ~50% at ~47.5 mm and increased to 100% at ~60mm (Figure 40); the
probability of maturing for male crab was ~15% to 20% at ~60 mm to 90mm and increased sharply to 50% at
~97.5mm, and 100% at 107.5 mm. The probability of maturity was unreasonably high for smaller length bins
when the two smallest length bins were removed.

Estimated fishing mortality in the directed fishery was similar for all models (Figure 41). Total and retained
fishery selectivity was very similar for all models because of the weight put on the retained catch and its
associated size composition data (Figure 41). Estimated size at 50% selection in the trawl fishery varied more
than selectivity in the directed fishery, ranging from 109 - 120 mm (Figure 41). Size at 50% selection for
discarded females was similar for all models (Figure 41). See Figure 21 and Figure 22 for posterior densities
for all parameters related to mortality in the different fisheries.

Patterns in recruitment were similar for all models. A period of high recruitment was observed in which 3
large cohorts passed through the population during the 1980s and into the early 1990s. Following that, a
period of low recruitment persisted from the early 1990s to 2013 All models indicated a large recruitment
to the survey gear occurred in the last few years (Figure 42). Recruitment entering the model was placed
primarily in the first three size bins (Figure 42). Stock recruitment relationships were not apparent between
the estimates of MMB and recruitment for any model (Figure 42). Relationships were not apparent between
mature female biomass and recruitment either. Estimated multipliers for natural mortality ranged from 1.23
to 1.89 for immature crab, 1.06 to 1.123 for mature male crab, and 1 to 1.97 for mature females (Table 8).

F. Calculation of the OFL

Methodology for OFL

The OFL was calculated using proxies for biomass and fishing mortality reference points and a sloped control
rule. Proxies for biomass and fishing mortality reference points were calculated using spawner-per-recruit
methods (e.g. Clark, 1991). After fitting the assessment model to the data and estimating population
parameters, the model was projected forward 100 years using the estimated parameters under no exploitation
to determine ‘unfished’ mature male biomass-per-recruit. Projections were repeated in which the bisection
method was used to identify a fishing mortality that reduced the mature male biomass-per-recruit to 35% of
the unfished level (i.e. F35% and B35%). Calculations of F35% were made under the assumption that bycatch
fishing mortality was equal to the estimated average value.

Calculated values of F35% and B35% were used in conjunction with a control rule to adjust the proportion of
F35% that is applied based on the status of the population relative to B35% (Amendment 24, NMFS).
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FOFL =



Bycatch if MMB
MMB35

≤ 0.25

F35( MMB
MMB35

−α)
1−α if0.25 < MMB

MMB35
< 1

F35 ifMMB > MMB35

(2)

Where MMB is the projected mature male biomass in the current survey year after fishing at the FOFL,
MMB35% is the mature male biomass at the time of mating resulting from fishing at F35%, F35% is the fishing
mortality that reduces the mature male biomass per recruit to 35% of unfished levels, and α determines the
slope of the descending limb of the harvest control rule (set to 0.1 here).

Previously, reference points and the OFL were calculated by fitting the model to the data, then transferring
the estimated parameters to a script with a projection model in which all parameters were assumed known.
The projection script began in the final year of the assessment period and was initiated by pasting the
numbers at length from the report file of the assessment into a data file read in by the projection script.
Reference points were calculated by projecting the population into the future under no fishing mortality (to
find virgin biomass) and a fishing mortality was solved for that reduced the mature male biomass-per-recruit
to 35% of virgin levels. The process was repeated to find the OFL, but, to allow for some uncertainty in
the calculation, lognormal error was added to the initial numbers at length (i.e. those in the final year of
assessment) and the FOFL was calculated based on the harvest control rule outlined above. Many simulations
with different lognormal errors were carried out to develop a distribution of the OFL which was then used to
determine an ABC.

The previously used projection method does not propagate the uncertainty in all parameters forward, so a
Bayesian methodology was included for this iteration of the assessment to more fully represent the uncertainty
associated with model estimates of quantities used in management. In the Bayesian implementation of
this assessment model, none of the equations changed (other than in the ways requested by the CPT), but
distributions for the OFL, MMB, B35%, and F35% were developed by sampling from the posterior distributions
of these quantities via a Markov Chain Monte Carlo algorithm built into ADMB. Accomplishing this required
building in functions to calculate reference points and extra storage space (see functions ‘get_fut_mortality’,
‘find_OFL’, ‘find_F35’ in the .TPL on github).

Calculated OFLs and interpretation

Medians of the posterior densities of the OFLs calculated for the suite presented models ranged from 23.91
to 35.3kt (Figure 43 & Table 10). Differences in OFLs were a result of differences in estimated MMB (see
above), calculated B35% (which ranged from 134.18 to 157.14kt), Figure 43), F35% (which ranged from 1.31
to 1.96 yr-1, Figure 43), and FOFL (which ranged from 0.89 to 1.33 yr-1, Figure 43).

G. Calculation of the ABC

The acceptable biological catch (ABC) was set by subtracting a 10% buffer from the OFL to account for
scientific uncertainty, which was recommended by the SSC.
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Author recommendations

Models in which the lower two length bins were removed were eliminated from consideration because they did
not provide credible estimates of survey selectivity and the probability of maturing. It appears low numbers
of small crab in small length bins combined with a constant natural mortality informs catchability and survey
selectivity. Once survey selectivity is estimated conditional upon the paucity of observations of small crab,
the probability of maturing can be estimated to fit the observed mature male biomass. Consequently, efforts
should be made to fill the holes in the data in this range, rather than excluding smaller length bins.

The small changes introduced to the model should all be adopted. Excluding the first survey era is advisable
because it provided an artificial anchor to survey catchability, the influence of which stretched across eras.
Little is known about catchability in the first era and an estimated catchability of 1 in that era is counter-
intuitive given the smaller size of the surveyed area. Changing the timing of the second survey era needed to
be implemented because the current number of sampled stations began in 1988, not 1989. Finally, changing
the BSFRF selectivities to logit space needed to be implemented because some of these parameters were
consistently hitting their bounds.

Each of the CPT-recommended small changes resulted in small changes to the model output, but, even
with these changes, the bimodality and instability in management quantities persisted. Estimating natural
mortality for mature females removed this instability and returned an intuitive relationship between the
natural mortalities of mature males and females. The bimodality in the MLEs and derived management
quantities appeared originally because the change point in growth flips from one state to another and natural
mortality for mature females was fixed. When mature female natural mortality is estimated, the confounded
processes of growth and natural mortality can ‘accommodate’ one another and avoid the sharp bimodality.
The largest departure from earlier models brought by estimating natural mortality for mature female was a
large increase in survey catchability, but this is somewhat consistent with the BSFRF studies which generall
showed higher catchability for females than males (perhaps due to aggregation behavior).

For these reasons, the authors’ selected model is M17C D17a. It incorporates all the small changes suggested
by the CPT, estimates natural mortality for all sex/maturity state combinations, and returns credible
estimates for all population processes.

H. Data gaps and research priorities

Data sources

If a Bayesian paradigm is used to provide management advice, as many raw data sources as possible should
be included in the assessment. Estimating parameters outside of the model and inputting them as ‘known’
artificially decreases the uncertainty represented in the posteriors of management quantities. Weight at length
data, data used to develop priors for natural mortality and maturity, and the selectivities calculated from the
BSFRF data should be considered for inclusion in the model to comprehensively represent the uncertainty in
management quantities. In addition to pulling as much data into the model as possible, standardizing and
automating the creation of data files from the survey and catch databases would be very useful given the
short time frame of the assessment cycle.

Although estimating natural mortality for mature females eliminated the bimodality in management quantities,
jittering still revealed considerable instability in the model. Additional growth data in the size bins for which
pre-molt observations are absent would likely improve the stability of the model. Dr. Foy from the Kodiak
lab has provided these data, but not in time for inclusion in this assessment.

18
62



Modeling and weighting

Different weighting of likelihood components can have drastic impacts on the management advice provided
from an assessment. A close look at the way CVs, sample sizes, and other weighting factors are calculated and
their influence on assessment results could provide better understanding of how well the model is balanced.
Standardization of the weighting schemes would also improve readability of the code (for example, some size
composition data have both ‘weights’ and ‘sample sizes’).

Establishing a system for deciding to use Bayesian methods versus maximum likelihood methods would be
useful given the amount of time required to perform both jittering and MCMC. If Bayesian methods are to
be the mainstay of this assessment, priors for all parameters and the space in which parameters are estimated
should be carefully considered. Additionally, moving to a designation of the ABC based on the posterior
(similar to the p-star methods) rather than a flat percentage buffer would represent the uncertainty in the
data better.

Scientific uncertainty

Natural mortality exerts a large influence over estimated management quantities, but is poorly known.
Tagging studies targeted at estimating natural mortality could be very useful and could also shed light on the
migration patterns, which could help us understand the impact of the fishery (e.g. centroids of large male
abundance in the survey and catch do not match–is this because the crab are moving or because the fishery
operates in a specific place? The answer to this question could influence priors on catchability.) Similarly,
establishing measures of reproductive capacity that include females, the spatial overlap of mature individuals,
the role water temperature plays in biennial spawning, and the effectiveness of mating by size for males may
allow for relationships between recruitment and mature biomass to be found (e.g. Murphy et al. 2017). In
general, exploring the spatial dynamics of the population may allow for patterns and influences of the fishery
and environment on the productivity of the stock to be more easily identified. Previous analyses suggest
that retrospective biases may be a problem for the snow crab assessment (Szuwalski and Turnock, 2016).
Retrospective biases can result from unaccounted for time-varying processes in the population dynamics of
the model (Hurtado et al., 2015) and the retrospective bias in MMB for snow crab appears to result from an
anomalously large estimate of survey MMB in 2014. This was likely caused by a change in catchability for
that year and focused research on potential time-variation in important population processes for snow crab
should be pursued to confront retrospective biases.

Style

Although the code has been trimmed considerably over the last two years, legacy code and unused variables
still exist within the assessment. Streamlining the code makes it more readable and reduces the probability
of bugs. Most constants were migrated from the .TPL to the .CTL file, but parameter bounds have not yet
been moved. Adjusting the manner in which output files are opened when evaluating MCMC output should
also be implemented to avoid overwriting output files. A move to GMACs in 2018 will obviate the need for
these corrections, however.

I. Ecosystem Considerations

Recruitment for snow crab can be divided into two periods via regime shift algorithms (e.g. Rodionov, 2004).
The shift in recruitment corresponds with a change in the Pacific Decadal Oscillation (Szuwalski and Punt,
2013), but also with a period of intense fishing mortality. Regime-based management strategies have been
evaluated for snow crab, but found that only small improvements in long-term yield are derived from changing
the target reference points based on a change point algorithm and those changes come at a higher risk of
overfishing (Szuwalski and Punt, 2012). Given the uncertainty around whether or not the environment or
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the fishery precipitated changes in recruitment, the precautionary principle guides managers to assume it is
the fishery. Spatial analyses of recruitment, mature biomass, environmental drivers, and the impact of the
fishery may provide insight to the population dynamics of snow crab, but modeling techniques capable of
fully-spatial stock assessment are only recently feasible. The most recent large recruitment events will likely
divide the recruitment time series into three periods and present an intriguing opportunity for further study
of the relationship between environmental variables and recruitment success.

J. Literature cited

Chilton, E.A., C.E. Armisted and R.J. Foy. 2009. Report to industry on the 2009 Eastern Bering Sea crab
survey. AFSC Processed Report 2009-XX.

Clark, W.G. 1991. Groundfish exploitation rates based on life history parameters. Can. J. fish. Aquat. Sci.
48: 734-750.

Dawe, E.G., D.M. Taylor, J.M. Hoenig, W.G. Warren, and G.P. Ennis. 1991. A critical look at the idea of
terminal molt in male snow crab (Chionoecetes opilio). Can. J. Fish. Aquat. Sci. 48: 2266-2275.

Ernst, B, J.M.(Lobo) Orensanz and D.A. Armstrong. 2005. Spatial dynamics of female snow crab (Chionoe-
cetes opilio) in the eastern Bering Sea. Can. J. Fish. Aquat. Sci. 62: 250–268.

Fonseca, D. B., B. Sainte-Marie, and F. Hazel. 2008. Longevity and change in shell condition of adult
male snow crab Chionoecetes opilio inferred from dactyl wear and mark-recapture data. Transactions of the
American Fisheries Society 137:1029–1043.

Fournier, D.A. and C.P. Archibald. 1982. A general theory for analyzing catch-at-age data.
Can.J.Fish.Aquat.Sci. 39:1195-1207.

Greiwank, A. and G.F. Corliss(eds). 1991. Automatic differentiation of algorithms: theory, implementation
and application. Proceedings of the SIAM Workshop on the Automatic Differentiation of Algorithms, held
Jan. 6-8, Breckenridge, CO. Soc. Indust. And Applied Mathematics, Philadelphia.

Hoenig, J. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82: 898-903.

Mcbride (1982). Tanner crab tag development and tagging experiments 1978-1982. In Proceedings of the
International Symposium of the Genus Chionoecetes. Lowell Wakefield Fish. Symp. Ser., Alaska Sea Grant
Rep. 82-10. University of Alaska, Fairbanks, Alaska. Pp. 383-403.

Methot, R. D. 1990. Synthesis model: An adaptable framework for analysis of diverse stock assessment data.
Int. N. Pac. Fish. Comm. Bull. 50:259-277.

Murphy, J.T. Rugolo, L.J., Turnock, B.J. 2017. Integrating demographic and environmental variables to
calculate an egg production index for the Eastern Bering Sea snow crab (Chionoecetes opilio). Fisheries
Research. 193: 143-157.

Murphy, J. T., A. B. Hollowed, J. J. Anderson. 2010. Snow crab spatial distributions: examination of density
–dependent and independent processes. Pp. 49-79. In G. Kruse, G. Eckert, R. Foy, G. Kruse, R. Lipcius, B.
St. Marie, D. Stram, D. Woodby (Eds.), Biology and management of Exploited Crab Populations Under
Climate Change. Alaska Sea Grant Program Report AK-SG-10-01, University of Alaska Fairbanks, AK.
Doi:10.4027/bmecppc.2010.19

Nevissi, A.E., J.M. Orensanz, A.J.Paul, and D.A. Armstrong. 1995. Radiometric Estimation of shell age in
Tanner Crab, Chionoecetes opilio and C. bairdi, from the eastern Bering Sea, and its use to interpret indices
of shell age/condition. Presented at the International symposium on biology, management and economics of
crabs from high latitude habitats October 11-13, 1995, Anchorage, Alaska.

NPFMC (North Pacific Fishery Management Council). 2007. Environmental Assessment for Amendment
24. Overfishing definitions for Bering Sea and Aleutian Islands King and Tanner crab stocks. North Pacific
Fishery Management Council,Anchorage, AK, USA..

20
64

Doi:10.4027/bmecppc.2010.19


NPFMC (North Pacific Fishery Management Council). 2000. Bering Sea snow crab rebuilding plan.
Amendment 14. Bering Sea Crab Plan Team, North Pacific Fishery Management Council,Anchorage, AK,
USA..

NPFMC 1998. Bering Sea and Aleutian Islands Crab FMP. Bering Sea Crab Plan Team, North Pacific
Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.

Orensanz, J.M., J. Armstrong, D. Armstrong and R. Hilborn. 1998. Crustacean resources are vulnerable to
serial depletion – the multifaceted decline of crab and shrimp fisheries in the Greater Gulf of Alaska. Reviews
in Fish Biology and Fisheries 8:117-176.

Otto, R.S. 1998. Assessment of the eastern Bering Sea snow crab, Chionoecetes opilio, stock under the terminal
molting hypothesis. In Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and
Management. Edited by G.S. Jamieson and A. Campbell. Can. Spec. Publ. Fish. Aquat. Sci. 125.
pp. 109-124.

Parada, C., Armstrong, D.A., Ernst, B., Hinckley, S., and Orensanz, J.M. 2010. Spatial dynamics of snow
crab (Chionoecetes opilio) in the eastern Bering Sea–Putting together the pieces of the puzzle. Bulletin of
Marine Science. 86(2): 413-437.

Paul, A.J., J.M. Paul and W.E. Donaldson. 1995. Shell condition and breeding success in Tanner crabs.
Journal of Crustacean Biology 15: 476-480.

Rugolo, L.J., D. Pengilly, R. MacIntosh and K. Gravel. 2005. Reproductive dynamics and life-history of
snow crab (Chionoecetes opilio) in the eastern Bering Sea. Final Completion Report to the NOAA, Award
NA17FW1274, Bering Sea Snow Crab Fishery Restoration Research.

Rugolo, L.J., R.A. MacIntosh, C.E. Armisted, J.A. Haaga and R.S. Otto. 2003. Report to industry on the
2003 Eastern Bering Sea crab survey. AFSC Processed Report 2003-11.

Rodionov, S. 2004. A sequential algorithm for testing climate regime shifts. Geophysical Research Letters 21:
L09204.

Sainte-Marie, B., Raymond, S., and Brethes, J. 1995. Growth and maturation of the male snow crab,
Chionoecetes opilio (Brachyura: Majidae). Can.J.Fish.Aquat.Sci. 52:903-924.

Sainte-Marie, B., J. Sevigny and M. Carpentier. 2002. Interannual variability of sperm reserves and fecundity
of primiparous females of the snow crab (Chionoecetes opilio) in relation to sex ratio. Can.J.Fish.Aquat.Sci.
59:1932-1940.

Szuwalski, C.S. and Punt, A.E. 2013. Regime shifts and recruitment dynamics of snow crab, Chionoecetes
opilio, in the eastern Bering Sea. Fisheries Oceanography, 22: 345-354.

Szuwalski, C.S. and Punt, A.E. 2012. Fisheries management for regime-based ecosystems: a management
strategy evaluation for the snow crab fishery in the eastern Bering Sea. ICES Journal of Marine Science. 70:
955-967.

Tamone, S.L., M. Adams and J.M. Dutton. 2005. Effect of eyestalk ablation on circulating ecdysteroids in
hemolymph of snow crab Chionoecetes opilio: physiological evidence for a terminal molt. Integr. Comp.
Biol., 45(120), p.166-171.

Turnock, B.J. 2016. Snow crab assessment model scenarios and convergence testing. Alaska Fishery Science
Center.

Zheng, J., S. Siddeek, D. Pengilly, and D. Woodby. 2002. Overview of recommended harvest strategy for
snow crabs in the Eastern Bering Sea. Regional Information Report No. 5J02-03. Alaska Department of Fish
and Game. Juneau, Alaska.

Zheng, J., G.H. Kruse, and D.R. Ackley. 2001. Spatial distribution and recruitment patterns of snow crabs in
the eastern Bering Sea. Spatial Processes and management of marine populations. Alaska sea grant college
program. AK-SG-01-02, 2001.

21
65



Appendix A: Model structure

Population dynamics

Numbers of sex s of shell condition v and maturity state m at length l in the initial year of the assessment,
Ns,v,m,y=1,l , were calculated from an estimated vector of numbers at length l by sex s and maturity state m
for males, λs,m,l and numbers at length l by sex s and shell condition v for females (i.e. 2 vectors for each sex
were estimated). Estimated vectors of initial numbers at length by maturity for females were calculated by
splitting the estimated vectors at length by the observed proportion mature in the first year of the survey.

Ns,v,m,y=1,l =



Ωobss,l λs,1,l if v = new; m = mat, s = fem

1 − Ωobss,l λs,1,l if v = new; m = imat, s = fem

λs,2,l if v = old; m = mat, s = fem

0 if v = old; m = imat

(3)

Initial numbers at length for males were all assumed to be new shell.

Ns,v,m,y=1,l =



λs,1,l if v = new; m = mat, s = male

λs,2,l if v = new; m = imat, s = male

0 if v = old; m = mat, s = male

0 if v = old; m = imat, s = male

(4)

The dynamics after the initial year were described by:

Ns,v,m,y+1,l =



Ωs,lκs,l′Qs,imat,y,l′Xs,l′,l if v = new; m = mat

1 − Ωs,lκs,l′Qs,imat,y,l′Xs,l′,l +RecεyPrl if v = new; m = imat

Qs,mat,y,l′ if v = old; m = mat

(1 − κs,l′)Qs,imat,y,l′ if v = old; m = imat

(5)

Where Ωs,l was the probability of maturing at length l for sex s (a freely estimated vector for both males and
females constrained by penalties on smoothness and a prior in some scenarios), κs,l′ was the probability of
molting for an immature crab of sex s at length l’ (set to 1 for all immature crab), and Xs,l,l’ was the size
transition matrix describing the probability of transitioning from size l’ to size l for sex s. Qs,m,y,l’ was the
number of crab of sex s, maturity state m, and length l’ surviving natural and fishing mortality during year y:

Qs,m,y,l =
∑
v

Ns,v,m,y,le
Zs,v,m,y,l (6)

Where Ns,v,m,y,l represented the numbers, N, of sex s during year y of shell condition v and maturity state m
at length l. Zx,v,m,y,l represented the total mortality experienced by the population and consisted of the sum
of instantaneous rates of natural mortality by sex and maturity state, Ms,m, and fishing mortality, Fs,f,y,l
from each fishery. Each fishing mortality was subject to selectivity by length l, which varied between sexes
s and fisheries f (and by year y if specified) . Ms,m was specified in the model and a multiplier γnatM,m
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was estimated subject to constraints (see Table 7; this formulation effectively specified a mean and standard
deviation for a prior distribution for M).

Zs,v,m,y,l = γnatM,mMs,m +
∑
f

Ss,f,y,lFs,f,y,l (7)

Selectivities in the directed and bycatch fisheries were estimated logistic functions of size. Different selectivity
parameters were estimated for females and males in the directed fisheries (Sfem,dir,l and Smale,dir,l , respectively),
a single selectivity for both sexes was estimated for bycatch in the groundfish trawl fishery (Strawl,l), and a
retention selectivity was estimated for the directed fishery for males (Rdir,l ; all females were discarded).

Smale,dir,l = 1
1 + e−Sslope,m,d(Ll−S50,m,d

) (8)

Sfem,dir,l = 1
1 + e−Sslope,f,d(Ll−S50,f,d

) (9)

Strawl,l = 1
1 + e−Sslope,t(Ll−S50,t

) (10)

Rdir,l = 1
1 + e−Sslope,m,d(Ll−S50,m,d

) (11)

Where Sslope,s,f was the slope of the logistic curve for sex s in fishery f and S50,s,f was the length at 50%
selection for sex s in fishery f. Catches for all fisheries were modeled as pulse fisheries in which all catch was
removed instantaneously (i.e. no natural mortality occurred during the fishery). Catch in fishery f during
year y was calculated as the fraction of the total fishing mortality, Fs,f,y,l , applied to a given sex s in a fishery
f times the biomass removed by all fisheries for that sex.

Cmale,dir,y =
∑
l

∑
v

∑
m

wmale,l
RlFmale,dir,y,l

Fmale,dir,y,l+Ftrawl,y,l
Nmale,v,m,y,le

−δyMs,m(1 − e−(Fmale,dir,y,l+Ftrawl,y,l))

(12)

Cmale,tot,y =
∑
l

∑
v

∑
m

wmale,l
Fmale,dir,y,l

Fmale,dir,y,l+Ftrawl,y,l
Nmale,v,m,y,le

−δyMs,m(1 − e−(Fmale,dir,y,l+Ftrawl,y,l))

(13)

Cfem,dir,y =
∑
l

∑
v

∑
m

wfem,l
Ffem,dir,y,l

Ffem,dir,y,l+Ftrawl,y,l
Nfem,v,m,y,le

−δyMs,m(1 − e−(Ffem,dir,y,l+Ftrawl,y,l))

(14)

Cm+f,trawl,y =
∑
s

∑
l

∑
v

∑
m

ws,lNs,v,m,y,le
−δyMs,m(1 − e−(Ftrawl,y,l)) (15)

Where δy was the mid point of the fishery (all fisheries were assumed to occur concurrently and the midpoint
was based on the directed fishery, which accounts for the vast majority of the fishing mortality) and ws,l
was the weight at length l for sex s. Trawl data and discard data were entered into the model with an
assumed mortality of 80% and 30%, respectively. Fully-selected fishing mortality parameters for fishery f
were estimated as a logged average over a given time period (F logavg) with yearly deviations around that mean
(F logdev,y).

Ff,y = e(F log
avg,f

+F log
dev,f,y

) (16)

Selectivity for the survey was estimated for 3 eras in the base model: 1978-1981, 1982-1988, and 1989-present.
Selectivity was assumed to be logistic and separate parameters representing the length at which selection
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probability equal 50% and 95% (s50,s,e and s95,s,e, respectively) were estimated for males and females in the
third era (1989-present). Separate catchability coefficients (qs,e) were estimated for males and females in all
eras.

Ssurv,s,l,e = qs,e

1 + e
−log(19) Ll−s50,s,e

s95,s,e−s50,s,e

) (17)

Survey selectivity was informed by experimental surveys during the years 2009 and 2010. A portion of the
NMFS summer survey tows were accompanied by an industry vessel using nephrops trawls with an assumed
selectivity of 1 for all size classes. To represent the proportion of the population covered by the experiment,
a vector was freely estimated for males, Sfreey (subject to a scaling parameter), and a logistic curve was
estimated for females.

Sind,s,l,y =


qind,s,y

1+e
−log(19)

Ll−s50,s,y
s95,s,y−s50,s,y

) if s = female

qind,s,yS
free
y if s = male

(18)

Based on this logic, after identifying the fraction of the crab at length covered by the experimental surveys,
the length frequencies of the NMFS data collected simultaneously with the experimental trawls can be
calculated by multiplying the numbers at length ‘available’ to the experimental trawls by the overall survey
selectivity, Ssurv,s,l,y. The predicted numbers at length for the NMFS and industry data from the selectivity
experiment were calculated by multiplying the respective selectivities by the survey numbers at length.

Snmfs,s,l,y = Sind,s,l,ySsurv,s,l,y (19)

Mature male and female biomass (MMB and FMB, respectively) were fitted in the objective function and
were the product of mature numbers at length during year y and the weight at length, ws,l :

MMBy =
∑
l,v

wmale,lNmale,v,mat,y,l (20)

FMBy =
∑
l,v

wfem,lNfem,v,mat,y,l (21)

ws,l =αwt,sL
βwt,s
l (22)

Mature biomass can be calculated for different time through out the year, in which case the numbers at length
are decremented by the estimated natural mortality. Parameters αwt,s and βwt,s were estimated outside of
the assessment model and specified in the control file.

Molting and growth occur before the survey. Immature crab were assumed to molt every year with an
estimated probability of molting to maturity based on length l (in all the scenarios presented here, the
probability of molting was 1 for all immature animals). For crab that do molt, the growth increment within
the size-transition matrix, Xs,l,l’ , was based on a piece-wise linear relationship between predicted pre- and
post-molt length, (L̂preds,l and L̂posts,l , respectively) and the variability around that relationship was characterized
by a discretized and renormalized gamma function, Ys,l,l’ .

Xs,l,l′ = Ys,l,l′∑
l′ Ys,l,l′

(23)

Ys,l,l′ = (∆l,l′)
ˆLs,l−(L̄l−2.5)

βs (24)
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L̂post,1s,l = αs + βs,1Ll (25)

L̂post,2s,l = αs + δs(βs,1 − βs,2) + βs,2Ll (26)

L̂posts,l = L̂post,1s,l (1 − Φ(Ll − δa,x
stgr

)) + L̂post,2s,l (Φ(Ll − δa,x
stgr

)) (27)

∆l,l′ = L̄l′ + 2.5 − Ll (28)

L̂post,1s,l and L̂post,2s,l were predicted post-molt lengths from each piece of the piece-wise relationship, and Φ()
was a cumulative normal distribution in which δa,x was an estimated change point.

An average recruitment for the assessment period (1978-present) and yearly deviations around this average
were estimated within the assessment. The sex ratio of recruitment was assumed to be 50/50 male to female.
Each year’s estimated recruitment was allocated to length bins based on a discretized and renormalized
gamma function with parameters specified in the control file.

Recy = e(Recavg+Recdev,y) (29)

Prl = (∆1,l)αrec/βrece−∆1,l′/βrec∑
l′(∆1,l′)αrec/βrece(−∆1,l′/βrec)

(30)

Likelihood components

Three general types of likelihood components were used to fit to the available data (Table 11). Multinomial
likelihoods were used for size composition data, log-normal likelihoods were used for indices of abundance
data, and normal likelihoods were used for catch data, growth data, priors, and penalties. Multinomial
likelihoods were implemented in the form:

Lx = λx
∑
y

Neff
x,y

∑
l

pobsx,y,lln(p̂x,y,l/pobsx,y,l) (31)

Lx was the likelihood associated with data component x, where λx represented an optional additional
weighting factor for the likelihood, Neff

x,y was the effective sample sizes for the likelihood, pobsx,y,l was the
observed proportion in size bin l during year y for data component x, and p̂x,y,l was the predicted proportion
in size bin l during year y for data component x. 10 multinomial likelihood components were included in the
assessment (see Table 11 for descriptions, weighting factors, and effective sample sizes).

Iterative methods for determining appropriate effective samples sizes for composition data are suggested to
avoid over-weighting the size composition data and washing out the signal from the indices of abundance.
Although the code has the capability to implement these methods, they were not used for this assessment.

Log normal likelihoods were implemented in the form:

Lx = λx
∑
y

(ln(Îx,y) − ln(Ix,y))2

2(ln(CV 2
x,y + 1)) (32)

Lx was the contribution to the objective function of data component x, λx was any additional weighting
applied to the component, Îx,y was the predicted value of quantity I from data component x during year y,
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Ix,y was the observed value of quantity I from data component x during year y and CVx,y was the coefficient
of variation for data component x during year y. 5 log normal likelihood components were included in this
assessment (see Table 11 for descriptions, weighting factors, and CVs).

Normal likelihoods were implemented in the form:

Lx = λx
∑
y

(Îx,y − Ix,y)2 (33)

Lx was the contribution to the objective function of data component x, λx was represents the weight applied to
the data component (and can be translated to a standard deviation), Îx,y was the predicted value of quantity
I from data component x during year y, Ix,y was the observed value of quantity I from data component x
during year y. 12 normal likelihood components were included in the “Base” assessment (see Table 11 for
descriptions, weighting factors, and translated standard deviations).

Smoothing penalties were also placed on some estimated vectors of parameters in the form of nor-
mal likelihoods on the second differences of the vector. Code for this assessment can be found on
github.com/szuwalski/SnowCrab2017.
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Table 4: Observed growth increment data by sex

Female premolt
length (mm)

Female postmolt
length (mm)

Male premolt
length (mm)

Male postmolt
length (mm)

19.37 24.24 21.23 26.41
20.7 27.4 22.2 28.1
21.25 28.73 23.48 28.27
21.94 28.71 29.9 39.9
23.09 29.26 30.3 40.3
32.8 44.9 30.7 40.5
35.3 47.6 44.2 58.7
38.3 50.9 44.7 57.3
38.9 53 64.7 82.7
41 55.8 67.6 86
42.1 54.6 67.9 85.3
44.2 59.5 74.5 93.9
44.3 59.3 79.9 97.8
44.8 59.7 89.8 110
45.2 59.6 89.9 112.1
46.9 60.4 89.9 112.3
47 61.4 93.8 117.6
47.9 61.4 20 26.3
20.6 25.1
20.8 27.6
22 28.2
22.9 28.6

27
71



Table 5: Observed retained catches, discarded catch, and bycatch

Survey year
Retained catch

(kt)
Discarded
females (kt)

Discarded males
(kt)

Trawl
bycatch
(kt)

1978 23.71 0.02 2.05 3.84
1979 34.03 0.02 2.56 3.07
1980 30.36 0.02 2.28 2.23
1981 13.32 0.01 1.2 0.93
1982 11.85 0.02 1.18 0.38
1983 12.16 0.01 1.15 0.49
1984 29.94 0.01 2.57 0.52
1985 44.45 0.01 3.74 0.45
1986 46.22 0.02 3.96 1.91
1987 61.4 0.03 5.14 0.01
1988 67.79 0.04 5.42 0.69
1989 73.4 0.05 6.23 0.8
1990 149.1 0.05 14.17 0.61
1991 143 0.06 11.18 1.88
1992 104.7 0.12 17.06 1.78
1993 67.94 0.08 5.32 1.76
1994 34.13 0.06 4.03 3.54
1995 29.81 0.02 5.75 1.34
1996 54.22 0.07 7.44 0.92
1997 114.4 0.01 5.73 1.47
1998 88.09 0.01 4.67 1.01
1999 15.1 0 0.52 0.61
2000 11.46 0 0.62 0.53
2001 14.8 0 1.89 0.39
2002 12.84 0 1.47 0.23
2003 10.86 0 0.57 0.76
2004 11.29 0 0.51 0.95
2005 16.77 0 1.36 0.36
2006 16.49 0 1.78 0.83
2007 28.59 0.01 2.53 0.43
2008 26.56 0.01 2.06 0.27
2009 21.78 0.01 1.23 0.63
2010 24.61 0.01 0.62 0.17
2011 40.29 0.18 1.69 0.16
2012 30.05 0.03 2.32 0.22
2013 24.49 0.07 3.27 0.12
2014 30.82 0.17 3.52 0.16
2015 18.42 0.07 2.96 0.16
2016 9.67 0.02 1.31 0.08
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Table 6: Observed mature male and female biomass (1000 t) at the
time of the survey and coefficients of variation.

Survey
year

Female
mature
biomass Female CV

Mature
male

biomass Male CV

Males
>101mm

(kt)

Males
>101mm
(millions)

1978 101.7 0.2 193.5 0.12 98.95 163.4
1979 216.8 0.2 241.3 0.12 105 169.1
1980 281.3 0.32 187.5 0.17 69.98 116.4
1981 123.3 0.17 113.5 0.11 23.01 40.38
1982 144.4 0.15 176.8 0.14 33.34 60.91
1983 90.13 0.2 161.6 0.13 38.09 70.09
1984 42.32 0.19 177.7 0.12 88.73 151.8
1985 6.12 0.2 71.84 0.11 43.39 72.84
1986 15.74 0.18 89.81 0.11 46.7 77.91
1987 122.6 0.16 194.6 0.11 74.44 128.6
1988 169.9 0.17 259.4 0.15 104.7 173.1
1989 264.2 0.25 299.2 0.11 92.31 158.9
1990 182.9 0.19 443.8 0.14 224.7 386.4
1991 214.9 0.19 466.6 0.15 292.2 452.9
1992 131.4 0.18 235.5 0.09 143.9 227.3
1993 132.1 0.16 183.9 0.1 78.11 126.7
1994 126.2 0.15 171.3 0.08 44.78 72.57
1995 168.7 0.14 220.5 0.13 37.75 65.18
1996 107.3 0.14 288.4 0.12 87.57 155.2
1997 103.8 0.2 326.8 0.1 168.7 280.6
1998 72.73 0.25 206.4 0.09 126.7 209.7
1999 30.89 0.21 95.85 0.09 52.53 85.2
2000 96.46 0.52 96.39 0.14 41.88 69.83
2001 77.24 0.28 136.5 0.12 41.51 70.69
2002 30.22 0.28 93.17 0.23 36.56 64.16
2003 41.71 0.31 79.07 0.12 32.57 55.61
2004 50.16 0.26 79.57 0.14 35.99 57.42
2005 64.85 0.17 123.5 0.11 40.67 63.26
2006 51.93 0.18 139.3 0.26 71.13 120.9
2007 55.89 0.22 153.1 0.15 73.62 127.5
2008 57.15 0.19 142 0.1 66.56 113.6
2009 52.16 0.21 148.2 0.13 78.92 129.9
2010 98.01 0.18 162.8 0.12 88.35 138.3
2011 175.8 0.18 167.1 0.11 94.67 147.6
2012 149.4 0.2 122.2 0.12 53.17 85.35
2013 131.4 0.18 97.46 0.12 42.93 71.79
2014 119.7 0.19 163.5 0.16 81.39 138.8
2015 85.13 0.17 80.04 0.12 35.77 56.11
2016 55.39 0.21 63.21 0.11 21.96 36.51
2017 106.8 0.21 83.96 0.11 20.52 35.02
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Table 7: Parameter bounds and symbols

Parameter Lower Upper Symbol
af -100 0 αf
am -50 0 αm
bf 1 10 βf,1
bm 1 5 βm,1
b1 1 1.5 βf,2
bf1 1 2 βm,2
deltam 10 50 δm
deltaf 5 50 δf
st_gr 0.5 0.5 stgr
growth_beta 0.749 0.751 βg
mateste -6 -1e-10 Ωm,l
matestfe -6 -1e-10 Ωf,l
mean_log_rec “-inf” Inf Recavg
rec_devf -15 15 Recf,dev,y
alpha1_rec 11.49 11.51 αrec
beta_rec 3.99 4.01 βrec
mnatlen_styr -3 15 λmale,v,l
fnatlen_styr -10 15 λfem,v,l
log_avg_fmort “-inf” Inf F logavg,dir
fmort_dev -5 5 F logdev,dir,y
log_avg_fmortdf -8 -1e-04 F logavg,disc
fmortdf_dev -15 15 F logdev,disc,y
log_avg_fmortt -8 -1e-04 F logavg,trawl
fmortt_dev_era1 -15 15 F logdev,trawl,era1
fmortt_dev_era2 -15 15 F logdev,trawl,era2
log_avg_sel50_mn 4 5 S50,new,dir
log_avg_sel50_mo 4 5 S50,old,dir
fish_slope_mn 0.1 0.5 Sslope,m,d
fish_fit_slope_mn 0.05 0.5 Sslope,m,d
fish_fit_sel50_mn 85 120 S50,old,dir
fish_slope_mo2 1.9 2 Sslope,m,d
fish_sel50_mo2 159 160 S50,old,dir
fish_slope_mn2 0.01 2 Sslope,m,d
fish_sel50_mn2 100 160 S50,old,dir
fish_disc_slope_f 0.1 0.7 Sslope,m,d
fish_disc_sel50_f 1 5 S50,old,dir
fish_disc_slope_tf 0.01 0.3 Sslope,trawl
fish_disc_sel50_tf 30 120 S50,trawl
srv1_q 0.2 1 qm,era1,surv
srv1_q_f 0.2 1 qf,era1,surv
srv1_sel95 30 150 S95,era1,surv
srv1_sel50 0 150 S50,era1,surv
srv2_q 0.2 1 qm,era2,surv
srv2_q_f 0.2 1 qf,era2,surv
srv2_sel95 50 160 S95,era2,surv
srv2_sel50 0 80 S50,era2,surv
srv3_q 0.2 1 qm,era3,surv
srv3_sel95 40 200 S95,m,era2,surv
srv3_sel50 25 90 S50,m,era2,surv
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Parameter Lower Upper Symbol
srv3_q_f 0.2 1 qf,era3,surv
srv3_sel95_f 40 150 S95,f,era2,surv
srv3_sel50_f 0 90 S50,f,era2,surv
srvind_q 0.1 1 qm,09,ind
srvind_q_f 0.01 1 qf,09,ind
srvind_sel95_f 55 120 S95,f,09,ind
srvind_sel50_f -50 55 S50,f,09,ind
srv10in_q 0.1 1 qm,10,ind
srv10ind_q_f 0.01 1 qf,10,ind
selsmo10ind -4 -0.001 SelVecMaleInd09
selsmo09ind -4 -0.001 SelVecMaleInd10
Mmult_imat 0.2 2 γnatM,imm

Mmult 0.2 2 γnatM,mat,m

Mmultf 0.2 2 γnatM,mat,f

cpueq 0.0000877 0.00877 qcpue
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Table 8: Estimated parameter values by scenario (these are maxi-
mum likelihood estimates)

Parameter
M16
D16

M16
D17

M16
D17a

M17A
D17a

M17Aa
D17a

M17B
D17a

M17C
D17a

M17BC
D17a

af -5.08 -4.95 -4.94 -2.49 -4.97 9.22 -5.23 7.58
am -5.74 -5.57 -5.66 -5.49 -5.48 5.55 -5.35 5.2
bf 1.53 1.52 1.52 1.41 1.52 1.08 1.53 1.12
bm 1.54 1.53 1.53 1.53 1.53 1.17 1.52 1.18
b1 1.15 1.15 1.15 1.15 1.15 NA 1.15 NA
bf1 1.02 1.02 1.04 1 1.04 NA 1.04 NA
deltam 32.2 32.15 32.21 32.16 32.16 NA 32.11 NA
deltaf 34.37 34.41 34.34 39.01 34.33 NA 34.15 NA
st_gr 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
growth_beta vector vector vector vector vector vector vector vector
mateste vector vector vector vector vector vector vector vector
matestfe vector vector vector vector vector vector vector vector
rec_devf vector vector vector vector vector vector vector vector
alpha1_rec 11.5 11.5 11.5 11.5 11.5 11.5 10.55 11.5
beta_rec 4 4 4 4 4 4 3.62 4
mnatlen_styr vector vector vector vector vector vector vector vector
fnatlen_styr vector vector vector vector vector vector vector vector
log_avg_fmort -0.15 -0.19 -0.27 -0.32 -0.3 -0.39 -0.24 -0.29
fmort_dev vector vector vector vector vector vector vector vector
log_avg_fmortdf -6.42 -6.38 -6.32 -6.32 -6.35 -6.89 -5.65 -6.21
fmortdf_dev vector vector vector vector vector vector vector vector
log_avg_fmortt -4.21 -4.29 -4.71 -4.8 -4.79 -4.59 -4.55 -4.37
fmortt_dev_era1 vector vector vector vector vector vector vector vector
fmortt_dev_era2 vector vector vector vector vector vector vector vector
log_avg_sel50_mn 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67
log_avg_sel50_mo 4.5 4.5 4.5 4.5 4.5 4.5 3.85 4.5
fish_slope_mn 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
fish_fit_slope_mn 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.44
fish_fit_sel50_mn 95.78 95.87 96.09 96.08 96.06 96.2 96.01 96.15
fish_slope_mo2 1.95 1.95 1.95 1.95 1.95 1.95 1.8 1.95
fish_sel50_mo2 159.5 159.5 159.5 159.5 159.5 159.5 181.89 159.5
fish_slope_mn2 1 1 1 1 1 1 0.89 1
fish_sel50_mn2 130 130 130 130 130 130 132.85 130
fish_disc_slope_f 0.24 0.25 0.24 0.24 0.24 0.21 0.25 0.23
fish_disc_sel50_f 4.26 4.26 4.26 4.26 4.26 4.25 4.25 4.22
fish_disc_slope_tf 0.08 0.09 0.09 0.09 0.09 0.08 0.08 0.07
fish_disc_sel50_tf 114.18 112.97 109.79 109.37 109.59 115.18 113.59 120
srv1_q 1 1 0.6 0.6 0.6 0.6 0.61 0.6
srv1_q_f 1 1 0.6 0.6 0.6 0.6 0.6 0.6
srv1_sel95 59.89 60.05 60 60 60 60.14 70.15 60.14
srv1_sel50 42.66 42.76 40 40 40 40.13 35.09 40.13
srv2_q 0.49 0.49 0.43 0.34 0.34 0.34 0.44 0.43
srv2_q_f 0.32 0.32 0.46 0.38 0.37 0.24 0.53 0.39
srv2_sel95 61.3 61.55 57.17 56.88 56.72 63.38 54.99 50
srv2_sel50 41.32 41.45 41.25 39.93 39.73 8.37 39.12 0
srv3_q 0.62 0.61 0.67 0.67 0.68 0.57 0.72 0.64
srv3_sel95 57.24 56.05 56.52 57.39 57.48 40 48.34 40
srv3_sel50 38.42 37.84 38.03 38.86 38.93 25 35.21 25
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Parameter
M16
D16

M16
D17

M16
D17a

M17A
D17a

M17Aa
D17a

M17B
D17a

M17C
D17a

M17BC
D17a

srv3_q_f 0.49 0.49 0.54 0.55 0.54 0.66 1 1
srv3_sel95_f 43.09 42.76 43.09 44.24 43.67 150 45.76 40
srv3_sel50_f 33.27 33.08 33.28 34.18 33.84 0 35.68 31.14
srvind_q 0.36 0.36 0.39 0.39 0.31 1 1 1
srvind_q_f 0.11 0.11 0.11 0.11 0.11 0.08 0.17 0.15
srvind_sel95_f 55 55 55 55 55 55.17 55 55.14
srvind_sel50_f 49.21 49.22 49.23 49.17 49.26 54.88 49.34 54.86
srv10ind_q_f 1 1 1 1 1 1 1 1
selsmo10ind vector vector vector vector vector vector vector vector
selsmo09ind vector vector vector vector vector vector vector vector
Mmult_imat 1.8 1.8 1.82 1.87 1.89 1.87 1.23 1.24
Mmult 1.13 1.13 1.08 1.07 1.06 1.09 1.16 1.23
Mmultf 1 1 1 1 1 1 1.55 1.97
cpueq 0 0 0 0 0 0 0 0
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Table 9: Contribution to the objective function by individual like-
lihood component by modeling scenario. Values in columns after
Model 0 are the likelihood contribution of Model 0 minus the like-
lihood contribution of the model in the column. Positive values
represent improvements in fit. Note that some of the model scenar-
ios involve changing the weightings of data sources which invalidate
the comparison of likelihoods for a data source among models.

Likelihood
component

M16
D16

M16
D17

M16
D17a

M17A
D17a

M17Aa
D17a

M17B
D17a

M17C
D17a

M17BC
D17a

Recruitment
deviations

40.33 40.53 39.6 39.09 39.23 32.32 39.2 29.87

Initial
numbers
old shell
males small
length bins

2.18 2.17 4.81 5.09 5.12 7.49 4.68 7.08

ret fishery
length

382.62 396.03 304.71 306.59 307.77 325.78 304.04 326.43

total fish
length (ret
+ disc)

821.72 868 867.11 866.16 867.03 881.56 864.32 881.41

female fish
length

221.96 236.42 235.99 236.75 236.2 224.83 234.66 226.01

survey
length

4639.21 4745.85 4331.35 4345.3 4329.27 4942.45 4266.18 4792.15

trawl
length

290.39 304.29 308.63 310.19 310.89 344.22 268.44 267.58

2009
BSFRF
length

-82.94 -83.06 -82.95 -82.53 -82.81 -92.62 -93.59 -97.15

2009 NMFS
study area
length

-67.8 -68.02 -67.69 -67.66 -67.11 -69.25 -74.8 -73.83

M
multiplier
prior

19.81 19.68 16.84 18.29 18.74 19.85 83.42 64.06

maturity
smooth

40.77 40.58 37.64 41.83 37.05 43.21 37.12 39.86

growth
males

38.4 37 34.28 35.17 35.86 56.66 33.54 54.39

growth
females

133.39 135.2 127.46 116.24 127.25 247.76 117.05 229.32

2009
BSFRF
biomass

0.21 0.2 0.27 0.28 0.25 0.18 0.38 0.21

2009 NMFS
study area
biomass

0.09 0.08 0.13 0.15 0.17 0.02 0.13 0.06

cpue q 0.2 0.2 0.18 0.21 0.22 0.19 0.18 0.18
retained
catch

4.06 4.04 3.86 3.86 3.97 4.23 3.68 4.23

discard
catch

152.45 162.45 154.75 154.02 156.36 148.71 135.01 150.44
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Likelihood
component

M16
D16

M16
D17

M16
D17a

M17A
D17a

M17Aa
D17a

M17B
D17a

M17C
D17a

M17BC
D17a

trawl catch 8.63 10.12 6.51 7.89 8.17 7.43 7.02 6.94
female
discard
catch

6.12 5.71 5.27 5.3 5.28 5.41 5.41 5.35

survey
biomass

365.81 368.13 328.51 312.13 313.01 327.38 281.56 283.37

F penalty 37.39 38.04 24.63 25.08 25.51 24.55 25.11 26.04
2010
BSFRF
Biomass

2.88 2.72 4.04 4.08 2.73 2.04 22.16 26.93

2010 NMFS
Biomass

0.87 0.82 1.24 1.33 1.91 0.84 1.09 0.77

Extra
weight
survey
lengths first
year

510.42 510.36 565.89 564.24 565.06 562.82 554.88 548.99

2010
BSFRF
length

-54.58 -54.79 -54.36 -54.02 -51.86 -58.77 -47.77 -62.69

2010 NMFS
length

-59.21 -59.53 -59.08 -58.71 -55.77 -43.58 -60.22 -57.87

smooth
selectivity

3.3 3.3 3.35 3.34 1.25 2.71 2.35 2.68

smooth
female
selectivity

0 0 0 0 0 0 0 0

init nos
smooth
constraint

40.44 40.57 47.68 48.26 48.33 47.57 45.61 46.19

Total 7499.12 7707.09 7190.65 7187.95 7189.08 7995.99 7060.84 7729
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Table 10: Changes in management quantities for each scenario
considered. Reported management quantities are median posterior
values.

Model MMB B35 F35 FOFL OFL
M16 D16 90.98 151.5 1.96 1.12 23.91
M16 D17 104.9 151 1.9 1.33 34.04
M16 D17a 95.26 150 1.43 0.97 27.46
M17A D17a 93.86 148.5 1.41 0.96 26.99
M17Aa D17a 88.16 147.6 1.38 0.9 24.66
M17B D17a 111.3 157.1 1.54 1.17 35.3
M17C D17a 94.43 139.3 1.31 0.89 28.41
M17BC D17a 102.9 134.2 1.6 1.21 34.81
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Table 11: Likelihoods form and weighting for each likelihood com-
ponent for models in the analysis (continued below)

Likelihood
component Form M16 D16 M16 D17
Recruitment
deviations

normal 0.71 0.71

Initial numbers
old shell males
small length bins

normal 707.1 707.1

ret fishery length multinomial 200 200
total fish length
(ret + disc)

multinomial 200 200

female fish length multinomial 200 200
survey length multinomial 200 200
trawl length multinomial 200 200
2009 BSFRF
length

multinomial 200 200

2009 NMFS study
area length

multinomial 200 200

M multiplier prior normal 0.23 0.23
maturity smooth normal 3.16 3.16
growth males normal 0.71 0.71
growth females normal 0.32 0.32
2009 BSFRF
biomass

lognormal NA NA

2009 NMFS study
area biomass

lognormal NA NA

cpue q normal 0.32 0.32
retained catch normal 0.22 0.22
discard catch normal 3 3
trawl catch normal 0.22 0.22
female discard
catch

normal 17 17

survey biomass lognormal NA NA
F penalty normal 0.5 0.5
2010 BSFRF
Biomass

lognormal NA NA

2010 NMFS
Biomass

lognormal NA NA

Extra weight
survey lengths
first year

multinomial 200 200

2010 BSFRF
length

multinomial 200 200

2010 NMFS
length

multinomial 200 200

smooth selectivity norm2(firstdiff(firstDiff)) 2 2
smooth female
selectivity

norm2(firstdiff(firstDiff)) 3 3

init nos smooth
constraint

norm2(firstdifference) 1 1
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M16 D17a
M17A
D17a

M17Aa
D17a

M17B
D17a

M17C
D17a

M17BC
D17a

0.71 0.71 0.71 0.71 0.71 0.71
707.1 707.1 707.1 707.1 707.1 707.1
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
0.23 0.23 0.23 0.23 0.23 0.23
3.16 3.16 3.16 3.16 3.16 3.16
0.71 0.71 0.71 0.41 0.71 0.41
0.32 0.32 0.32 0.27 0.32 0.27
NA NA NA NA NA NA
NA NA NA NA NA NA
0.32 0.32 0.32 0.32 0.32 0.32
0.22 0.22 0.22 0.22 0.22 0.22
3 3 3 3 3 3

0.22 0.22 0.22 0.22 0.22 0.22
17 17 17 17 17 17
NA NA NA NA NA NA
0.5 0.5 0.5 0.5 0.5 0.5
NA NA NA NA NA NA
NA NA NA NA NA NA
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
2 2 2 2 2 2
3 3 3 3 3 3
1 1 1 1 1 1
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Figure 1: Observed relative density of all males at the time of the 2017 NMFS summer survey
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Figure 2: Observed relative density of all females at the time of the 2017 NMFS summer survey
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Figure 3: Observed relative density of males >77mm carapace width at the time of the 2017 NMFS summer
survey
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Figure 4: Observed relative density of males >101mm carapace width at the time of the 2017 NMFS summer
survey
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Figure 5: Observed relative density of mature females at the time of the 2017 NMFS summer survey
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Figure 10: Divisions of survey data for estimation of q (MMB shown for reference) and total catches
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Figure 11: Observed relative numbers at length at the time of the survey
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Figure 12: Observed relative numbers at length at the time of the survey
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Figure 15: Location of survey selectivity experiments (2009 & 2010; this was reproduced from the 2015 SAFE;
revise this figure with BSFRF data)

53
97



0

50

100

150

200

250 2009 Immature (ind)
Mature (ind)
Immature (nmfs)
Mature (nmfs)

27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5

0

200

400

600

800

1000
2010N

um
be

rs

Length

Figure 16: Raw female numbers from BSFRF survey selectivity experiments (2009 & 2010). Note a change in
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Figure 17: Raw male numbers from BSFRF survey selectivity experiments (2009 & 2010). Note a change in
scale from 2009 to 2010 on the y-axis.
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Figure 18: Management quantities after jittering all models.
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Geweke diagnostic. Right is the autocorrelation in the objective function value.
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Figure 21: Posterior densities for estimated parameters by scenario
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Figure 22: Posterior densities for estimated parameters by scenario
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Figure 23: Posterior densities for estimated parameters by scenario
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Figure 24: Posterior densities for estimated parameters by scenario
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Figure 29: Model fits to retained catch size composition data
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Figure 30: Model fits to trawl catch size composition data
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Figure 31: Model fits to size composition data from summer survey experiments (2009 & 2010)
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Figure 32: Model fits to female survey size composition data. Note that male and female survey selectivity
proportions at length in a given year sum to 1. Consequently, the integral of predicted length compositions
may appear to be different than the integral of the observed length composition data.
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Figure 33: Model fits to male survey size composition data. Note that male and female survey selectivity
proportions at length in a given year sum to 1. Consequently, the integral of predicted length compositions
may appear to be different than the integral of the observed length composition data.
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Figure 34: Residuals for female survey length proportion data for the author’s preferred model (3b). Open
circles are positive residuals, filled are negative, and the size of the circle is proportional to the magnitude of
the residual. Stars are residuals > 5.
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Figure 35: Residuals for male survey length proportion data for the author’s preferred model (3b). Open
circles are positive residuals, filled are negative, and the size of the circle is proportional to the magnitude of
the residual. Stars are residuals > 5.
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Figure 36: Model predicted mature male biomass at mating time
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Figure 37: Kobe plot for the chosen model. Vertical dashed black line represents the median posterior value
for B35; Vertical dashed red line represents the overfished level, horizontal dashed black line represents F35
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Figure 38: Estimated survey selectivity
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Figure 40: Estimated probability of maturing
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Figure 41: Model predicted fishing mortalities and selectivities for all sources of mortality
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1. Stock: Eastern Bering Sea snow crab, Chionoecetes opilio.

2. Catches: trends and current levels

Retained catches increased from relatively low levels in the early 1980s (e.g. retained catch of kt during 1981)
to historical highs in the early and mid-nineties (retained catch during 1991, 1992, and 1998 were 143.02,
104.68, and 88.09 kt, respectively). The stock was declared overfished in 1999 at which time retained catches
dropped to levels similar to the early 1980s (e.g. retained catch during 2000 was 11.46 kt). Retained catches
have slowly increased since 1999 as the stock rebuilt, although retained catch during 2016 was low (9.67 kt).

Discard mortality is the next largest source of mortality after retained catch and approximately tracks the
retained catch. The highest estimated discard mortality occurred during 1992 at 17.06 kt which was 16% of
the retained catch. The most recent estimated mortality was 1.31 kt which was 14% of the retained catch.

3. Stock Biomass:

Observed mature male biomass (MMB) at the time of the survey increased from an average of 234.14 kt in
the early to mid-1980s to historical highs in the early and mid-nineties (observed MMB during 1990, 1991,
and 1997 were 443.79, 466.61, and 326.75 kt, respectively). The stock was declared overfished in 1999 in
response to the total mature biomass dropping below the minimum stock size threshold. MMB in that year
decreased to 95.85 kt. Observed MMB slowly increased after 1999, and the stock was declared rebuilt in 2011
when estimated MMB at mating was above B35%. However, since 2011, the stock has declined again and the
observed MMB at the time of survey dropped to an all time low in 2016 of 63.21 kt.

4. Recruitment

Estimated recruitment shifts from a period of high recruitment to a period of low recruitment in the mid
1990s (late 1980s when lagged to fertilization). Recent estimated recruitments have generally been above the
average of the ‘low’ period , but are still beneath the average of the ‘high’ recruitment period. However, a
large year class recruited to the survey gear in 2014 and has persisted to the present, which suggests large
exploitable biomasses may be available in the near future.

5. Management

Table 1: Historical status and catch specifications for snow crab
(1,000t).

Year MSST
Biomass
(MMB) TAC

Retained
catch

Total
catch OFL ABC

2011/2012 77.3 165.2 40.3 40.5 42 73.5 66.2
2012/2013 77.1 170.1 30.1 30.1 32.4 67.8 61
2013/2014 71.5 126.5 24.5 24.5 27.7 78.1 69.3
2014/2015 73.2 129.3 30.8 30.8 34.3 69 62.1
2015/2016 75.8 91.6 18.4 18.4 21.4 61.5 55.4
2016/2017 69.7 94.4 9.7 9.7 11 23.7 21.3
2017/2018 69.7 99.6 28.4 22.7
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Table 2: Historical status and catch specifications for snow crab
(millions of lbs).

Year MSST
Biomass
(MMB) TAC

Retained
catch

Total
catch OFL ABC

2011/2012 170.4 364.2 88.85 89.29 92.59 162 145.9
2012/2013 170 375 66.36 66.36 71.43 149.5 134.5
2013/2014 157.6 278.9 54.01 54.01 61.07 172.2 152.8
2014/2015 161.4 285.1 67.9 67.9 75.62 152.1 136.9
2015/2016 167.1 201.9 40.57 40.57 47.18 135.6 122.1
2016/2017 153.7 208.1 21.38 21.38 24.25 52.25 46.96
2017/2018 153.7 219.6 62.61 50.04

6. Basis for the OFL

The OFL for 2017 from the chosen model (M17C D17a)was 28.41 kt fishing at FOFL = 0.89 (68 % of the
calculated F35%, 1.31). The calculated OFL was a 20% change from the 2016 OFL of 23.7 kt. The reported
OFL is the median posterior value, but differs from the ML estimate by only 1.51 kt. The projected ratio of
MMB at the time of mating to B35% is 0.71.

7. Probability Density Function of the OFL

The probability density function of the OFL was characterized by using a Markov Chain Monte Carlo
algorithm to sample from the a posterior distribution of the OFL. This allows all uncertainty to be propagated
forward into the OFL calculation. The chosen OFL was calculated as the median of its posterior distribution.

8. Basis for ABC

The ABC for the chosen model for 2016/2017 was 22.73 kt, calculated by subtracting a 20% buffer from the
OFL as recommended by the CPT
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CPT September 2017 comments

Two new analyses were recommended by the CPT to be completed during the September meeting as a result
of the apparent instability and bimodality of several models presented. First, a corrected jittering analysis
was requested that jitters only unestimated parameters. This was completed to the satisfaction of the CPT.
After seeing the results, the CPT requested an additional 2 million draws from the posterior of the model
M17Aa.D17a, starting from the lower mode. This document presents three models:

• “M17Aa.D17a” – Includes all small changes from the main assessment document (replicates the results
from the main document).

• “M17Ab.D17a” – Same as M17Aa.D17a, except the MCMC was started from a parameter vector
associated with the lower mode of management quantities (new results).

• “M17C.D17a” – Estimate natural mortality for mature females in addition to mature males and
immature males and females (replicates the results from the main document).

This document includes updated tables and figures and should be considered to supersede information found
in the main assessment document.

Results

The updated jittering analysis did not remove the bimodal behavior of M17Aa.D17a, but ‘concentrated’
the clusters (Figure 1 & Figure 2). Running MCMC for M17Ab.D17a produced posterior distributions of
the management quantities with different medians from M17Aa.D17a (Figure 3), in spite of relatively good
diagnostics (Figure 4 & Figure 5) . The difference between the modes of MLEs for management quantities
derived from M17Aa and M17Ab appears to be a result of changes in the estimated growth function for
males (Figure 6).

All of the relative qualities of the models were retained after correcting the jittering–e.g. M17C.D17a has
female catchability equal to 1 (Figure 7) and M17Aa.D17a has the relationship between female and male
natural mortality reversed (Table 3). M17C.D17a fit the data much better as seen through the total likelihood,
in spite of a 60 point hit for estimating mature female natural mortality (Table 4).

Maximum likelihood estimates of parameters can be seen in Table 3 and their posterior distributions can be
seen in Figure 8, Figure 9, Figure 10, and Figure 11.

Fits to data

Fits to the survey mature male biomass were visually similar for all models for the majority of years in the
the time series (Figure 12), yet model M17C.D17a fit the survey biomass better than other models according
to the likelihoods (Table 4). All models overestimated the final year of survey MMB (83.9572 kt) and MFB
(106.847 kt).

M17Aa.D17a and M17C.D17a provided adequate fits to the female and male growth data, but model
M17Ab.D17a did not fit the male growth data well (Figure 6). Likelihoods from M17C.D17a were lowest for
both growth models.

Retained catch data were fit by all models well, with no little discernible differences among models (Figure 13).
Female discard data were fit adequately given the specified uncertainty (Figure 13 & Table 4). Male discard
data during the period for which data exist (early 1990s to the present) were well fit by every model with little
discernible difference (Figure 13). M17Ab.D17a returned a significantly lower likelihood for male discard data
(Table 4). Fits to the trawl data were adequate for all models given the uncertainty in the data (Figure 13).

Retained catch size composition data were fit well by all models (Figure 14); trawl size composition data
were generally well fit in most years. All models performed similarly in fitting the trawl size composition
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data (Figure 15 & Table 4). Fits to survey size composition data were not visibly different among scenarios
(Figure 16 & Figure 17), but M17C.D17a fit the data better according to the likelihoods (Table 4).

Estimated population processes and derived quantities

Estimates of selectivity and catchability varied less in era 2 than in era 3 (Figure 7). Estimated catchability
for males during survey era 3 ranged from 0.68 to 0.75; estimated female catchability ranged from 0.54 to 1.
Size at 50% selection in the survey gear ranged from 33 mm to 35 mm for females and 35 mm to 38 mm for
males (Figure 9 & Figure 10). The probability of maturing by size was fairly consistent among scenarios
for both males and females (Figure 18). Estimated fishing mortality in the directed fishery was slightly
higher for M17ab.D17a than the other models (Figure 19). Total and retained fishery selectivity was very
similar for all models because of the weight put on the retained catch and its associated size composition
data (Figure 19).Patterns in recruitment were similar for all models, though magnitudes varied (Figure 20).

Calculated OFLs and ABC

Medians of the posterior densities of the OFLs calculated for the suite presented models ranged from 19.64 to
28.41kt (Figure 3 & Table 5). Differences in OFLs were a result of differences in estimated MMB (see above),
calculated B35% (which ranged from 139.35 to 147.59kt), Figure 3), F35% (which ranged from 1.31 to 1.51
yr-1, Figure 3), and FOFL (which ranged from 0.89 to 0.94 yr-1, Figure 3). The acceptable biological catch
(ABC) was set by subtracting a 20% buffer from the OFL to account for scientific uncertainty, which was
recommended by the CPT based on uncertainty around model stability this year.

Author recommendations

M17C.D17a fits the data much better than the other two models, eliminates the bimodality, and restores
the proper relationship between estimated natural mortality for females and males. However, an increase of
survey catchability for females to 1 is an unfortunate knock-on effect of this model. Given this issue relates to
females, rather than males, and therefore will not impact the management quantities drastically, the author
chosen model is M17C.D17a.

Notes for future assessments

Weighting growth more heavily may eliminate one of the modes in M17Aa.D17a or similar models in the
future. Adding the growth data the Kodiak Lab provided may also improve this behavior of the model,
though it appears that the change point in growth is out of the range in which it is currently estimated for
females. If instability persists, starting MCMC chains from either extreme of the converged models and
comparing chains may be a good diagnostic to identify non-convergence. Closer attention needs to be paid to
weighting schemes to understand how they relate to model stabilty.
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Table 3: Estimated parameter values by scenario (these are maxi-
mum likelihood estimates)

Parameter
M17Aa
D17a

M17Ab
D17a M17C D17a

af -4.96 -5.03 -5.26
am -12.41 -11.37 -5.34
bf 1.52 1.52 1.53
bm 1.84 1.76 1.52
b1 1.15 1.12 1.15
bf1 1.04 1.03 1.04
deltam 27.41 34.05 32.13
deltaf 34.31 34.37 34.13
mateste vector vector vector
matestfe vector vector vector
rec_devf vector vector vector
mnatlen_styr vector vector vector
fnatlen_styr vector vector vector
log_avg_fmort -0.33 -0.03 -0.29
fmort_dev vector vector vector
log_avg_fmortdf -6.34 -6.23 -5.66
fmortdf_dev vector vector vector
log_avg_fmortt -4.82 -4.49 -4.61
fmortt_dev_era1 vector vector vector
fmortt_dev_era2 vector vector vector
log_avg_sel50_mn 4.67 4.67 4.67
fish_slope_mn 0.19 0.19 0.19
fish_fit_slope_mn 0.42 0.44 0.43
fish_fit_sel50_mn 96.08 95.72 96.07
fish_disc_slope_f 0.24 0.25 0.25
fish_disc_sel50_f 4.26 4.25 4.25
fish_disc_slope_tf 0.09 0.09 0.07
fish_disc_sel50_tf 109.02 112.53 112.95
srv2_q 0.34 0.43 0.43
srv2_q_f 0.35 0.42 0.51
srv2_sel95 57.52 56.15 54.52
srv2_sel50 39.42 39.65 38.26
srv3_q 0.68 0.75 0.71
srv3_sel95 57.91 52.11 48.02
srv3_sel50 38.91 37.43 34.38
srv3_q_f 0.54 0.61 1
srv3_sel95_f 43.57 43.88 45.58
srv3_sel50_f 33.76 34.01 35.22
srvind_q 1 1 1
srvind_q_f 0.11 0.11 0.17
srvind_sel95_f 55 55 55
srvind_sel50_f 49.26 49.17 49.39
srv10ind_q_f 1 1 1
selsmo10ind vector vector vector
selsmo09ind vector vector vector
Mmult_imat 1.87 2 1.22
Mmult 1.07 1.11 1.16
Mmultf 1.55
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Parameter
M17Aa
D17a

M17Ab
D17a M17C D17a

cpueq 0 0 0
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Table 4: Contribution to the objective function by individual like-
lihood component by modeling scenario. Values in columns after
Model 0 are the likelihood contribution of Model 0 minus the like-
lihood contribution of the model in the column. Positive values
represent improvements in fit. Note that some of the model scenar-
ios involve changing the weightings of data sources which invalidate
the comparison of likelihoods for a data source among models.

Likelihood
component M17Aa D17a

M17Ab
D17a M17C D17a

Recruitment
deviations

38.37 39.89 38.81

Initial numbers
old shell males
small length bins

5.14 4.9 4.73

ret fishery length 309.36 314.94 305.31
total fish length
(ret + disc)

866.58 867.36 866.83

female fish length 236.3 238.49 233.89
survey length 4328.06 4340.72 4266.95
trawl length 311.92 333.95 265.69
2009 BSFRF
length

-86.59 -87.08 -93.56

2009 NMFS study
area length

-68.52 -69.01 -74.83

M multiplier prior 18.33 26.09 81.53
maturity smooth 37.72 35.37 36.73
growth males 41.81 46.88 36.46
growth females 127.54 124.83 117.57
2009 BSFRF
biomass

0.37 0.47 0.38

2009 NMFS study
area biomass

0.09 0.17 0.12

cpue q 0.22 0.23 0.18
retained catch 3.8 3.62 3.88
discard catch 145.49 92.71 157.39
trawl catch 8.17 7.73 7.08
female discard
catch

5.33 5.5 5.36

survey biomass 314.7 308.52 281.73
F penalty 25.13 28.87 24.64
2010 BSFRF
Biomass

3.83 6.73 20.78

2010 NMFS
Biomass

1.44 1.87 1.45

Extra weight
survey lengths
first year

564.67 562.36 553.32

2010 BSFRF
length

-49.09 -50.56 -49.58

2010 NMFS
length

-55.91 -51.94 -58.37

smooth selectivity 2.45 3.93 2.99
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Likelihood
component M17Aa D17a

M17Ab
D17a M17C D17a

smooth female
selectivity

0 0 0

init nos smooth
constraint

47.49 46.24 45.81

Total 7184.2 7183.78 7083.27

9
134



Table 5: Changes in management quantities for each scenario con-
sidered. Reported management quantities are median posterior
values.

Model MMB B35 F35 FOFL OFL
M17Aa D17a 88.16 147.6 1.38 0.9 24.66
M17Ab D17a 71.86 140.5 1.51 0.94 19.64
M17C D17a 94.43 139.3 1.31 0.89 28.41
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Table 6: Predicted mature male (MMB), mature female (FMB),
and males >101mm biomass (1000 t) and numbers (in millions) at
the time of the survey from the chosen model. Columns 2-5 are
subject to survey selectivity; columns 6-9 are the population values
(i.e. the numbers at length are not modified by multiplying them by
a selectivity curve–they are estimates of the underlying population).
These are maximum likelihood estimates that will differ slightly
from the median posterior values.

Survey
year FMB MMB

Male >101
biomass

Male >101
(millions) FMB MMB

Male >101
biomass

Male >101
(millions)

1982 64.58 125.6 35.69 67.76 133.9 289.9 59.48 113
1983 53.39 132.1 59.19 105.9 109.9 305.2 98.65 176.5
1984 40.97 139 80.72 138.9 84.45 321.2 134.6 231.5
1985 40.51 133 84.14 142.3 84.02 307.5 140.2 237.2
1986 51.18 116.8 50.02 84.3 106.5 270.3 115.3 194.3
1987 87.61 111 42.36 72.82 183 257.7 97.66 167.9
1988 210.4 189 36.98 63.99 212.7 265.2 85.26 147.5
1989 239.5 218.3 40.68 72.11 242.2 306.3 93.78 166.2
1990 218.5 282.9 69.54 121.8 220.6 396.7 160.3 280.8
1991 173.5 268.5 66.32 114.7 175.1 376.4 152.9 264.4
1992 138.2 224.9 53.34 93.08 139.5 315.2 123 214.6
1993 192.2 192.8 75.79 128.2 194.6 270.6 106.1 179.5
1994 219.7 164.8 45.95 76.84 222 231.3 64.31 107.5
1995 195.7 182.1 44.86 79.1 197.6 255.6 62.79 110.7
1996 153.1 256.4 106.8 187.5 154.5 359.4 149.5 262.4
1997 113.2 306.8 168.8 283.3 114.2 429.8 236.2 396.6
1998 83.85 232.2 121 200.8 84.63 325.4 169.3 281.1
1999 72.46 148.8 63.44 106.3 73.21 208.5 88.79 148.8
2000 71.87 120.4 49.1 81.79 72.64 168.8 68.73 114.5
2001 65.03 101.9 37.89 63.82 65.67 142.9 53.03 89.32
2002 54.37 95.1 35.6 61.31 54.9 133.3 49.82 85.82
2003 50.48 99.66 44.98 76.57 51.01 139.7 62.95 107.2
2004 59.15 100.5 49.87 83.01 59.83 140.8 69.8 116.2
2005 80.78 96.07 44.58 73.92 81.75 134.8 62.39 103.5
2006 88.5 97.77 39.85 67.53 89.44 137.2 55.78 94.51
2007 86.81 116.4 49.88 85.65 87.72 163.2 69.81 119.9
2008 73.82 135.9 66.18 113.2 74.53 190.5 92.63 158.5
2009 58.23 147 80.35 134.6 58.78 206 112.5 188.3
2010 60.37 141.4 80.73 133.8 61.05 198.1 113 187.2
2011 66.19 122.8 67.49 111.2 66.91 172 94.46 155.7
2012 64.36 91.39 38.45 64.94 65.02 128.1 53.81 90.88
2013 62.46 84.19 31.54 55.38 63.12 118.1 44.14 77.5
2014 63.05 90.83 39.35 67.58 63.72 127.4 55.08 94.58
2015 60.13 86.02 36.39 61.79 60.75 120.6 50.93 86.48
2016 76.31 89.96 38.84 65.8 77.23 126.2 54.36 92.1
2017 147 110.2 48.51 81.41 148.9 154.8 67.89 113.9
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Table 7: Maximum likelihood estimates of predicted mature male
biomass at mating, mature female biomass at mating (in 1000
t), and recruitment (millions) from the chosen model. These are
maximum likelihood estimates that will differ slightly from the
median posterior values.

Survey year
Mature male

biomass

Mature
female
biomass Recruits

1982 232 107.1 265.7
1983 245.3 87.92 938.8
1984 240.8 67.54 1469
1985 214.4 67.2 3752
1986 180.1 85.12 1000
1987 155.5 146.4 2919
1988 155.6 170.1 102.3
1989 187.8 193.7 388.1
1990 192.4 176.5 451.1
1991 178.1 140 4020
1992 164.3 111.5 1047
1993 160.2 155.6 551.5
1994 158.6 177.4 139.7
1995 186.4 158 80.12
1996 251.5 123.5 129.6
1997 249.8 91.33 530.3
1998 185.4 67.68 583.2
1999 160.6 58.55 184.6
2000 130.7 58.09 178.4
2001 105.3 52.52 410.8
2002 99.73 43.91 779.7
2003 107 40.79 1202
2004 107.2 47.84 502.4
2005 96.79 65.38 590.7
2006 99.09 71.52 93.74
2007 109.8 70.15 135
2008 135 59.6 786.9
2009 152.3 47.01 531.1
2010 142.8 48.83 335.1
2011 104.5 53.41 472.7
2012 77.57 52 500.5
2013 75.44 50.47 311.3
2014 76.94 50.87 1272
2015 83.27 48.57 3365
2016 96.97 61.77 2315
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Table 8: Maximum likelihood estimates of predicted total numbers
(millions), not subject to survey selectivity at the time of the survey.
These are maximum likelihood estimates that will differ slightly
from the median posterior values.

Survey year
Total

numbers
1982 6.015
1983 4.933
1984 5.494
1985 6.971
1986 12.62
1987 11.36
1988 14.14
1989 10.55
1990 8.372
1991 6.719
1992 12.67
1993 11.32
1994 9.36
1995 7.089
1996 5.288
1997 4.031
1998 3.83
1999 3.853
2000 3.198
2001 2.697
2002 2.782
2003 3.596
2004 5.061
2005 4.758
2006 4.678
2007 3.617
2008 2.879
2009 3.645
2010 3.736
2011 3.405
2012 3.398
2013 3.462
2014 3.138
2015 4.806
2016 10.28
2017 12.31
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Figure 14: Model fits to retained catch size composition data
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Figure 15: Model fits to trawl catch size composition data
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Figure 16: Model fits to female survey size composition data. Note that male and female survey selectivity
proportions at length in a given year sum to 1. Consequently, the integral of predicted length compositions
may appear to be different than the integral of the observed length composition data.
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Figure 17: Model fits to male survey size composition data. Note that male and female survey selectivity
proportions at length in a given year sum to 1. Consequently, the integral of predicted length compositions
may appear to be different than the integral of the observed length composition data.
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Figure 19: Model predicted fishing mortalities and selectivities for all sources of mortality
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BRISTOL BAY RED KING CRAB STOCK ASSESSMENT IN FALL 2017 

J. Zheng and M.S.M. Siddeek
Alaska Department of Fish and Game 

Division of Commercial Fisheries 
P.O. Box 115526 

Juneau, AK 99811-5526, USA 
Phone: (907) 465-6102 
 Fax:     (907) 465-2604 

Email: jie.zheng@alaska.gov 

Executive Summary 

1. Stock: red king crab (RKC), Paralithodes camtschaticus, in Bristol Bay, Alaska.

2. Catches: The domestic RKC fishery began to expand in the late 1960s and peaked in 1980
with a catch of 129.95 million lbs (58,943 t). The catch declined dramatically in the early
1980s and remained at low levels during the last three decades. Catches during recent years
until 2010/11 were among the high catches in last 15 years. The retained catch in 2016/17
was about 8.5 million lbs (3,924 t), below the catch in 2015/16 (10 million lbs). The
magnitude of bycatch from groundfish trawl and fixed gear fisheries has been stable and
small relative to stock abundance during the last 10 years.

3. Stock biomass:  Estimated mature biomass increased dramatically in the mid-1970s and
decreased precipitously in the early 1980s. Estimated mature crab abundance had increased
during 1985-2009 with mature females being about three times more abundant in 2009 than
in 1985 and mature males being about two times more abundant in 2009 than in 1985.
Estimated mature abundance has steadily declined since 2009.

4. Recruitment:  Estimated recruitment was high during 1970s and early 1980s and has
generally been low since 1985 (1979 year class). During 1984-2017, only in 1984, 1986,
1995, 1999, 2002 and 2005 were estimated recruitments above the historical average for
1976-2017. Estimated recruitment was extremely low during the last nine years.

5. Management performance:

Status and catch specifications (1,000 t) (scenario 2b): 

Year 
MSST Biomass 

(MMB) 
TAC 

Retained 
Catch 

Total 
Catch 

OFL ABC 

2013/14 12.85A 27.12A 3.90 3.99 4.56 7.07 6.36 
2014/15 13.03B 27.25B 4.49 4.54 5.44 6.82 6.14 
2015/16 12.89C 27.68C 4.52 4.61 5.34 6.73 6.06 
2016/17 12.53D 25.81D 3.84 3.92 4.28 6.64 5.97 
2017/18 21.31D 5.60 5.04 

September 2017 Plan Team Draft Bristol Bay Red King Crab

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines.
 It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency
 determination or policy.
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The stock was above MSST in 2016/17 and hence was not overfished. Overfishing did 
not occur. 
 
Status and catch specifications (million lbs): 

Year 
MSST Biomass 

(MMB) 
TAC 

Retained 
Catch 

Total 
Catch 

OFL ABC 

2013/14 28.3A 59.9A 8.60 8.80 10.05 15.58 14.02 
2014/15 28.7B 60.1B 9.99 10.01 11.99 15.04 13.53 
2015/16 28.4C 61.0C 9.97 10.17 11.77 14.84 13.36 
2016/17 27.6D 56.9D 8.47 8.65 9.45 14.63 13.17 
2017/18  47.0D    12.35 11.11 

 
Notes: 

A – Calculated from the assessment reviewed by the Crab Plan Team in September 2014  
B – Calculated from the assessment reviewed by the Crab Plan Team in September 2015  
C – Calculated from the assessment reviewed by the Crab Plan Team in September 2016 
D – Calculated from the assessment reviewed by the Crab Plan Team in September 2017 

 
6. Basis for the OFL: All table values are in 1000 t (Scenario 2b): 
 

Year Tier 
BMSY Current  

MMB 
B/BMSY 
(MMB) FOFL 

Years to 
define 
BMSY 

Natural 
Mortality 

2013/14 3b 26.4 25.0 0.95 0.27 1984-2013 0.18 
2014/15 3b 25.7 24.7 0.96 0.28 1984-2014 0.18 
2015/16 3b 26.1 24.7 0.95 0.27 1984-2015 0.18 
2016/17 3b 25.8 24.0 0.93 0.27 1984-2016 0.18 
2017/18 3b 25.1 21.3 0.85 0.24 1984-2017 0.18 

 
Basis for the OFL: All table values are in million lbs: 
 

Year Tier 
BMSY Current  

MMB 
B/BMSY 
(MMB) FOFL 

Years to 
define 
BMSY 

Natural 
Mortality 

2013/14 3b 58.2 55.0 0.95 0.27 1984-2013 0.18 
2014/15 3b 56.7 54.4 0.96 0.28 1984-2014 0.18 
2015/16 3b 57.5 54.4 0.95 0.27 1984-2015 0.18 
2016/17 3b 56.8 52.9 0.93 0.27 1984-2016 0.18 
2017/18 3b 55.2 47.0 0.85 0.24 1984-2017 0.18 

 
 

September 2017 Plan Team DraftBristol Bay Red King Crab

NPFMC Bering Sea/Aleutian Islands Crab SAFE 160



A. Summary of Major Changes 
 

1. Change to management of the fishery: None. 

2. Changes to the input data: 

a. Updating summer trawl survey data and directed pot fisheries catch and bycatch data 
through 2017.   

b. Updating BSFRF side-by-side trawl survey data in 2016 made in May 2017. Total survey 
biomass decreased from 87725.1 t initially estimated in September 2016 to 77815.7 t in 
the final estimate, about 11.3% reduction. The initial estimate mistakenly includes the 
tows conducted in the recruitment study.  

c. Updating groundfish fisheries bycatch data during 2009-2016 and separating bycatch data 
by trawl fisheries and fixed gear fisheries. 

3. Changes to the assessment methodology: 

 a. Francis’ approaches for re-weighting effective sample sizes for size composition data are 
applied for some scenarios and are detailed in Appendix C. 

 b. Nine model scenarios are compared in this report (See Section E.3.a for details): 

    Scenario 2a: the same as Scenario 2a in the SAFE draft report in May 2017 and a minor 
revision of scenario 2 in the SAFE report in September 2016 with the updated data. This 
scenario assumes that BSFRF survey capture probabilities are 1.0 for all length groups. 
Under this assumption, NMFS survey selectivities are the products of crab availabilities 
(equal to BSFRF survey selectivities) and NMFS survey capture probabilities. A survey 
capture probability for a length group is simply defined as the proportion of the crab in the 
length group within the area-swept that is caught by the survey net.     

       Scenario 2a differs from scenario 2 through changing the fishing time of the groundfish 
fisheries bycatch from the same time as the directed pot fishery under scenario 2 to the mid-
point of the crab year (the same as Tanner crab fishery bycatch) to more accurately reflect 
the fishing timing. Also to reduce the number of estimated parameters, all fishing mortalities 
for the terminal year are not estimated during parameter estimation since the fisheries have 
not occurred in the model for scenario 2a.   

    Scenario 2a1: the same as Scenario 2a except for applying Francis’ approach 1 (Appendix C) 
to the effective sample sizes of size composition data used in scenario 2a.   

    Scenario 2a2: the same as Scenario 2a except for applying Francis’ approach 2 to the effective 
sample sizes of size composition data used in scenario 2a.  

    Scenario 2b: the same as scenario 2a except for separating groundfish fisheries bycatch by 
trawl fisheries and fixed gear fisheries. 

    Scenario 2b1: the same as Scenario 2b except for applying Francis’ approach 1 to the effective 
sample sizes of size composition data used in scenario 2b.   

    Scenario 2b2: the same as Scenario 2b except for applying Francis’ approach 2 to the effective 
sample sizes of size composition data used in scenario 2b.  
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    Scenario 2d: the same as scenario 2b except without trawl survey catchability prior from the 
double-bag experiment and for using a logit transformation to make sure trawl survey 
catchability be <1.0. 

    Scenario 2d1: the same as Scenario 2d except for applying Francis’ approach 1 to the effective 
sample sizes of size composition data used in scenario 2d.   

    Scenario 2d2: the same as Scenario 2d except for applying Francis’ approach 2 to the effective 
sample sizes of size composition data used in scenario 2d.  

4. Changes to assessment results:  

The population biomass estimates in 2017 are lower than those in 2016. Among the nine 
scenarios, model estimated relative survey biomasses are very similar. The absolute population 
biomass estimates are higher for scenarios 2b, 2b1, 2b2, 2a, 2a1, and 2a2 than for scenarios 2d, 
2d1 and 2d2 during recent years due to slightly lower estimated trawl survey catchability values. 
Francis’ approaches reduce effective sample sizes greatly and estimates are very difficult to 
converging. We recommend either scenario 2b or 2d for September 2017 assessment because of 
corrected data and refined approaches to estimation of survey catchability and more work needed 
for Francis’ approach. 
The recruitment breakpoint analysis (Appendix B) estimates 1986 as the breakpoint brood year, 
or 1992 recruitment year in May 2017.     

 
B. Responses to SSC and CPT Comments 
1. Responses to the most recent two sets of SSC and CPT comments on assessments in 
general:  
 
No response from this assessment. 
 
2. Responses to the most recent two sets of SSC and CPT comments specific to this 
assessment: 
 
Response to CPT Comments (from May 2016)  
“The CPT had several comments about this approach. First, it was noted at NMFS/BSRF ratios 
were highly variable, and that a better approach would be to consider the ratio of the NMFS 
survey to the sum of two surveys NMFS/(NMFS+BSFRF). Second, an attempt should be made to 
fit actual tow-by-tow data rather than survey aggregates. Finally, catchability for the NMFS 
survey was estimated to be greater than one for some model runs (this only occurred when the 
prior was omitted).It was suggested that catchability could be limited to values less than one by 
parameterizing catchability on a logit scale. The CPT concluded that these issues needed to be 
addressed before scenario 3 could be adopted.” 
 
The ratio of the NMFS survey to the sum of two surveys NMFS/(NMFS+BSFRF) was also 
evaluated in May 2016 and the results were not presented to the CPT meeting but were added to 
the final draft report. We agree that this approach is better than the NMFS/BSRF ratios.  
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Due to very small amount of crab caught in each tow, it is not feasible to fit the actual tow-by-
tow data. 
 
We examined the approach to parameterize catchability on a logit scale so that it is less or equal 
to 1.0 in this report (scenarios 2d, 2d1, and 2d2) (September 2017).  
 
“The CPT requests that the following models be brought forward in September 2016: scenario 1 
(status quo), scenario 1n, and scenario 2. Since results from the 2016 BSFRF survey will be 
available on the same timetable as the 2016 NMFS survey, these data should be incorporated 
into scenarios 1n and 2.” 
 
These three scenarios were presented in the September 2016 SAFE report. 
 
Response to CPT Comments (from September 2016)  
 
“The CTP requests that model runs be provided to evaluate the impact of including or excluding 
the prior on catchability based on the under-bag experiment.” 
 
Among nine scenarios in this report, scenarios 2a, 2a1, 2a2, 2b, 2b1, and 2b2 are with the prior 
on catchability, and scenarios 2d, 2d1, and 2d2 without the prior on catchability but with a logit 
transformation of survey catchability parameter so that it is less than 1.0. 
 
Response to CPT Comments (from May 2017)  
 
“The CPT recommended the following scenarios be evaluated for the Fall 2017 assessment: 
● Scenario 2a 
● Scenario 2b 
● Scenario 2d 
In addition, because the discard biomass time series from the groundfish fixed and trawl gear 
fisheries are not split by sex, these models should be brought forward using two approaches to 
Francis (2011) re-weighting of the size compositions: one based on weights calculated as if all 
the size compositions were sex-specific, and one based on weights calculated from the 
“extended” size compositions used in the models for the groundfish fixed gear and trawl gear 
bycatch size compositions. The former approach is based on the expectation of sex-specific 
changes in mean length, but does not reflect the loss of sex ratio information associated with 
splitting the size compositions by sex, whereas the latter approach incorporates this information 
while the weights are based on expectations for changes in size class across the “extended” size 
composition.” 
 
All nine scenarios in the SAFE report in September 2017 address this comment. 
 
Response to SSC Comments specific to this assessment (from October 2015) 
 
“The SSC recommends that the authors examine whether or not the current time period for 
estimation of biological reference points is indicative of the expected range of recruitment given 
current environmental conditions.  The SSC also notes that although no barren females were 
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observed, a large number of females had ¾ full clutches.  This observation may suggest that the 
population may be undergoing environmental stress.  Above average recruitment has not been 
observed in the last 12 years and the apparent spike in recruitment observed in the 2012 survey 
did not recruit to the adult population.  These observations raise concerns about the future status 
of the stock.  The SSC recommends an examination of mechanisms underlying lack of 
recruitment to this stock.  Specifically, the SSC requests that the author uses the breakpoint 
analysis applied for Tanner crab to BBRKC to evaluate whether there was a detectable break in 
production in 2006.  This analysis should be conducted as a diagnostic tool to identify possible 
changes in production of this stock but should not be used to change the time frame used to 
estimate biological reference points.” 
 
We conducted a recruitment breakpoint analysis similar to those on Tanner crab in 2013 
(Appendix B). With either a Ricker or Beverton-Bolt stock-recruitment model, the estimated 
breakpoint brood year is 1986, or recruitment year 1992. Low recruitments in recent years are a 
big concern, and without a field study on the mechanisms underlying lack of recruitment to this 
stock, it is difficult to figure out what the real causes are. We will continue to look out for 
environmental data to improve understanding the recruitment dynamics of this stock.      
 
“The SSC is supportive of continued research on trawl performance.  It would be useful to 
examine temperature and size effects on spatial aggregation of BBRKC and the relationship 
between these factors and trawl performance.  Given the importance of the BSFRF survey in this 
assessment, the SSC concurs with the CPT that further research should be conducted to assess 
the potential for herding with the BSFRF net.  The SSC supports the CPT request for an 
exploration of the impact of including or excluding the prior on catchability based on the under-
bag experiment.” 
 
We support the continued research on trawl performance by NMFS and BSFRF.  

We have nine scenarios in this report (September 2017) to examine the impact of including or 
excluding the prior on catchability based on the under-bag experiment: scenarios 2a, 2a1, 2a2, 
2b, 2b1, and 2b2 are with the prior on catchability, and scenarios 2d, 2d1, and 2d2 without the 
prior on catchability but with a logit transformation of survey catchability parameter so that it is 
less than 1.0. 
 
Response to SSC Comments specific to this assessment (from June 2016): 
 
“The SSC supports the CPT recommendation to bring forward three scenarios for the stock 
assessment in fall 2016: (1) scenario 1, which is the status quo (2015) using BSFRF data from 
2007 ad 2008 in which the two surveys are treated as independent surveys and survey 
selectivities are estimated separately and directly in the model; (2) scenario 1n, which is the 
same as scenario 1 but also includes the 2013-2015 BSFRF survey data, and (3) scenario 2, 
which is the same as scenario 1n but assumes that the BSFRF survey has capture probabilities of 
1.0 for all length groups.  
 
When these scenarios are presented, the terms “capture probabilities” and “selectivity” should 
be clearly defined. In the report, their descriptions seemed somewhat confusing and 
contradictory. For instance, Figure 6 implies catchabilities at small sizes in the BSFRF survey 
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that are less than 1.0 for all scenarios, but from the text, this should not be the case. It is 
important that the definitions and procedures are clearly described.” 
 
We reported the results of these three scenarios in the SAFE report in September 2016 and 
clarified use of the terms “capture probabilities” and “selectivity” throughout the report. 
 
Response to SSC Comments specific to this assessment (from June 2017): 
 
“Five model scenarios were investigated prior to the spring CPT meeting, the results of which 
suggested relatively minor differences with regard to management quantities. The SSC supports 
the CPT’s and author’s recommendations regarding model scenarios to bring forward this fall, 
which include the following: add the 2016 BSFRF data, separate bycatch components, remove 
the informative prior and reparameterize NMFS survey catchability to exclude values greater 
than 1.0, as well as alternatives for data weighting within these scenarios.” 
 
Nine scenarios in this SAFE report address this comment. 
 
“The SSC noted that only scenarios utilizing Francis weighting methods were proposed for 
evaluation in the fall. As noted earlier regarding general guidance to the CPT and assessment 
authors, the SSC encourages stock assessment authors and the CPT to continue to consider 
alternative approaches, as data weighting is not a ‘one-size-fits-all’ problem. The best method 
for data weighting will depend on the quality of the data, the time-series length, the conflict 
among data sources and other factors unique to a specific assessment. Thus, the BBRKC stock 
assessment author should retain sufficient latitude to use a method appropriate for this 
particular assessment, noting that internal consistency is more important than blanket 
consistency across assessments dealing with a variety of unique data configurations and 
estimation issues. Evaluation of alternative data weighting approaches can be a useful 
diagnostic tool to better understand conflicts among data sources within the BBRKC 
assessment.” 
 
Authors wholeheartedly agree with this SSC comment. We used Francis’ approach in this report 
and were a little struggled to get scenarios converged. The effective sample sizes are greatly 
reduced through Francis’ approach. We will search for alternative approaches in the future. 
 
“Also, the SSC encourages the BBRKC author to objectively define the terminal year of 
recruitment to include in reference point calculations in this assessment. For BBRKC, where all 
recent recruitment years have been used in the past, dropping one or more years at the end of 
the time-series might be warranted. A general rule could be based on the variance of the 
estimated recruitments and/or the youngest ages of crabs sampled by the fishing gear and/or 
survey gear included in the model.” 
 
This is a very good suggestion. We did not make any changes for this report due to many 
scenarios and will evaluate this in May 2018. 
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C. Introduction  
 
1. Species 

Red king crab (RKC), Paralithodes camtschaticus, in Bristol Bay, Alaska. 
 
2. General distribution 

Red king crab inhabit intertidal waters to depths >200 m of the North Pacific Ocean from British 
Columbia, Canada, to the Bering Sea, and south to Hokkaido, Japan, and are found in several 
areas of the Aleutian Islands, eastern Bering Sea, and the Gulf of Alaska. 

3. Stock Structure 

The State of Alaska divides the Aleutian Islands and eastern Bering Sea into three management 
registration areas to manage RKC fisheries: Aleutian Islands, Bristol Bay, and Bering Sea 
(Alaska Department of Fish and Game (ADF&G) 2012). The Bristol Bay area includes all waters 
north of the latitude of Cape Sarichef (54°36' N lat.), east of 168°00' W long., and south of the 
latitude of Cape Newenham (58°39' N lat.) and the fishery for RKC in this area is managed 
separately from fisheries for RKC outside of this area; i.e., the red king crab in the Bristol Bay 
area are assumed to be a separate stock from red king crab outside of this area. This report 
summarizes the stock assessment results for the Bristol Bay RKC stock. 

4. Life History 

Red king crab have a complex life history. Fecundity is a function of female size, ranging from 
several tens of thousands to a few hundreds of thousands (Haynes 1968; Swiney et al. 2012). The 
eggs are extruded by females, fertilized in the spring, and held by females for about 11 months 
(Powell and Nickerson 1965). Fertilized eggs are hatched in the spring, most during April-June  
(Weber 1967). Primiparous females are bred a few weeks earlier in the season than multiparous 
females. 

Larval duration and juvenile crab growth depend on temperature (Stevens 1990; Stevens and 
Swiney 2007). Male and female RKC mature at 5–12 years old, depending on stock and 
temperature (Loher et al. 2001; Stevens 1990) and may live >20 years (Matsuura and Takeshita 
1990). Males and females attain a maximum size of 227 and 195 mm carapace length (CL), 
respectively (Powell and Nickerson 1965). Female maturity is evaluated by the size at which 
females are observed to carry egg clutches. Male maturity can be defined by multiple criteria 
including spermataphore production and size, chelae vs. carapace allometry, and participation in 
mating in situ (reviewed by Webb 2014). For management purposes, females >89 mm CL and 
males >119 mm CL are assumed to be mature for Bristol Bay RKC. Juvenile RKC molt multiple 
times per year until age 3 or 4; thereafter, molting continues annually in females for life and in 
males until maturity. Male molting frequency declines after attaining functional maturity. 

5. Fishery 

The RKC stock in Bristol Bay, Alaska, supports one of the most valuable fisheries in the United 
States. A review of the history of the Bristol Bay RKC fishery is provided in Fitch et al. (2012) and 
Otto (1989). The Japanese fleet started the fishery in the early 1930s, stopped fishing from 1940 to 
1952, and resumed the fishery from 1953 until 1974. The Russian fleet fished for RKC from 1959 
to 1971. The Japanese fleet employed primarily tanglenets with a very small proportion of catch 
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from trawls and pots. The Russian fleet used only tanglenets. United States trawlers started fishing 
Bristol Bay RKC in 1947, but the effort and catch declined in the 1950s. The domestic RKC fishery 
began to expand in the late 1960s and peaked in 1980 with a catch of 129.95 million lbs (58,943 t), 
worth an estimated $115.3 million ex-vessel value. The catch declined dramatically in the early 
1980s and has remained at low levels during the last two decades (Table 1). After the early 1980s 
stock collapse, the Bristol Bay RKC fishery took place during a short period in the fall (usually 
lasting about a week) with the catch quota based on the stock assessment conducted the previous 
summer (Zheng and Kruse 2002). Beginning with the 2005/2006 season, new regulations associated 
with fishery rationalization resulted in an increase in the duration of the fishing season (October 15 
to January 15). With the implementation of crab rationalization, historical guideline harvest levels 
(GHL) were changed to a total allowable catch (TAC). Before rationalization, the implementation 
errors were quite high for some years and total actual catch from 1980 to 2007 was about 6% less 
than the sum of GHL/TAC over that period. 

6. Fisheries Management 

King and Tanner crab stocks in the Bering Sea and Aleutian Islands are managed by the State of 
Alaska through a federal king and Tanner crab fishery management plan (FMP). Under the FMP, 
management measures are divided into three categories: (1) fixed in the FMP, (2) frame worked in 
the FMP, and (3) discretion of the State of Alaska. The State of Alaska is responsible for 
determining and establishing the GHL/TAC under the framework in the FMP. 

Harvest strategies for the Bristol Bay RKC fishery have changed over time. Two major 
management objectives for the fishery are to maintain a healthy stock that ensures reproductive 
viability and to provide for sustained levels of harvest over the long term (ADF&G 2012). In 
attempting to meet these objectives, the GHL/TAC is coupled with size-sex-season restrictions. 
Only males ≥6.5-in carapace width (equivalent to 135-mm carapace length, CL) may be 
harvested and no fishing is allowed during molting and mating periods (ADF&G 2012). 
Specification of TAC is based on a harvest rate strategy. Before 1990, harvest rates on legal 
males were based on population size, abundance of prerecruits to the fishery, and postrecruit 
abundance, and rates varied from less than 20% to 60% (Schmidt and Pengilly 1990). In 1990, 
the harvest strategy was modified, and a 20% mature male harvest rate was applied to the 
abundance of mature-sized (≥120-mm CL) males with a maximum 60% harvest rate cap of legal 
(≥135-mm CL) males (Pengilly and Schmidt 1995). In addition, a minimum threshold of 8.4 
million mature-sized females (≥90-mm CL) was added to existing management measures to 
avoid recruitment overfishing (Pengilly and Schmidt 1995). Based on a new assessment model 
and research findings (Zheng et al. 1995a, 1995b, 1997a, 1997b), the Alaska Board of Fisheries 
adopted a new harvest strategy in 1996. That strategy had two mature male harvest rates: 10% 
when effective spawning biomass (ESB) is between 14.5 and 55.0 million lbs and 15% when 
ESB is at or above 55.0 million lbs (Zheng et al. 1996). The maximum harvest rate cap of legal 
males was changed from 60% to 50%. A threshold of 14.5 million lbs of ESB was also added. In 
1997, a minimum threshold of 4.0 million lbs was established as the minimum GHL for opening 
the fishery and maintaining fishery manageability when the stock abundance is low. The Board 
modified the current harvest strategy by adding a mature harvest rate of 12.5% when the ESB is 
between 34.75 and 55.0 million lbs in 2003 and eliminated the minimum GHL threshold in 2012. 
The current harvest strategy is illustrated in Figure 1. 
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D. Data 
1. Summary of New Information 

The NMFS and BSFRF trawl survey data were updated to include the survey data in 2017.  

Catch and biomass data were updated to 2016/17. Groundfish fisheries bycatch data during 
2009-2016 were updated and separated into trawl fisheries and fixed gear fisheries bycatches. 

Data types and ranges are illustrated in Figure 2.   

2. Catch Data 

Data on landings of Bristol Bay RKC by length and year and catch per unit effort from 1960 to 
1973 were obtained from annual reports of the International North Pacific Fisheries Commission 
(Hoopes et al. 1972; Jackson 1974; Phinney 1975) and from the ADF&G from 1974 to 2016. 
Bycatch data are available starting from 1990 and were obtained from the ADF&G observer 
database and reports (Gaeuman 2013). Sample sizes for catch by length and shell condition are 
summarized in Table 2. Relatively large samples were taken from the retained catch each year. 
Sample sizes for trawl bycatch were the annual sums of length frequency samples in the National 
Marine Fisheries Service (NMFS) database.  

(i). Catch Biomass 
Retained catch and estimated bycatch biomasses are summarized in Table 1 and illustrated in Figure 
2. Retained catch and estimated bycatch from the directed fishery include the general, open-access 
fishery (prior to rationalization), or the individual fishery quota (IFQ) fishery (after rationalization), 
as well as the Community Development Quota (CDQ) fishery and the ADF&G cost-recovery 
harvest. Starting in 1973, the fishery generally occurred during the late summer and fall. Before 
1973, a small portion of retained catch in some years was caught from April to June. Because most 
crab bycatch from the groundfish trawl fisheries occurred during the spring, the years in Table 1 are 
one year less than those from the NMFS trawl bycatch database to approximate the annual bycatch 
for reporting years defined as July 1 to June 30; e.g., year 2002 in Table 1 for trawl bycatch 
corresponds to what is reported for year 2003 in the NMFS database. Catch biomass is shown in 
Figure 3. Bycatch data for the cost-recovery fishery before 2006 were not available. In this report, 
pot fisheries include both the directed fishery and RKC bycatch in the Tanner crab pot fishery and 
trawl fisheries are groundfish trawl fisheries. 

(ii). Catch Size Composition 

Retained catch by length and shell condition and bycatch by length, shell condition, and sex were 
obtained for stock assessments. From 1960 to 1966, only retained catch length compositions from 
the Japanese fishery were available. Retained catches from the Russian and U.S. fisheries were 
assumed to have the same length compositions as the Japanese fishery during this period. From 
1967 to 1969, the length compositions from the Russian fishery were assumed to be the same as 
those from the Japanese and U.S. fisheries. After 1969, foreign catch declined sharply and only 
length compositions from the U.S. fishery were used to distribute catch by length. 
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(iii). Catch per Unit Effort  

Catch per unit effort (CPUE) is defined as the number of retained crab per tan (a unit fishing effort 
for tanglenets) for the Japanese and Russian tanglenet fisheries and the number of retained crab per 
potlift for the U.S. fishery (Table 1). Soak time, while an important factor influencing CPUE, is 
difficult to standardize. Furthermore, complete historical soak time data from the U.S. fishery are 
not available. Based on the approach of Balsiger (1974), all fishing effort from Japan, Russia, and 
U.S. were standardized to the Japanese tanglenet from 1960 to 1971, and the CPUE was 
standardized as crab per tan. Except for the peak-to-crash years of late 1970s and early 1980s the 
correspondence between U.S. fishery CPUE and area-swept survey abundance is poor (Figure 4). 
Due to the difficulty in estimating commercial fishing catchability and crab availability to the 
NMFS annual trawl survey data, commercial CPUE data were not used in the model. 

3. NMFS Survey Data 

The NMFS has performed annual trawl surveys of the eastern Bering Sea since 1968. Two vessels, 
each towing an eastern otter trawl with an 83 ft headrope and a 112 ft footrope, conducted this 
multispecies, crab-groundfish survey during the summer. Stations were sampled in the center of a 
systematic 20 X 20 nm grid overlaid in an area of 140,000 nm2. Since 1972, the trawl survey has 
covered the full stock distribution except in nearshore waters. The survey in Bristol Bay occurs 
primarily during late May and June. Tow-by-tow trawl survey data for Bristol Bay RKC during 
1975-2017 were provided by NMFS.  

Abundance estimates by sex, carapace length, and shell condition were derived from survey data 
using an area-swept approach (Figures 5a and 5b). Spatial distributions of crab from the standard 
trawl surveys during recent years are shown in Appendix B. Until the late 1980s, NMFS used a 
post-stratification approach, but subsequently treated Bristol Bay as a single stratum; the 
estimates shown for Bristol Bay in Figures 4 and 5 were made without post-stratification. If 
multiple tows were made for a single station in a given year, the average of the abundances from 
all tows within that station was used as the estimate of abundance for that station. The new time 
series since 2015 discards all “hot spot” tows.  We used the new area-swept estimates provided 
by NMFS in 2017. 

In addition to standard surveys, NMFS also conducted some surveys after the standard surveys to 
better assess mature female abundance. In addition to the standard surveys conducted in early June 
(late May to early June in 1999 and 2000), a portion of the distribution of Bristol Bay RKC was re-
surveyed in 1999, 2000, 2006-2012, and 2017. Resurveys performed in late July, about six weeks 
after the standard survey, included 31 stations (1999), 23 stations (2000), 31 stations (2006, 1 bad 
tow and 30 valid tows), 32 stations (2007-2009), 23 stations (2010) and 20 stations (2011 and 2012) 
with high female density. The resurveys were necessary because a high proportion of mature 
females had not yet molted or mated when sampled by the standard survey. Differences in area-
swept estimates of abundance between the standard surveys and resurveys of these same stations are 
attributed to survey measurement errors or to seasonal changes in distribution between survey and 
resurvey. More large females were observed in the resurveys than during the standard surveys in 
1999 and 2000 because most mature females had not molted prior to the standard surveys. As in 
2006, area-swept estimates of males >89 mm CL, mature males, and legal males within the 32 
resurvey stations in 2007 were not significantly different (P=0.74, 0.74 and 0.95; paired t-test of 
sample means) between the standard survey and resurvey tows. However, similar to 2006, area-
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swept estimates of mature females within the 32 resurvey stations in 2007 were significantly 
different (P=0.03; paired t-test) between the standard survey and resurvey tows. Resurvey stations 
were close to shore during 2010-2012, and mature and legal male abundance estimates were lower 
for the re-tow than the standard survey. Following the CPT recommendation, we used the standard 
survey data for male abundance estimates and only the resurvey data, plus the standard survey data 
outside the resurveyed stations, to assess female abundances during these resurvey years. 

4. Bering Sea Fisheries Research Foundation Survey Data 

The BSFRF conducted trawl surveys for Bristol Bay RKC in 2007 and 2008 with a small-mesh 
trawl net and 5-minute tows. The surveys occurred at similar times as the NMFS standard 
surveys and covered about 97% of the Bristol Bay area. Few Bristol Bay RKC were found 
outside of the BSFRF survey area. Because of the small mesh size, the BSFRF surveys were 
expected to catch more of RKC within the swept area. Crab abundances of different size groups 
were estimated by the kriging method. Mature male abundances were estimated to be 22.331 in 
2007 and 19.747 million in 2008 with respective CVs of 0.0634 and 0.0765. BSFRF also 
conducted a side-by-side survey concurrent with the NMFS trawl survey during 2013-2016 in 
Bristol Bay. In May 2017, survey biomass and size composition estimates from 2016 BSFRF 
side-by-side trawl survey data were updated. Total survey biomass decreased from 87725.1 t 
initially estimated in September 2016 to 77815.7 t in the final estimate in May 2017, about 
11.3% reduction. The initial estimate mistakenly includes the tows conducted in the recruitment 
study. 

 

E. Analytic Approach 
1. History of Modeling Approaches  

To reduce annual measurement errors associated with abundance estimates derived from the 
area-swept method, ADF&G developed a length-based analysis (LBA) in 1994 that incorporates 
multiple years of data and multiple data sources in the estimation procedure (Zheng et al. 1995a). 
Annual abundance estimates of the Bristol Bay RKC stock from the LBA have been used to 
manage the directed crab fishery and to set crab bycatch limits in the groundfish fisheries since 
1995 (Figure 1). An alternative LBA (research model) was developed in 2004 to include small 
size groups for federal overfishing limits. The crab abundance declined sharply during the early 
1980s. The LBA estimated natural mortality for different periods of years, whereas the research 
model estimated additional mortality beyond a basic constant natural mortality during 1976-
1993. In this report, we present only the research model that was fit to the data from 1975 to 
2017.  

2. Model Description  

The original LBA model was described in detail by Zheng et al. (1995a, 1995b) and Zheng 
and Kruse (2002). The model combines multiple sources of survey, catch, and bycatch data 
using a maximum likelihood approach to estimate abundance, recruitment, selectivities, 
catches, and bycatch of the commercial pot fisheries and groundfish trawl fisheries. A full 
model description is provided in Appendix A. Francis’ approaches for re-weighting the 
effective sample sizes for size composition data are detailed in Appendix C. 

a-f. See appendix A. 
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g. Critical assumptions of the model: 

i. The base natural mortality is constant over shell condition and length and was 
estimated assuming a maximum age of 25 and applying the 1% rule (Zheng 2005). 

ii. Survey and fisheries selectivities are a function of length and were constant over 
shell condition. Selectivities are also a function of sex except for trawl bycatch 
selectivities, which are the same for both sexes. Two different survey selectivities 
were estimated: (1) 1975-1981 and (2) 1982-2017, based on modifications to the 
trawl gear used in the assessment survey. 

iii. Growth is a function of length and is assumed to not change over time for males. 
For females, growth-per-molt increments as a function of length were estimated for 
three periods (1975-1982, 1983-1993, and 1994-2017) based on sizes at maturity. 
Once mature, female red king crab grow with a much smaller growth increment per 
molt. 

iv. Molting probabilities are an inverse logistic function of length for males. Females 
molt annually. 

v. Annual fishing seasons for the directed fishery are short. 

vi. The prior of survey catchability (Q) was estimated to be 0.896, based on a trawl 
experiment by Weinberg et al. (2004) with a standard deviation of 0.025 for some 
scenarios. Q is assumed to be constant over time and is estimated in the model.   

vii. Males mature at sizes ≥120 mm CL. For convenience, female abundance was 
summarized at sizes ≥90 mm CL as an index of mature females. 

viii. Measurement errors were assumed to be normally distributed for length 
compositions and were log-normally distributed for biomasses.  

h. Changes to the above since previous assessment: see Section A.3. Changes to the 
assessment methodology.  

i. Outline of methods used to validate the code used to implement the model and whether 
the code is available: The code is available.  

3. Model Selection and Evaluation 

a. Alternative model configurations (scenarios): 

2a. Scenario 2a is the same as Scenario 2a in the SAFE draft report in May 2017 with 
updated data and a minor revision of base scenario 2 in the SAFE report in September 
2016. Scenario 2a differs from scenario 2 through changing the fishing time of the 
groundfish fisheries bycatch from the same time as the directed pot fishery under 
scenario 2 to the mid-point of the crab year (the same as Tanner crab fishery bycatch) 
to more accurately reflect the fishing timing. Also to reduce the number of estimated 
parameters, all fishing mortalities for the terminal year are not estimated during 
parameter estimation since the fisheries have not occurred in the model in the terminal 
year.   

   Scenario 2a includes:  

September 2017 Plan Team Draft Bristol Bay Red King Crab

NPFMC Bering Sea/Aleutian Islands Crab SAFE171



(1) Basic M = 0.18, with an additional mortality level during 1980-1984 for males and 
two additional mortality levels (one for 1980-1984 and the other for 1976-1979 and 
1985-1993) for females.  

(2) Including BSFRF survey data during 2007-2008 and 2013-2016. The BSFRF 
survey is treated as an independent survey, and no assumption is made about the 
capture probabilities of the BSFRF survey. In effect, survey selectivities for both 
surveys are estimated separately and directly in the model.  

(3) NMFS survey catchability is estimated in the model and is assumed to be constant 
over time. BSFRF survey catchability is assumed to be 1.0. 

(4) Two levels of molting probabilities for males: one before 1980 and one after 1979, 
based on survey shell condition data. Each level has two parameters. 

(5) Estimating effective sample size from observed sample sizes. Effective sample 
sizes are estimated as min(0.5*observed-size, N) for trawl surveys and min(0.1* 
observed-size, N) for catch and bycatch, where N is the maximum sample size (200 
for trawl surveys, 100 for males from the pot fishery and 50 for females from pot 
fishery and both males and females from the groundfish fisheries. There is a 
justification for enforcing a maximum limit to effective sample sizes because the 
number of length measurements is large (Fournier at al. 1998). The effective sample 
sizes are plotted against the implied effective sample sizes in Figures 6 and 7, where 
the implied effective sample sizes are estimated as follows: 

 

     

where lyP ,
ˆ  and Py,l are estimated and observed size compositions in year y and 

length group l, respectively.  

(6) Standard survey data for males and NMFS survey retow data (during cold years) 
for females.  

(7) Estimating initial year length compositions.  

For scenario 2a, survey abundances b
lysN ,,

ˆ (BSFRF survey) and n
lysN ,,

ˆ (NMFS survey) by 

sex s and in year y and length group l are computed as follows:  
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where b
lss , and n

lss , are survey selectivities for BSFRF and NMFS surveys by sex s and in 

length group l, respectively, and Ns,y,l is the population abundance by sex s and in year 
y and length group l. BSFRF survey selectivities are computed as 
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where β and L50 are parameters. Survey selectivity for the first length group (67.5 mm) 
was assumed to be the same for both males and females, so only three parameters (β, 
L50 for females and L50 for males) were estimated in the model for each survey. The 
BSFRF survey catchability is assumed to be 1.0. 

   Scenario 2a assumes that the BSFRF survey capture probabilities are 1.0 for all length 
groups. Under this assumption, NMFS survey selectivities are the products of crab 
availabilities (equal to BSFRF survey selectivities) and NMFS survey capture 
probabilities (p): 

.,,,
b

lsls
n

ls sps                                                                                                            (4) 

Therefore, the model estimates NMFS survey capture probabilities and BSFRF survey 
selectivities and computes NMFS survey selectivities from these estimates. NMFS 
survey capture probabilities are computed as 

e +

Q
 p
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,501

,                                                                                               (5) 

where β and L50 are parameters and similar to the survey selectivities, only three 
parameters (β, L50 for females and L50 for males) were estimated in the model for 
each sex. Q is the NMFS survey catchability and is estimated in the model with or 
without a prior from the double-bag experiment, depending on scenarios.  

Since fishing times for both Tanner crab fishery and groundfish fishery are assumed to 
occur the same time, the fraction separation of fishing mortality rates for both fisheries 
is used to divide the total fishing mortality rate to individual fisheries, that is, Fi/Ftot*(1-
exp(-Ftot)) for fishery i, and the sum of Fi = Ftot. 

2a1. Scenario 2a1 is the same as Scenario 2a except for applying Francis’ approach 1 
(Appendix C) to the effective sample sizes of size composition data used in scenario 
2a.   

2a2. Scenario 2a2 is the same as Scenario 2a except for applying Francis’ approach 2 to 
the effective sample sizes of size composition data used in scenario 2a.  

2b. Scenario 2b is the same as scenario 2a except for separating groundfish fisheries 
bycatch by trawl fisheries and fixed gear fisheries during 2009-2016. 

2b1. Scenario 2b1 is the same as Scenario 2b except for applying Francis’ approach 1 to 
the effective sample sizes of size composition data used in scenario 2b.   

2b2. Scenario 2b2 is the same as Scenario 2b except for applying Francis’ approach 2 to 
the effective sample sizes of size composition data used in scenario 2b.  
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2d. Scenario 2d is the same as scenario 2b except without trawl survey catchability prior 
from the double-bag experiment and for using a logit transformation to make sure 
trawl survey catchability be <1.0: 

)),exp(1/()exp( xxQ                                                                                          (6) 

            where x is estimated as a parameter.  

2d1. Scenario 2d1 is the same as Scenario 2d except for applying Francis’ approach 1 to 
the effective sample sizes of size composition data used in scenario 2d.   

2d2. Scenario 2d2 is the same as Scenario 2d except for applying Francis’ approach 2 to 
the effective sample sizes of size composition data used in scenario 2d.  

b. Progression of results: See the new results at the beginning of the report. 

c. Evidence of search for balance between realistic and simpler models: NA. 

d. Convergence status/criteria: ADMB default convergence criteria. 

e. Sample sizes for length composition data: observed sample sizes are summarized in 
Table 2, and estimated implied sample sizes and effective sample sizes are illustrated in 
Figures 6 and 7.  

f. Credible parameter estimates:  All estimated parameters seem to be credible.  

g. Model selection criteria: The likelihood values were used to select among alternatives 
that could be legitimately compared by that criterion.  

h. Residual analysis: Residual plots are illustrated in figures. 

i. Model evaluation is provided under Results, below. 

j. Jittering: the Stock Synthesis Approach is used to do jittering to find the optimum: 

The Jitter factor of 0.1 is multiplied by a random normal deviation rdev=N(0,1), to a 
transformed parameter value based upon the predefined parameter: 
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,                                                 (6)  

with the final jittered starting parameter value backtransformed as: 

,
)0.2exp(0.1

minmax
min temp

PP
P Pnew                                                                                (7)              

where Pmax and Pmin are upper and lower bounds of parameters and Pval is the estimated 
parameter value before the jittering. Due to time consuming, the jittering approach is not 
used in this report. 

4. Results 

a. Effective sample sizes and weighting factors.  

i. Estimated effective sample sizes and Francis’ re-weighting effective sample sizes used 
for all model scenarios are summarized in Appendix D. Using Francis’ approaches 
greatly reduce effective sample sizes. 
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For scenario 2b, effective sample sizes are illustrated in Figures 6 and 7. 

ii. Weights are assumed to be 500 for retained catch biomass, and 100 for all bycatch 
biomasses, 2 for recruitment variation, and 10 for recruitment sex ratio.  

iii. Initial trawl survey catchability (Q) is estimated to be 0.896 with a standard deviation 
of 0.025 (CV about 0.03) based on the double-bag experiment results. These values are 
used as a prior for estimating Q in the model for scenarios 2a and 2b. 
 

b. Tables of estimates. 

i. Parameter estimates for scenarios 2b and 2d are summarized in Tables 4 and 5. 

ii. Abundance and biomass time series are provided in Table 6 for scenarios 2b and 
2d. 

iii. Recruitment time series for scenarios 2b and 2d are provided in Table 6.  

iv. Time series of catch biomass is provided in Table 1.  

Negative log-likelihood values and parameter estimates are summarized in Tables 4 and 
5, respectively. Length-specific fishing mortality is equal to selectivity-at-length times 
the full fishing mortality. Estimated full pot fishing mortalities for females and full 
fishing mortalities for groundfish fisheries bycatch were very low due to low bycatch as 
well as handling mortality rates less than 1.0. Estimated recruits varied greatly from year 
to year (Table 6). Estimated low selectivities for male pot bycatch, relative to the retained 
catch, reflected the 20% handling mortality rate (Figure 8). Both selectivities were 
applied to the same level of full fishing mortality. Estimated selectivities for female pot 
bycatch were close to 1.0 for all mature females, and the estimated full fishing mortalities 
for female pot bycatch were lower than for male retained catch and bycatch (Table 5).  

c. Graphs of estimates. 

i. Selectivities and molting probabilities by length are provided in Figures 8 and 9 
for scenarios 2a, 2b, 2b1, and 2d. 

One of the most important results is estimated trawl survey selectivity (Figure 8). 
Survey selectivity affects not only the fitting of the data but also the absolute 
abundance estimates. Estimated survey selectivities in Figure 8 are generally smaller 
than the capture probabilities in Figure A1 because survey selectivities include 
capture probabilities and crab availability. The NMFS survey catchability was 
estimated to be 0.896 from the trawl experiment, which is higher than that roughly 
estimated from the BSFRF surveys (0.854). The reliability of estimated survey 
selectivities will greatly affect the application of the model to fisheries management. 
Under- or overestimates of survey selectivities will cause a systematic upward or 
downward bias of abundance estimates. Information about crab availability to the 
survey area at survey times will help estimate the survey selectivities.   

For all scenarios, estimated molting probabilities during 1975-2017 (Figure 9) were 
generally lower than those estimated from the 1954-1961 and 1966-1969 tagging 
data (Balsiger 1974). Lower molting probabilities mean more oldshell crab, possibly 
due to changes in molting probabilities over time or shell aging errors. 
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Overestimates or underestimates of oldshell crab will result in lower or higher 
estimates of male molting probabilities. 

ii. Estimated total survey biomass and mature male and female abundances are 
plotted in Figure 10. Absolute mature male biomasses are illustrated in Figure 11. 

Model estimated relative survey biomasses are very similar among the nine 
scenarios and fit the survey data quite well. The absolute population biomass 
estimates are slightly higher for scenarios 2a, 2a1, 2a2, 2b, 2b1, and 2b2 than for 
scenarios 2d, 2d1 and 2d2 during recent years due to slightly lower estimates of 
trawl survey selectivities for scenarios 2a, 2a1, 2a2, 2b, 2b1, and 2b2. Using Francis’ 
approaches greatly reduce effective sample sizes and result in relatively more 
weights to BSFRF survey length composition data and higher absolute biomass 
estimates in recent years. Scenarios 2a1 and 2b2 have higher mature male biomass 
estimates during mid and late 1970s than other scenarios, likely due to estimated 
higher proportions of males in initial year 1975. 

Although the model did not fit the mature crab abundances directly, trends in the 
mature abundance estimates agree well with observed survey values except in 2014 
(Figure 10b). Estimated mature crab abundance increased dramatically in the mid 
1970s then decreased precipitously in the early 1980s. Estimated mature crab 
abundance had increased during 1985-2009 with mature females being about 3 times 
more abundant in 2009 than in 1985 and mature males being about 2 times more 
abundant in 2009 than in 1985. Estimated mature abundance has declined since 
2009 (Figure 10b). Model estimates of both male and female mature abundances 
have steadily declined since the late 2000s. Absolute mature male biomasses for all 
scenarios have a similar trend over time (Figure 11). 

The fit to BSFRF survey data and estimated survey selectivities are illustrated in 
Figures 10c-e.  

iii. Estimated recruitment time series are plotted in Figure 12 for scenarios 2b and 2d. 

iv. Estimated fishing mortality rates are plotted against mature male biomass in 
Figure 13 for scenarios 2b and 2d. 

The average of estimated male recruits from 1984 to 2017 (Figure 12) and mature 
male biomass per recruit were used to estimate B35%. Alternative periods of 1976-
present and 1976-1983 were compared in our report. The full fishing mortalities for 
the directed pot fishery at the time of fishing were plotted against mature male 
biomass on Feb. 15 (Figure 13). Estimated fishing mortalities in most years before 
the current harvest strategy was adopted in 1996 were above F35% (Figure 13). 
Under the current harvest strategy, estimated fishing mortalities were at or above the 
F35% limits in 1998, 2005, 2007-2009 for scenarios 2b and 2d but below the F35% 
limits in the other post-1995 years.  The higher estimated survey selectivities from 
scenario 2d result in relatively higher fishing mortalities than those with scenarios  
2a, 2a1, 2a2, 2b, 2b1, and 2b2. 

For scenario 2b, estimated full pot fishing mortalities ranged from 0.00 to 2.11 
during 1975-2016. Estimated values were greater than 0.40 during 1975-1981, 1985-
1987, 1993 and 2008 (Table 5, Figure 13). For scenario 2d, estimated full pot fishing 
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mortalities ranged from 0.00 to 2.17 during 1975-2016, with estimated values over 
0.40 during 1975-1981, 1985-1987, 1993, 2005, and 2007-2008 (Figure 13). 
Estimated fishing mortalities for pot female and groundfish fisheries bycatches were 
generally less than 0.06.  

v. Estimated mature male biomass and recruitment are plotted to illustrate their 
relationships with scenario 2b (Figure 14a). Annual stock productivities are 
illustrated in Figure 14b.  

Stock productivity (recruitment/mature male biomass) was generally lower during 
the last 20 years (Figure 14b).  

Egg clutch data collected during summer surveys may provide information about 
mature female reproductive conditions. Although egg clutch data are subject to 
rating errors as well as sampling errors, data trends over time may be useful. 
Proportions of empty clutches for newshell mature females >89 mm CL were high 
in some years before 1990, but have been low since 1990 (Figure 15). The highest 
proportion of empty clutches (0.2) was in 1986, and primarily involved soft shell 
females (shell condition 1). Clutch fullness fluctuated annually around average 
levels during two periods: before 1991 and after 1990 (Figure 15). The average 
clutch fullness was similar for these two periods (Figure 15). Egg clutch fullness 
during the last two years is relatively low. 

d. Graphic evaluation of the fit to the data. 

i. Observed vs. estimated catches are plotted in Figure 16. 

ii. Model fits to total survey biomass are shown in Figure 10 with a standardized 
residual plot in Figure 17. 

iii. Model fits to catch and survey proportions by length are illustrated in Figures 18-
24 and residual bubble plots are shown in Figures 25-26. 

The model (nine scenarios) fit the fishery biomass data well and the survey biomass 
reasonably well (Figures 10 and 16). Because the model estimates annual fishing 
mortality for directed pot male catch, undirected pot male bycatch, pot female bycatch, 
and trawl bycatch, the deviations of observed and predicted (estimated) fishery biomass 
are mainly due to size composition differences.  

The model also fit the length composition data well (Figures 18-24). The model also fit 
the length proportions of the pot male bycatch well with two simple linear selectivity 
functions (Figure 21). We explored a logistic selectivity function, but due to the long left 
tail of the pot male bycatch selectivity, the logistic selectivity function did not fit the data 
well.  

Modal progressions are tracked well in the trawl survey data, particularly beginning in the 
mid-1990s (Figures 18 and 19). Cohorts first seen in the trawl survey data in 1975, 1986, 
1990, 1995, 1999, 2002 and 2005 can be tracked over time. Some cohorts can be tracked 
over time in the pot bycatch as well (Figure 21), but the bycatch data did not track the 
cohorts as well as the survey data. Groundfish trawl bycatch data provide little 
information to track modal progression (Figures 23 and 24). 
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Standardized residuals of total survey biomass and proportions of length are plotted to 
examine their patterns. Residuals were calculated as observed minus predicted and 
standardized by the estimated standard deviation. Standardized residuals of total survey 
biomass did not show any consistent patterns (Figure 17). Standardized residuals of 
proportions of survey males appear to be random over length and year (Figure 25). There 
is an interesting pattern for residuals of proportions of survey females. Residuals were 
generally negative for large-sized mature females during 1975-1987 for scenarios 2b and 
2d (Figure 26). Changes in growth over time or increased mortality may cause this 
pattern. The inadequacy of the model can be corrected by adding parameters to address 
these factors or with improved growth data. 

e. Retrospective and historic analyses. 

Two kinds of retrospective analyses were conducted for this report: (1) the 2017 model 
(scenario 2b) hindcast results and (2) historical results. The 2017 model results are based on 
sequentially excluding one-year of data to evaluate the current model performance with 
fewer data. The historical results are the trajectories of biomass and abundance from 
previous assessments that capture both new data and changes in methodology over time. 
Treating the 2017 estimates as the baseline values, we can also evaluate how well the model 
had done in the past. 

i. Retrospective analysis (retrospective bias in base model or models). 

The performance of the 2017 model includes sequentially excluding one-year of 
data. The model with scenario 2b performed reasonably well during 2011-2016 with 
a lower terminal year estimates in 2012 and 2013 and higher estimates inn 2011 
(Figures 27-28).  

ii. Historic analysis (plot of actual estimates from current and previous assessments). 

The model first fit the data from 1985 to 2004 in the terminal year of 2004. Thus, 
sequentially incrementing the terminal year provided 10 historical assessments for 
comparison with the 2017 assessment model results (Figure 29). The main 
differences of the 2004 model were weighting factors and effective sample sizes for 
the likelihood functions. In 2004, the weighting factors were 1,000 for survey 
biomass, 2,000 for retained catch biomass and 200 for bycatch biomasses. The 
effective sample sizes were set to be 200 for all proportion data but weighting 
factors of 5, 2, and 1 were also respectively applied to retained catch proportions, 
survey proportions and bycatch proportions. Estimates of time series of abundance 
in 2004 were generally higher than those estimated after 2004 (Figure 29). 

In 2005, to improve the fit for retained catch data, the weight for retained catch 
biomass was increased to 3,000 and the weight for retained catch proportions was 
increased to 6. All other weights were not changed. In 2006, all weights were re-
configured. No weights were used for proportion data, and instead, effective sample 
sizes were set to 500 for retained catch, 200 for survey data, and 100 for bycatch 
data. Weights for biomasses were changed to 800 for retained catch, 300 for survey 
and 50 for bycatch. The weights in 2007 were the same as 2006. Generally, 
estimates of time series of abundance in 2005 were slightly lower than in 2006 and 
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2007, and there were few differences between estimates in 2006 and 2007 (Figure 
29).  

In 2008, estimated coefficients of variation for survey biomass were used to 
compute likelihood values as suggested by the CPT in 2007. Thus, weights were re-
configured to: 500 for retained catch biomass, 50 for survey biomass, and 20 for 
bycatch biomasses. Effective sample size was lowered to 400 for the retained catch 
data. These changes were necessary for the estimation to converge and for a 
relatively good balanced fit to both biomasses and proportion data. Also, sizes at 
50% selectivities for all fisheries data were allowed to change annually, subject to a 
random walk pattern, for all assessments before 2008. The 2008 model does not 
allow annual changes in any fishery selectivities. Except for higher estimates of 
abundance during the late 1980s and early 1990s, estimates of time series of 
abundance in 2008 were generally close to those in 2006 and 2007 (Figure 29).  

During 2009-2013, the model was extended to the data through 1968. No weight 
factors were used for the NMFS survey biomass during 2009-2013 assessments. 
Since 2013, the model has fitted the data only back to 1975 for consistence of trawl 
survey data. Two levels of molting probabilities over time were used, shell 
conditions for males were combined, and length composition data of the BSFRF 
survey were used as well. In 2014 and 2015, the trawl survey time series were re-
estimated and a trawl survey catchability was estimated for some scenarios.  

Overall, both historical results (historic analysis) and the 2017 model results 
(retrospective analysis) performed reasonably well. No great overestimates or 
underestimates occurred as was observed in assessments for Pacific halibut 
(Hippoglossus stenolepis) (Parma 1993) and some eastern Bering Sea groundfish stocks 
(Zheng and Kruse 2002; Ianelli et al. 2003). Since the most recent model was not used 
to set TAC or overfishing limits until 2009, historical implications for management from 
the stock assessment errors cannot be evaluated at the current time. However, 
management implications of the ADF&G stock assessment model were evaluated by 
Zheng and Kruse (2002). 

f. Uncertainty and sensitivity analyses 

i. Estimated standard deviations of parameters are summarized in Table 5 for 
scenarios 2b and 2d. Estimated standard deviations of mature male biomass are 
listed in Table 6.  

ii. Probabilities for trawl survey catchability Q are illustrated in Figure 30 for 
scenarios 2b using the mcmc approach; estimated Qs are generally less than 1.0. 
Probabilities for mature male biomass and OFL in 2017 are illustrated in Figure 
31 for scenarios 2b and 2d using the mcmc approach. The confidence intervals are 
quite narrow.  

iii. Sensitivity analysis for handling mortality rate was reported in the SAFE report in 
May 2010. The baseline handling mortality rate for the directed pot fishery was 
set at 0.2. A 50% reduction and 100% increase respectively resulted in 0.1 and 0.4 
as alternatives. Overall, a higher handling mortality rate resulted in slightly higher 
estimates of mature abundance, and a lower rate resulted in a minor reduction of 
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estimated mature abundance. Differences of estimated legal abundance and 
mature male biomass were small among these handling mortality rates.  

iv. Sensitivity of weights. Sensitivity of weights was examined in the SAFE report in 
May 2010. Weights to biomasses (trawl survey biomass, retained catch biomass, 
and bycatch biomasses) were reduced to 50% or increased to 200% to examine 
their sensitivity to abundance estimates. Weights to the penalty terms (recruitment 
variation and sex ratio) were also reduced or increased. Overall, estimated 
biomasses were very close under different weights except during the mid-1970s. 
The variation of estimated biomasses in the mid-1970s was mainly caused by the 
changes in estimates of additional mortalities in the early 1980s. 

g. Comparison of alternative model scenarios 

These comparisons, based on the data through 2010, were reported in the SAFE report in 
May 2011. Estimating length proportions in the initial year (scenario 1a) results in a better 
fit of survey length compositions at an expense of 36 more parameters than scenario 1. 
Abundance and biomass estimates with scenario 1a are similar between scenarios. Using 
only standard survey data (scenario 1b) results in a poorer fit of survey length compositions 
and biomass than scenarios using both standard and re-tow data (scenarios 1, 1a, and 1c) and 
has the lowest likelihood value. Although the likelihood value is higher for using both 
standard survey and re-tow data for males (scenario 1) than using only standard survey for 
males (scenario 1c), estimated abundances and biomasses are almost identical. The higher 
likelihood value for scenario 1 over scenario 1c is due to trawl bycatch length compositions. 
 
In this report (September 2017), nine scenarios are compared. Model estimated relative 
survey biomasses are very similar among the scenarios. The absolute population biomass 
estimates are higher for scenarios 2b, 2b1, 2b2, 2a, 2a1, and 2a2 than for scenarios 2d, 2d1 
and 2d2 during recent years due to slightly lower estimated trawl survey catchability values. 
Slightly higher estimates of NMFS trawl survey catchabilities for scenario 2a and 2b also 
result in slightly lower absolute biomass than for scenarios 2a1, 2a2, 2b1 and 2b2. Scenarios 
2a1 and 2b2 have higher mature male biomass estimates during mid and late 1970s than 
other scenarios, likely due to estimated higher proportions of males in initial year 1975. 
Overall, the results for all nine scenarios are similar except those impacted by estimates of 
NMFS trawl survey catchabilities and effective sample sizes. We recommend either 
scenario 2b or 2d for September 2017 assessment because of corrected data and refined 
approaches to estimation of survey catchability and more work needed for Francis’ 
approach. 

 

F. Calculation of the OFL and ABC  
 

1. Bristol Bay RKC is currently placed in Tier 3b (NPFMC 2007).  

2. For Tier 3 stocks, estimated biological reference points include B35% and F35%. Estimated 
model parameters were used to conduct mature male biomass-per-recruit analysis.  

3. Specification of the OFL: 

The Tier 3 can be expressed by the following control rule: 
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 Where  

B = a measure of the productive capacity of the stock such as spawning biomass or 
fertilized egg production. A proxy of B, MMB estimated at the time of primiparous 
female mating (February 15) is used as a default in the development of the control rule.  

F* = F35%, a proxy of FMSY, which is a full selection instantaneous F that will produce 
MSY at the MSY producing biomass, 

B* = B35%, a proxy of BMSY, which is the value of biomass at the MSY producing level, 

  = a parameter with restriction that 10 . A default value of 0.25 is used. 

 = a parameter with restriction that 0 . A default value of 0.1 is used. 

Because trawl bycatch fishing mortality was not related to pot fishing mortality, average 
trawl bycatch fishing mortality during 2007 to 2016 was used for the per recruit analysis as 
well as for projections in the next section. Pot female bycatch fishing mortality was set equal 
to pot male fishing mortality times 0.02, an intermediate level during 1990-2016. Some 
discards of legal males occurred since the IFQ fishery started in 2005, but the discard rates 
were much lower during 2007-2013 than in 2005 after the fishing industry minimized 
discards of legal males. However, due to the high proportion of large oldshell males, the 
discard rate increased greatly in 2014. The average of retained selectivities and discard male 
selectivities during 2015-2016 were used to represent current trends for per recruit analysis 
and projections. Average molting probabilities during 2007-2016 were used for per recruit 
analysis and projections. 

Average recruitments during three periods were used to estimate B35%:  1976-2017, 1984-
2017, and 1991-2017 (Figure 12). Estimated B35% is compared with historical mature male 
biomass in Figure 13a. We recommend using the average recruitment during 1984-present, 
corresponding to the 1976/77 regime shift. Note that recruitment period 1984-present has 
been used since 2011 to set the overfishing limits. Several factors support our 
recommendation. First, estimated recruitment was lower after 1983 than before 1984, which 
corresponded to brood years 1978 and later, after the 1976/77 regime shift. Second, high 
recruitments during the late 1960s and 1970s generally occurred when the spawning stock 
was primarily located in the southern Bristol Bay, whereas the current spawning stock is 
mainly in the middle of Bristol Bay. The current flows favor larvae hatched in the southern 
Bristol Bay (see the section on Ecosystem Considerations for SAFE reports in 2008 and 
2009). Finally, stock productivity (recruitment/mature male biomass) was higher before the 
1976/1977 regime shift.  
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If we believe that differences in productivity and other population characteristics before 
1978 were caused by fishing, not by the regime shift, then we should use the recruitment 
from 1976-1983 (corresponding to brood years before 1978) as the baseline to estimate 
B35%. If we believe that the regime shift during 1976/77 caused the productivity 
differences, then we should select the recruitments from period 1984-2017 as the baseline.  

The control rule is used for stock status determination. If total catch exceeds OFL estimated 
at B, then “overfishing” occurs. If B equals or declines below 0.5 BMSY (i.e., MSST), the 
stock is “overfished.” If B equals or declines below *BMSY or *a proxy BMSY, then the 
stock productivity is severely depleted and the fishery is closed.  

The estimated probability distribution of MMB in 2017 is illustrated in Figure 30. Based the 
SSC suggestion in 2011, ABC = 0.9*OFL is used to estimate ABC.  

 Status and catch specifications (1,000 t) (scenario 2b): 

Year 
MSST Biomass 

(MMB) 
TAC 

Retained 
Catch 

Total 
Catch 

OFL ABC 

2013/14 12.85A 27.12A 3.90 3.99 4.56 7.07 6.36 
2014/15 13.03B 27.25B 4.49 4.54 5.44 6.82 6.14 
2015/16 12.89C 27.68C 4.52 4.61 5.34 6.73 6.06 
2016/17 12.53D 25.80D 3.84 3.92 4.28 6.64 5.97 
2017/18  21.31D    5.60 5.04 

 
The stock was above MSST in 2016/17 and hence was not overfished. Overfishing did 
not occur. 
 
Status and catch specifications (million lbs): 

Year 
MSST Biomass 

(MMB) 
TAC 

Retained 
Catch 

Total 
Catch 

OFL ABC 

2013/14 28.3A 59.9A 8.60 8.80 10.05 15.58 14.02 
2014/15 28.7B 60.1B 9.99 10.01 11.99 15.04 13.53 
2015/16 28.4C 61.0C 9.97 10.17 11.77 14.84 13.36 
2016/17 27.6D 56.9D 8.47 8.65 9.45 14.63 13.17 
2017/18  47.0D    12.35 11.11 

 
Notes: 

A – Calculated from the assessment reviewed by the Crab Plan Team in September 2014  
B – Calculated from the assessment reviewed by the Crab Plan Team in September 2015  
C – Calculated from the assessment reviewed by the Crab Plan Team in September 2016 
D – Calculated from the assessment reviewed by the Crab Plan Team in September 2017 

 

4. Based on the B35% estimated from the average male recruitment during 1984-2017, the 
biological reference points and OFL were estimated in Table 4. 
 

5. Based on the 10% buffer rule used last year, ABC = 0.9*OFL (Table 4). If P*=49% is used, 
the ABC will be higher.  
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G. Rebuilding Analyses 
 NA. 

 

H. Data Gaps and Research Priorities 
1. The following data gaps exist for this stock: 

a. Information about changes in natural mortality in the early 1980s; 

b. Un-observed trawl bycatch in the early 1980s; 

c. Natural mortality; 

d. Crab availability to the trawl surveys; 

e. Juvenile crab abundance; 

f. Female growth per molt as a function of size and maturity; 

g. Changes in male molting probability over time.  

2. Research priorities: 

a. Estimating natural mortality; 

b. Estimating crab availability to the trawl surveys; 

c. Surveying juvenile crab abundance in nearshore; 

d. Studying environmental factors that affect the survival rates from larvae to recruitment. 

 

I. Projections and Future Outlook 
1. Projections 

 Future population projections primarily depend on future recruitment, but crab recruitment 
is difficult to predict. Therefore, annual recruitment for the projections was a random selection from 
estimated recruitments during 1984-2017. Besides recruitment, the other major uncertainty for the 
projections is estimated abundance in 2017. The 2017 abundance was randomly selected from the 
estimated normal distribution of the assessment model output for each replicate. Three scenarios of 
fishing mortality for the directed pot fishery were used in the projections: 

(1) No directed fishery. This was used as a base projection. 

(2) F40%. This fishing mortality creates a buffer between the limits and target levels. 

(3) F35%. This is the maximum fishing mortality allowed under the current overfishing 
definitions.  

Each scenario was replicated 1,000 times and projections made over 10 years beginning in 2017 
(Table 7). 

As expected, projected mature male biomasses are much higher without the directed fishing 
mortality than under the other scenarios. At the end of 10 years, projected mature male biomass is 
above B35% for all scenarios (Table 7; Figure 32). Projected retained catch for the F35% scenario is 
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higher than those for the F40% scenario (Table 7, Figure 33). Due to the poor recruitment in recent 
years, the projected biomass and retained catch are expected to decline during the next few years. 

 

2. Near Future Outlook 

The near future outlook for the Bristol Bay RKC stock is a declining trend. The three recent above-
average year classes (hatching years 1990, 1994, and 1997) had entered the legal population by 
2006 (Figure 34). Most individuals from the 1997 year class will continue to gain weight to offset 
loss of the legal biomass to fishing and natural mortalities. The above-average year class (hatching 
year 2000) with lengths centered around 87.5 mm CL for both males and females in 2006 and with 
lengths centered around 112.5-117.5 mm CL for males and around 107.5 mm CL for females in 
2008 has largely entered the mature male population in 2009 and the legal population by 2014 
(Figure 34). No strong cohorts have been observed in the survey data after this cohort through 2010 
(Figure 34). There was a huge tow of juvenile crab of size 45-55 mm in 2011, but these juveniles 
were not tracked during 2012-2017 surveys. This single tow is unlikely to be an indicator for a 
strong cohort. The high survey abundance of large males and mature females in 2014 cannot be 
explained by the survey data during the previous years and were also inconsistent with the 2015-
2017 survey results (Figure 34). Due to lack of recruitment, mature and legal crab should continue 
to decline next year. Current crab abundance is still low relative to the late 1970s, and without 
favorable environmental conditions, recovery to the high levels of the late 1970s is unlikely.  
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Table 1a. Bristol Bay red king crab annual catch and bycatch mortality biomass (t) from June 1 to May 31. A 
handling mortality rate of 20% for the directed pot, 25% for the Tanner fishery, and 80% for trawl was assumed to 
estimate bycatch mortality biomass. 
 

Year 
Retained Catch Pot Bycatch 

Trawl 
Bycat. 

 
Fixed 
Bycat. 

Tanner 
Fishery 
Bycat. 

Total 
Catch U.S. 

Cost-
Recovery 

Foreign Total Males Females 

1953 1331.3  4705.6 6036.9      6036.9 
1954 1149.9  3720.4 4870.2      4870.2 
1955 1029.2  3712.7 4741.9      4741.9 
1956 973.4  3572.9 4546.4      4546.4 
1957 339.7  3718.1 4057.8      4057.8 
1958 3.2  3541.6 3544.8      3544.8 
1959 0.0  6062.3 6062.3      6062.3 
1960 272.2  12200.7 12472.9      12472.9 

1961 193.7  20226.6 20420.3      20420.3 

1962 30.8  24618.7 24649.6      24649.6 

1963 296.2  24930.8 25227.0      25227.0 

1964 373.3  26385.5 26758.8      26758.8 

1965 648.2  18730.6 19378.8      19378.8 

1966 452.2  19212.4 19664.6      19664.6 

1967 1407.0  15257.0 16664.1      16664.1 

1968 3939.9  12459.7 16399.6      16399.6 

1969 4718.7  6524.0 11242.7      11242.7 

1970 3882.3  5889.4 9771.7      9771.7 

1971 5872.2  2782.3 8654.5      8654.5 

1972 9863.4  2141.0 12004.3      12004.3 

1973 12207.8  103.4 12311.2      12311.2 

1974 19171.7  215.9 19387.6      19387.6 

1975 23281.2  0 23281.2      23281.2 

1976 28993.6  0 28993.6   682.8   29676.4 

1977 31736.9  0 31736.9   1249.9   32986.8 

1978 39743.0  0 39743.0   1320.6   41063.6 

1979 48910.0  0 48910.0   1331.9   50241.9 

1980 58943.6  0 58943.6   1036.5   59980.1 

1981 15236.8  0 15236.8   219.4   15456.2 

1982 1361.3  0 1361.3   574.9   1936.2 

1983 0.0  0 0.0   420.4   420.4 

1984 1897.1  0 1897.1   1094.0   2991.1 

1985 1893.8  0 1893.8   390.1   2283.8 

1986 5168.2  0 5168.2   200.6   5368.8 

1987 5574.2  0 5574.2   186.4   5760.7 

1988 3351.1  0 3351.1   597.8   3948.9 

1989 4656.0  0 4656.0   174.1   4830.1 

1990 9236.2 36.6 0 9272.8 526.9 651.5 247.6   10698.7 

1991 7791.8 93.4 0 7885.1 407.8 75.0 316.0  1401.8 10085.7 

1992 3648.2 33.6 0 3681.8 552.0 418.5 335.4  244.4 5232.2 

1993 6635.4 24.1 0 6659.6 763.2 637.1 426.6  54.6 8541.0 

1994 0.0 42.3 0 42.3 3.8 1.9 88.9  10.8 147.8 

1995 0.0 36.4 0 36.4 3.3 1.6 194.2  0.0 235.5 

1996 3812.7 49.0 0 3861.7 164.6 1.0 106.5  0.0 4133.9 

1997 3971.9 70.2 0 4042.1 244.7 19.6 73.4  0.0 4379.8 

1998 6693.8 85.4 0 6779.2 959.7 864.9 159.8  0.0 8763.7 

1999 5293.5 84.3 0 5377.9 314.2 8.8 201.6  0.0 5902.4 

2000 3698.8 39.1 0 3737.9 360.8 40.5 100.4  0.0 4239.5 

2001 3811.5 54.6 0 3866.2 417.9 173.5 164.6  0.0 4622.1 

2002 4340.9 43.6 0 4384.5 442.7 7.3 155.1  0.0 4989.6 

2003 7120.0 15.3 0 7135.3 918.9 430.4 172.3  0.0 8656.9 

2004 6915.2 91.4 0 7006.7 345.5 187.0 119.6  0.0 7658.8 
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2005 8305.0 94.7 0 8399.7 1359.5 498.3 155.2  0.0 10412.8 

2006 7005.3 137.9 0 7143.2 563.8 37.0 116.7  3.8 7864.4 

2007 9237.9 66.1 0 9303.9 1001.3 186.1 138.5  1.8 10631.6 

2008 9216.1 0.0 0 9216.1 1165.5 148.4 159.5  4.0 10693.5 

2009 7226.9 45.5 0 7272.5 888.1 85.2 87.2 5.0 1.6 8339.6 
2010 6728.5 33.0 0 6761.5 797.5 122.6 78.7 2.3 0.0 7762.6 
2011 3553.3 53.8 0 3607.1 395.0 24.0 53.8 9.4 0.0 4089.2 
2012 3560.6 61.1 0 3621.7 205.2 12.3 32.4 14.9 0.0 3886.5 
2013 3901.1 89.9 0 3991.0 310.6 99.8 61.9 39.5 28.5 4531.1 
2014 4530.0 8.6 0 4538.6 584.7 86.2 32.0 82.7 42.0 5366.2 
2015 4522.3 91.4 0 4613.7 266.1 222.9 41.7 67.9 84.2 5296.5 
2016 3840.4 83.4 0 3923.9 237.4 87.1 21.0 14.8 0.0 4284.2 
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Table 1b. Annual retained catch (millions of crab) and catch per unit effort of the Bristol Bay red king crab fishery. 
 

Year 
Japanese Tanglenet Russian Tanglenet U.S. Pot/Trawl Standardized 

Crab/tan Catch Crab/tan Catch Crab/tan Catch Crab/Potlift 
1960 1.949 15.2 1.995 10.4 0.088 15.8
1961 3.031 11.8 3.441 8.9 0.062  12.9 
1962 4.951 11.3 3.019 7.2 0.010  11.3 
1963 5.476 8.5 3.019 5.6 0.101  8.6 
1964 5.895 9.2 2.800 4.6 0.123  8.5 
1965 4.216 9.3 2.226 3.6 0.223  7.7 
1966 4.206 9.4 2.560 4.1 0.140 52 8.1 
1967 3.764 8.3 1.592 2.4 0.397 37 6.3 
1968 3.853 7.5 0.549 2.3 1.278 27 7.8 
1969 2.073 7.2 0.369 1.5 1.749 18 5.6 
1970 2.080 7.3 0.320 1.4 1.683 17 5.6 
1971 0.886 6.7 0.265 1.3 2.405 20 5.8 
1972 0.874 6.7   3.994 19  
1973 0.228    4.826 25  
1974 0.476    7.710 36  
1975     8.745 43  
1976     10.603 33  
1977     11.733 26  
1978     14.746 36  
1979     16.809 53  
1980     20.845 37  
1981     5.308 10  
1982     0.541 4  
1983     0.000   
1984     0.794 7  
1985     0.796 9  
1986     2.100 12  
1987     2.122 10  
1988     1.236 8  
1989     1.685 8  
1990     3.130 12  
1991     2.661 12  
1992     1.208 6  
1993     2.270 9  
1994     0.015   
1995     0.014   
1996     1.264 16  
1997     1.338 15  
1998     2.238 15  
1999     1.923 12  
2000     1.272 12  
2001     1.287 19  
2002     1.484 20  
2003     2.510               18  
2004     2.272 23  
2005     2.763 30  
2006     2.477 31  
2007     3.154 28  
2008     3.064 22  
2009     2.553 21  
2010     2.410 18  
2011     1.298 28  
2012     1.176 30  
2013     1.272 27  
2014     1.501 26  
2015     1.527 31  
2016     1.281 38  
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Table 2. Annual sample sizes (>64 mm CL) in numbers of crab for trawl surveys, retained catch and pot and trawl 
fishery bycatch of Bristol Bay red king crab. 
  

Year 
Trawl Survey Retained 

Catch 
Pot Bycatch Trawl Bycatch 

Tanner Fishery 
Bycatch 

 

Males Females Males Females Males Females Males Females  
1975 2,943 2,139 29,570        
1976 4,724 2,956 26,450   2,327 676    
1977 3,636 4,178 32,596   14,014 689    
1978 4,132 3,948 27,529   8,983 1,456    
1979 5,807 4,663 27,900   7,228 2,821    
1980 2,412 1,387 34,747   47,463 39,689    
1981 3,478 4,097 18,029   42,172 49,634    
1982 2,063 2,051 11,466   84,240 47,229    
1983 1,524 944 0   204,464 104,910    
1984 2,679 1,942 4,404   357,981 147,134    
1985 792 415 4,582   169,767 30,693    
1986 1,962 367 5,773   1,199 284    
1987 1,168 1,018 4,230   723 927    
1988 1,834 546 9,833   437 275    
1989 1,257 550 32,858   3,147 194    
1990 858 603 7,218 873 699 761 1,570    
1991 1,378 491 36,820 1,801 375 208 396 885 2,198  
1992 513 360 23,552 3,248 2,389 214 107 280 685  
1993 1,009 534 32,777 5,803 5,942   232 265  
1994 443 266 0 0 0 330 247    
1995 2,154 1,718 0 0 0 103 35    
1996 835 816 8,896 230 11 1,025 968    
1997 1,282 707 15,747 4,102 906 1,202 483    
1998 1,097 1,150 16,131 11,079 9,130 1,627 915    
1999 764 540 17,666 1,048 36 2,154 858    
2000 731 1,225 14,091 8,970 1,486 994 671    
2001 611 743 12,854 9,102 4,567 4,393 2,521    
2002 1,032 896 15,932 9,943 302 3,372 1,464    
2003 1,669 1,311 16,212 17,998 10,327 1,568 1,057    
2004 2,871 1,599 20,038 8,258 4,112 1,689 1,506    
2005 1,283 1,682 21,938 55,019 26,775 1,815 1,872    
2006 1,171 2,672 18,027 32,252 3,980 1,481 1,983    
2007 1,219 2,499 22,387 59,769 12,661 1,011 1,097    
2008 1,221 3,352 14,567 49,315 8,488 1,867 1,039    
2009 830 1,857 16,708 52,359 6,041 1,431 848    
2010 705 1,633 20,137 36,654 6,868 612 837    
2011 525 994 10,706 20,629 1,920 563 1,068    
2012 580 707 8,956 7,206 561 1,507 1,751    
2013 633 560 10,197 13,828 6,048 4,806 4,198 218 596  
2014 1,106 1,255 9,618 13,040 1,950 1,966 2,580 256 381  
2015 600 677 11,746 8,037 5,889 1,150 3,731 726 2163  
2016 374 803 10,811 9,497 4,216 1,908 2,879    
2017 470 558         
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Table 3. Number of parameters and the list of likelihood components for the model (Scenarios 
2a, 2a1, 2a2, 2b, 2b1, 2b2, 2d, 2d1, and 2d2). 
 
Parameter counts                                   Sce. 2a, 2a1, & 2a2    Sce. 2b, 2b1, 2b2, 2d, 2d1, &2d2 

Fixed growth parameters     9                                 9 
Fixed recruitment parameters     2                                 2  
Fixed length-weight relationship parameters   6                                 6  
Fixed mortality parameters     4                                 4  
Fixed survey catchability parameter    1                                 1 
Fixed high grading parameters    11                             11   
Total number of fixed parameters    33                             33  
 
Free survey catchability parameter    1                                1 
Free growth parameters     6                                6 
Initial abundance (1975)     1                                1 
Recruitment-distribution parameters    2                                2 
Mean recruitment parameters     1                                1 
Male recruitment deviations     42                            42 
Female recruitment deviations    42                            42 
Natural and fishing mortality parameters   4                               4   
Pot male fishing mortality deviations    43                            43 
Bycatch mortality from the Tanner crab fishery  11                            11 
Pot female bycatch fishing mortality deviations  28                            28  
Trawl bycatch fishing mortality deviations   42                            42                  
Fixed gear bycatch fishing mortality deviations  0                                9 
Initial (1975) length compositions    35                            35 
BSFRF survey extra CV     1                                1 
Free selectivity parameters     22                            24  
 
Total number of free parameters              281                         292 
Total number of fixed and free parameters             314                         325  
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Table 4. Negative log likelihood components for scenarios 2a, 2a1, 2a2, 2b, 2b1, 2b2, 2d, 2d1, 
and 2d2 and some management quantities. 
 
                                                                   Scenario 

Negative log likelihood 2a 2a1 2a2 2b 2b1 2b2 2d 2d1 2d2 
R-variation 87.37 68.19 63.71 87.22 66.69 62.99 87.21 66.22 62.89 
Length-like-retained -1038.8 -854.8 -904.2 -1038.9 -893.7 -895.3 -1039.3 -898.2 -906.3 
Length-like-discmale -1092.0 -832.2 -825.1 -1092.4 -828.8 -822.5 -1092.1 -831.7 -824.2 
Length-like-discfemale -567.31 -567.31 -567.53 -795.01 -567.94 -567.92 -794.89 -567.41 -567.57 
Length-like-survey -48633 -39299 -37689 -48629 -39307 -37656 -48631 -39293 -37687 
Length-like-disctrawl -4107.3 -2552.5 -2315.8 -3784.5 -2912.2 -2629.8 -3784.4 -2908.3 -2615.6 
Length-like-discfix 0.00 0.00 0.00 -773.41 -474.42 -477.78 -773.36 -473.35 -478.20 
Length-like-discTanner -466.54 -360.23 -359.95 -467.04 -361.86 -360.08 -467.31 -362.31 -360.48 
Length-like-bsfrfsurvey -644.79 -559.96 -533.44 -645.73 -561.12 -535.16 -645.92 -565.08 -535.70 
Catchbio_retained 50.95 27.96 25.27 51.13 28.30 25.48 51.32 28.21 25.28 
Catchbio_discmale 228.10 140.60 127.97 229.35 142.25 128.05 229.15 142.07 128.16 
Catchbio-discfemale 0.11 0.05 0.04 0.11 0.04 0.04 0.11 0.04 0.04 
Catchbio-disctrawl 0.22 0.02 0.01 0.22 0.02 0.02 0.22 0.02 0.02 
Catchbio-discfix 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Catchbio-discTanner  0.12 0.01 0.00 0.13 0.01 0.01 0.14 0.01 0.00 
Biomass-trawl survey 103.86 98.27 98.81 103.70 99.61 100.54 102.61 99.56 98.51 
Biomass-bsfrfsurvey -7.88 -7.52 -8.25 -8.29 -7.69 -8.38 -8.14 -8.08 -8.09 
Q-trawl survey 4.86 1.86 1.52 3.84 1.31 2.08 0.00 0.00 0.00 
Others 16.57 16.61 16.79 18.05 18.12 18.05 18.02 18.23 18.12 
Total -56066 -44680 -42869 -56740 -45558 -43616 -56748 -45553 -43651 
          
Free parameters 281 281 281 292 292 292 292 292 292 
B35%(t) 24613 25641 25853 25050 25664 26150 24744 25386 25349 
F35% 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 
MMB2017(t) 20043 22181 22629 21312 22642 23090 20814 21758 21924 
OFL2017 5012.3 5991.2 6212.4 5599.7 6261.1 6326.4 5393.6 5773.7 5894.3 
ABC2017(t) 4511.1 5392.0 5591.2 5039.7 5635.0 5693.8 4854.2 5196.3 5304.9 
Fofl2017 0.23 0.25 0.25 0.24 0.25 0.25 0.24 0.24 0.25 
Q82-17 0.97 0.94 0.94 0.97 0.94 0.95 1.00 1.00 1.00 
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Table 5(2b). Summary of estimated model parameter values and standard deviations and limits for scenario 
2b for Bristol Bay red king crab. All values are on a log scale. Male recruit in year t is exp(mean+malest), and 
female recruit in year t is exp(mean+malest+femalest). 
 

Year Recruits F for Directed Pot Fishery F for Trawl 
Females SD Males SD Males SD Females SD Estimate SD 

Mean 15.796 0.023 15.796 0.023 -1.680 0.041 0.012 0.001 -4.621 0.070 
Limits↑ 13,18  13,18  -3.0,0.0  .001,0.1  -8.5,-1.0  
Limits↓ -15,15  -15,15  -15,2.43  -6.0,3.5  -10,10  

1975     0.820 0.096     
1976 -0.033 0.277 0.812 0.137 0.806 0.068   0.201 0.111 
1977 0.521 0.161 0.682 0.103 0.800 0.059   0.710 0.107 
1978 0.450 0.137 0.886 0.085 1.010 0.055   0.781 0.106 
1979 0.727 0.102 1.145 0.077 1.304 0.052   0.949 0.106 
1980 0.239 0.116 1.320 0.077 2.170 0.047   1.663 0.106 
1981 0.089 0.149 0.519 0.103 2.425 0.009   1.203 0.107 
1982 0.105 0.055 2.107 0.051 0.576 0.049   2.378 0.107 
1983 0.034 0.073 1.446 0.052 -10.62 0.936   2.036 0.104 
1984 0.484 0.060 1.488 0.049 0.725 0.056   3.089 0.104 
1985 0.119 0.200 -0.582 0.122 0.808 0.064   1.935 0.106 
1986 0.582 0.061 0.765 0.047 1.339 0.062   1.000 0.107 
1987 -0.047 0.144 -0.117 0.074 0.944 0.058   0.585 0.106 
1988 0.301 0.176 -0.815 0.107 -0.026 0.050   1.367 0.102 
1989 0.105 0.158 -0.672 0.089 0.063 0.047   -0.073 0.102 
1990 -0.023 0.071 0.470 0.046 0.668 0.043 1.987 0.080 0.299 0.102 
1991 -0.071 0.098 0.012 0.056 0.647 0.045 -0.137 0.080 0.634 0.104 
1992 -0.584 0.427 -1.744 0.171 0.132 0.047 2.167 0.081 0.687 0.103 
1993 -0.263 0.101 -0.223 0.056 0.786 0.049 2.045 0.081 1.111 0.104 
1994 -0.451 0.475 -2.094 0.198 -4.356 0.049 1.421 0.113 -0.655 0.103 
1995 0.021 0.041 1.349 0.036 -4.707 0.046 1.541 0.119 -0.058 0.102 
1996 -0.872 0.288 -0.467 0.113 -0.161 0.043 -3.653 0.140 -0.673 0.103 
1997 -0.931 0.425 -1.335 0.167 -0.052 0.044 -1.006 0.085 -1.036 0.103 
1998 -0.330 0.128 -0.078 0.068 0.646 0.044 2.052 0.078 -0.172 0.102 
1999 0.072 0.062 0.753 0.043 0.198 0.044 -2.083 0.085 -0.007 0.102 
2000 -0.125 0.149 -0.181 0.080 -0.179 0.043 -0.275 0.079 -0.825 0.102 
2001 0.642 0.191 -0.844 0.138 -0.164 0.043 1.092 0.078 -0.394 0.101 
2002 0.213 0.057 1.207 0.041 -0.064 0.043 -2.242 0.086 -0.484 0.101 
2003 -0.086 0.259 -0.533 0.142 0.459 0.042 1.170 0.079 -0.340 0.101 
2004 -0.230 0.161 0.200 0.082 0.315 0.043 0.378 0.079 -0.707 0.101 
2005 0.313 0.063 1.127 0.046 0.735 0.043 0.891 0.078 -0.397 0.101 
2006 -0.750 0.177 0.520 0.064 0.446 0.043 -1.513 0.080 -0.732 0.101 
2007 -0.290 0.161 -0.046 0.082 0.763 0.044 -0.284 0.079 -0.558 0.102 
2008 0.138 0.160 -0.507 0.100 0.846 0.046 -0.597 0.079 -0.410 0.102 
2009 0.296 0.140 -0.484 0.094 0.540 0.047 -0.822 0.080 -1.003 0.103 
2010 0.050 0.100 0.108 0.063 0.395 0.048 -0.284 0.080 -1.201 0.104 
2011 0.178 0.106 0.013 0.071 -0.289 0.048 -1.211 0.081 -1.685 0.105 
2012 0.031 0.147 -0.352 0.089 -0.399 0.050 -1.753 0.084 -2.225 0.106 
2013 -0.478 0.193 -0.541 0.090 -0.225 0.052 0.187 0.080 -1.547 0.106 
2014 -0.130 0.367 -1.774 0.185 0.014 0.055 -0.144 0.081 -2.156 0.108 
2015 0.069 0.186 -1.037 0.119 -0.025 0.059 0.915 0.083 -1.848 0.109 
2016 0.236 0.179 -0.964 0.124 -0.110 0.063 0.160 0.085 -1.442 0.110 
2017 -0.317 0.400 -1.540 0.194       
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Table 5(2b) (continued). Summary of estimated model parameter values and standard deviations and 
limits for scenario 2b for Bristol Bay red king crab. For initial year length composition deviations, the 
first 20 length groups are for males and the last 16 length groups are for females.                                                       
   

    Initial Length Composition 1975 

Parameter Value SD     Limits Length Value SD Limits 
Mm80-84 0.429 0.016 0.184,  1.0 68 1.158 0.103 -5, 5 
Mf80-84 0.797 0.021 0.276,  1.5 73 1.188 0.090 -5, 5 
Mf76-79,85-93 0.097 0.006 0.0,  0.108 78 0.528 0.108 -5, 5 
log_betal, females 0.324 0.056 -0.67,  1.32 83 0.610 0.090 -5, 5 
log_betal, males 0.631 0.081 -0.67,  1.32 88 0.429 0.090 -5, 5 
log_betar, females -0.616 0.060 -1.14,  0.5 93 0.243 0.095 -5, 5 
log_betar, males -0.604 0.051 -1.14,  0.5 98 0.254 0.094 -5, 5 
Bsfrf_CV 0.000 0.000 0.00, 0.40 103 0.044 0.105 -5, 5 
moltp_slope, 75-78 0.135 0.018 0.01,  0.259 108 0.123 0.104 -5, 5 
moltp_slope, 79-17 0.099 0.004 0.01,  0.259 113 0.255 0.101 -5, 5 
log_moltp_L50, 75-78 4.974 0.011 4.445, 5.52 118 0.056 0.119 -5, 5 
log_moltp_L50, 79-17 4.949 0.004 4.445, 5.52 123 0.100 0.123 -5, 5 
log_N75 19.953 0.031 15.0,  22.0 128 0.019 0.138 -5, 5 
log_avg_L50_ret 4.922 0.002 4.467,  5.51 133 0.002 0.148 -5, 5 
ret_fish_slope 0.525 0.030 0.05,  0.70 138 -0.087 0.138 -5, 5 
pot disc.males, φ -0.325 0.014 -0.40,  0.00 143 -0.207 0.142 -5, 5 
pot disc.males, κ 0.004 0.000 0.0,  0.005 148 -0.395 0.154 -5, 5 
pot disc.males,  -0.015 0.001 -0.025,  0.0 153 -0.737 0.188 -5, 5 
pot disc.fema., slope 0.174 0.060 0.05,  0.43 158 -1.277 0.262 -5, 5 
log_pot disc.fema., L50 4.446 0.029 4.20,  4.666 163 -1.277 0.271 -5, 5 
trawl disc slope 0.058 0.003 0.01,  0.20 68 1.620 0.105 -5, 5 
log_trawl disc L50 5.113 0.047 4.50,  5.40 73 1.517 0.102 -5, 5 
log_srv_L50, m, bsfrf 4.309 0.037 3.59,  5.48 78 1.478 0.094 -5, 5 
srv_slope, f, bsfrf 0.039 0.007 0.01,  0.435 83 1.312 0.093 -5, 5 
log_srv_L50, f, bsfrf 4.403 0.063 4.09,  5.54 88 1.262 0.086 -5, 5 
log_srv_L50, m, 75-81 4.344 0.010 4.09,  4.554 93 0.807 0.103 -5, 5 
srv_slope, f, 75-81 0.072 0.004 0.01,  0.303 98 0.441 0.126 -5, 5 
log_srv_L50, f, 75-81 4.468 0.017 4.09,  4.70 103 0.149 0.150 -5, 5 
log_srv_L50, m, 82-17 4.403 0.084 4.09,  5.10 108 -0.007 0.157 -5, 5 
srv_slope, f, 82-17 0.057 0.008 0.01,  0.30 113 -0.240 0.183 -5, 5 
log_srv_L50, f, 82-17 4.302 0.051 4.09,  4.90 118 -0.839 0.290 -5, 5 
TC_slope, females 0.376 0.131 0.02,  0.40 123 -0.950 0.329 -5, 5 
log_TC_L50, females 4.534 0.014 4.24,  4.90 128 -1.261 0.440 -5, 5 
TC_slope, males 0.250 0.103 0.05,  0.90 133 -2.264 1.042 -5, 5 
log_TC_L50, males 4.570 0.019 4.25,  5.14 138 -2.373 1.252 -5, 5 
Q 0.965 0.021 0.59, 1.2 143 NA NA  
log_TC_F, males, 91 -4.113 0.085 -10.0,  1.00 Fixed gear bycatch parameters:  
log_TC_F, males, 92 -6.086 0.086 -10.0,  1.00 log_avg -8.133 0.080  
log_TC_F, males, 93 -6.804 0.088 -10.0,  1.00 fmortf_ -1.355 0.111  
log_TC_F, males, 13 -8.308 0.091 -10.0,  1.00 fmortf_ -2.232 0.130  
log_TC_F, males, 14 -7.442 0.090 -10.0,  1.00 fmortf_ -0.706 0.103  
log_TC_F, males, 15 -7.024 0.091 -10.0, 1.00 fmortf_ -0.166 0.100  
log_TC_F, females, 91 -2.873 0.086 -10.0,  1.00 fmortf_ 0.960 0.097  
log_TC_F, females, 92 -4.515 0.086 -10.0,  1.00 fmortf_ 1.771 0.096  
log_TC_F, females, 93 -6.395 0.087 -10.0,  1.00 fmortf_ 1.408 0.097  
log_TC_F, females, 13 -7.726 0.084 -10.0,  1.00 fmortf_  0.320 0.100  
log_TC_F, females, 14 -7.583 0.084 -10.0,  1.00 Fix_slo 0.092 0.025  
log_TC_F, females, 15 -6.553 0.082 -10.0,  1.00 log_l50 4.633 0.040  
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Table 5(2d). Summary of estimated model parameter values and standard deviations and limits for scenario 
2d for Bristol Bay red king crab. All values are on a log scale. Male recruit in year t is exp(mean+malest), and 
female recruit in year t is exp(mean+malest+femalest). 
 

Year Recruits F for Directed Pot Fishery F for Trawl 
Females SD Males SD Males SD Females SD Estimate SD 

Mean 15.782 0.022 15.782 0.022 -1.653 0.037 0.012 0.001 -4.584 0.066 
Limits↑ 13,18  13,18  -3.0,0.0  .001,0.1  -8.5,-1.0  
Limits↓ -15,15  -15,15  -15,2.43  -6.0,3.5  -10,10  

1975     0.805 0.096     
1976 -0.029 0.275 0.816 0.138 0.786 0.067   0.184 0.111 
1977 0.519 0.161 0.686 0.103 0.779 0.057   0.691 0.107 
1978 0.451 0.137 0.885 0.086 0.988 0.053   0.762 0.105 
1979 0.727 0.102 1.144 0.077 1.281 0.049   0.931 0.105 
1980 0.236 0.116 1.319 0.077 2.148 0.045   1.653 0.105 
1981 0.088 0.149 0.516 0.103 2.425 0.009   1.211 0.107 
1982 0.106 0.055 2.104 0.051 0.585 0.049   2.386 0.107 
1983 0.034 0.073 1.444 0.052 -10.61 0.925   2.037 0.104 
1984 0.482 0.060 1.491 0.049 0.724 0.056   3.091 0.104 
1985 0.123 0.199 -0.586 0.122 0.812 0.064   1.940 0.106 
1986 0.580 0.061 0.766 0.046 1.344 0.062   1.007 0.107 
1987 -0.046 0.144 -0.117 0.074 0.948 0.058   0.591 0.106 
1988 0.301 0.176 -0.817 0.107 -0.027 0.050   1.367 0.102 
1989 0.105 0.158 -0.674 0.090 0.059 0.047   -0.076 0.102 
1990 -0.023 0.071 0.467 0.046 0.667 0.043 1.992 0.080 0.299 0.102 
1991 -0.072 0.098 0.008 0.056 0.652 0.045 -0.136 0.080 0.640 0.104 
1992 -0.569 0.421 -1.747 0.171 0.140 0.046 2.167 0.081 0.693 0.103 
1993 -0.269 0.101 -0.225 0.056 0.798 0.048 2.041 0.081 1.125 0.104 
1994 -0.429 0.469 -2.103 0.198 -4.345 0.048 1.419 0.114 -0.647 0.103 
1995 0.018 0.041 1.346 0.036 -4.703 0.045 1.545 0.119 -0.057 0.102 
1996 -0.873 0.286 -0.464 0.112 -0.159 0.043 -3.647 0.140 -0.673 0.103 
1997 -0.925 0.420 -1.335 0.167 -0.049 0.043 -1.003 0.085 -1.035 0.103 
1998 -0.336 0.128 -0.076 0.068 0.651 0.044 2.051 0.078 -0.166 0.102 
1999 0.067 0.062 0.755 0.043 0.203 0.044 -2.083 0.085 -0.002 0.102 
2000 -0.130 0.149 -0.178 0.079 -0.176 0.043 -0.273 0.079 -0.824 0.102 
2001 0.640 0.192 -0.845 0.139 -0.162 0.043 1.094 0.078 -0.395 0.101 
2002 0.207 0.057 1.210 0.040 -0.063 0.043 -2.240 0.086 -0.486 0.101 
2003 -0.085 0.259 -0.536 0.143 0.458 0.042 1.174 0.080 -0.340 0.101 
2004 -0.235 0.161 0.201 0.082 0.315 0.042 0.382 0.079 -0.707 0.101 
2005 0.311 0.063 1.126 0.046 0.736 0.043 0.892 0.078 -0.395 0.101 
2006 -0.751 0.177 0.520 0.064 0.447 0.043 -1.511 0.080 -0.731 0.101 
2007 -0.297 0.161 -0.043 0.082 0.764 0.043 -0.284 0.079 -0.556 0.102 
2008 0.132 0.160 -0.503 0.100 0.852 0.045 -0.601 0.079 -0.406 0.102 
2009 0.293 0.140 -0.481 0.094 0.546 0.046 -0.828 0.080 -0.999 0.103 
2010 0.046 0.100 0.111 0.063 0.401 0.047 -0.289 0.080 -1.198 0.104 
2011 0.175 0.106 0.015 0.071 -0.285 0.048 -1.215 0.082 -1.685 0.104 
2012 0.030 0.147 -0.351 0.089 -0.397 0.049 -1.755 0.084 -2.227 0.106 
2013 -0.480 0.193 -0.539 0.090 -0.223 0.051 0.184 0.080 -1.549 0.106 
2014 -0.124 0.365 -1.774 0.185 0.016 0.055 -0.147 0.082 -2.159 0.108 
2015 0.065 0.186 -1.033 0.119 -0.023 0.059 0.913 0.083 -1.851 0.109 
2016 0.237 0.180 -0.963 0.124 -0.108 0.063 0.157 0.086 -1.445 0.110 
2017 -0.301 0.396 -1.539 0.194       
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Table 5(2d) (continued). Summary of estimated model parameter values and standard deviations and 
limits for scenario 2d for Bristol Bay red king crab. For initial year length composition deviations, the 
first 20 length groups are for males and the last 16 length groups are for females.                                                       
   

    Initial Length Composition 1975 

Parameter Value SD     Limits Length Value SD Limits 
Mm80-84 0.430 0.016 0.184,  1.0 68 1.161 0.103 -5, 5 
Mf80-84 0.798 0.021 0.276,  1.5 73 1.192 0.089 -5, 5 
Mf76-79,85-93 0.098 0.006 0.0,  0.108 78 0.533 0.108 -5, 5 
log_betal, females 0.325 0.056 -0.67,  1.32 83 0.615 0.090 -5, 5 
log_betal, males 0.636 0.080 -0.67,  1.32 88 0.434 0.090 -5, 5 
log_betar, females -0.615 0.061 -1.14,  0.5 93 0.249 0.095 -5, 5 
log_betar, males -0.600 0.051 -1.14,  0.5 98 0.259 0.093 -5, 5 
Bsfrf_CV 0.000 0.000 0.00, 0.40 103 0.050 0.105 -5, 5 
moltp_slope, 75-78 0.136 0.018 0.01,  0.259 108 0.129 0.104 -5, 5 
moltp_slope, 79-14 0.100 0.004 0.01,  0.259 113 0.261 0.101 -5, 5 
log_moltp_L50, 75-78 4.976 0.011 4.445, 5.52 118 0.062 0.119 -5, 5 
log_moltp_L50, 79-14 4.951 0.004 4.445, 5.52 123 0.104 0.123 -5, 5 
log_N75 19.945 0.031 15.0,  22.0 128 0.023 0.138 -5, 5 
log_avg_L50_ret 4.922 0.002 4.467,  5.51 133 0.005 0.148 -5, 5 
ret_fish_slope 0.524 0.030 0.05,  0.70 138 -0.085 0.138 -5, 5 
pot disc.males, φ -0.322 0.013 -0.40,  0.00 143 -0.205 0.142 -5, 5 
pot disc.males, κ 0.004 0.000 0.0,  0.005 148 -0.395 0.154 -5, 5 
pot disc.males,  -0.015 0.001 -0.025,  0.0 153 -0.737 0.188 -5, 5 
pot disc.fema., slope 0.171 0.059 0.05,  0.43 158 -1.279 0.263 -5, 5 
log_pot disc.fema., L50 4.448 0.030 4.20,  4.666 163 -1.280 0.272 -5, 5 
trawl disc slope 0.058 0.003 0.01,  0.20 68 1.618 0.105 -5, 5 
log_trawl disc L50 5.118 0.048 4.50,  5.40 73 1.517 0.102 -5, 5 
log_srv_L50, m, bsfrf 4.304 0.036 3.59,  5.48 78 1.478 0.094 -5, 5 
srv_slope, f, bsfrf 0.037 0.006 0.01,  0.435 83 1.312 0.093 -5, 5 
log_srv_L50, f, bsfrf 4.403 0.066 4.09,  5.54 88 1.262 0.087 -5, 5 
log_srv_L50, m, 75-81 4.344 0.010 4.09,  4.554 93 0.808 0.103 -5, 5 
srv_slope, f, 75-81 0.071 0.004 0.01,  0.303 98 0.442 0.126 -5, 5 
log_srv_L50, f, 75-81 4.467 0.017 4.09,  4.70 103 0.149 0.151 -5, 5 
log_srv_L50, m, 82-14 4.437 0.075 4.09,  5.10 108 -0.007 0.158 -5, 5 
srv_slope, f, 82-14 0.058 0.007 0.01,  0.30 113 -0.241 0.184 -5, 5 
log_srv_L50, f, 82-14 4.316 0.045 4.09,  4.90 118 -0.841 0.291 -5, 5 
TC_slope, females 0.376 0.131 0.02,  0.40 123 -0.953 0.331 -5, 5 
log_TC_L50, females 4.534 0.014 4.24,  4.90 128 -1.266 0.444 -5, 5 
TC_slope, males 0.246 0.101 0.05,  0.90 133 -2.279 1.060 -5, 5 
log_TC_L50, males 4.572 0.019 4.25,  5.14 138 -2.392 1.279 -5, 5 
Logit Q parameter 2.993 118.57 -4.5, 10.96 143 NA NA  
log_TC_F, males, 91 -4.080 0.082 -10.0,  1.00 Fixed gear bycatch parameters:  
log_TC_F, males, 92 -6.052 0.084 -10.0,  1.00 log_avg -8.106 0.080  
log_TC_F, males, 93 -6.766 0.085 -10.0,  1.00 fmortf_ -1.353 0.111  
log_TC_F, males, 13 -8.280 0.090 -10.0,  1.00 fmortf_ -2.230 0.130  
log_TC_F, males, 14 -7.414 0.088 -10.0,  1.00 fmortf_ -0.706 0.103  
log_TC_F, males, 15 -6.996 0.090 -10.0, 1.00 fmortf_ -0.166 0.100  
log_TC_F, females, 91 -2.848 0.085 -10.0,  1.00 fmortf_ 0.959 0.097  
log_TC_F, females, 92 -4.490 0.085 -10.0,  1.00 fmortf_ 1.770 0.096  
log_TC_F, females, 93 -6.369 0.086 -10.0,  1.00 fmortf_ 1.407 0.097  
log_TC_F, females, 13 -7.708 0.083 -10.0,  1.00 fmortf_ 0.319 0.100  
log_TC_F, females, 14 -7.566 0.083 -10.0,  1.00 Fix_slo 0.090 0.024  
log_TC_F, females, 15 -6.536 0.081 -10.0,  1.00 log_l50 4.636 0.041  
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Table 6(2b). Annual abundance estimates (million crab), mature male biomass (MMB, 1000 t), and total 
survey biomass (1000t) for red king crab in Bristol Bay estimated by length-based analysis (scenario 2) 
from 1975-2017. Mature male biomass for year t is on Feb. 15, year t+1. Size measurements are mm 
carapace length. 
 

Year (t) 

Males Females 
Total 

Recruits 

Total Survey Biomass 

Mature 
(>119 mm) 

Legal 
(>134mm) 

MMB 
(>119 mm) 

SD MMB 
Mature 

(>89 mm) 
Model Est. 
(>64 mm) 

Area-Swept 
(>64 mm) 

1975 55.605 29.131 81.728 4.958 69.633  251.709 202.731 
1976 60.936 35.586 91.447 4.195 105.743 32.116 288.834 331.868 
1977 62.265 38.209 94.265 3.524 130.640 38.466 297.283 375.661 
1978 67.674 39.009 96.262 2.944 123.172 45.109 286.652 349.545 
1979 63.250 40.140 80.639 2.474 105.965 69.874 261.837 167.627 
1980 44.669 32.562 22.332 0.840 95.596 61.586 222.496 249.322 
1981 13.474 7.719 6.322 0.345 44.377 25.482 90.173 132.669 
1982 6.427 2.487 6.775 0.346 20.631 125.730 44.413 143.740 
1983 6.056 2.634 7.834 0.350 13.545 62.622 39.407 49.320 
1984 6.002 2.873 6.058 0.344 14.289 84.159 40.885 155.311 
1985 7.314 2.417 10.112 0.494 13.839 8.604 34.634 34.535 
1986 11.990 4.636 14.881 0.738 20.318 43.413 46.376 48.158 
1987 15.429 6.662 21.341 0.923 24.100 12.594 53.122 70.263 
1988 16.232 9.024 27.234 1.030 28.791 7.539 57.308 55.372 
1989 17.644 10.848 30.898 1.086 26.250 7.806 60.651 55.941 
1990 17.822 11.860 28.697 1.106 22.263 22.926 61.050 60.321 
1991 14.411 10.591 23.700 1.090 20.050 14.166 55.492 85.055 
1992 11.308 8.451 21.535 1.048 19.747 1.973 49.400 37.687 
1993 11.845 7.624 18.891 1.025 17.578 10.254 47.458 53.703 
1994 11.621 6.979 24.365 1.054 14.380 1.461 41.781 32.335 
1995 12.099 8.796 27.144 1.029 13.930 56.431 48.278 38.396 
1996 12.116 9.422 25.118 0.980 19.349 6.442 55.725 44.649 
1997 11.368 8.477 23.265 0.939 28.249 2.659 59.710 85.277 
1998 15.626 8.184 25.495 1.019 26.369 11.524 62.804 85.176 
1999 17.239 9.760 29.978 1.124 22.992 31.913 62.690 65.604 
2000 15.324 11.144 29.878 1.119 25.370 11.381 65.081 68.342 
2001 14.292 10.661 28.736 1.078 29.521 9.038 67.670 53.188 
2002 15.918 10.177 30.583 1.073 29.236 54.220 72.051 69.786 
2003 16.660 10.983 29.260 1.057 34.780 8.152 76.951 116.794 
2004 14.880 10.434 27.220 1.016 42.196 15.880 78.602 131.910 
2005 17.262 9.913 27.573 1.032 40.370 52.982 83.512 107.341 
2006 17.552 10.487 29.638 1.078 44.207 17.950 86.700 95.676 
2007 17.028 11.076 27.006 1.095 51.198 12.102 91.822 104.841 
2008 18.697 10.318 28.320 1.211 48.212 9.380 91.911 114.430 
2009 19.947 11.156 32.260 1.376 43.911 10.472 89.581 91.673 
2010 18.964 12.422 32.564 1.466 40.493 16.563 87.419 81.642 
2011 16.380 12.058 32.719 1.478 38.642 16.108 84.017 67.053 
2012 14.920 11.562 31.523 1.453 38.311 10.354 83.075 61.248 
2013 14.622 10.799 30.376 1.454 37.431 6.835 81.440 62.410 
2014 14.650 10.365 29.148 1.496 34.531 2.310 77.849 114.103 
2015 13.830 9.982 27.725 1.542 30.416 5.318 72.318 64.240 
2016 12.499 9.447 25.804 1.564 26.513 6.266 66.256 61.231 
2017 10.653 8.633 21.312 1.202 24.149 2.686 60.268 52.922 
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Table 6(2d). Annual abundance estimates (million crab), mature male biomass (MMB, 1000 t), and total 
survey biomass (1000t) for red king crab in Bristol Bay estimated by length-based analysis (scenario 2d) 
from 1975-2017. Mature male biomass for year t is on Feb. 15, year t+1. Size measurements are mm 
carapace length. 
 

Year (t) 

Males Females 
Total 

Recruits 

Total Survey Biomass 

Mature 
(>119 mm) 

Legal 
(>134mm) 

MMB 
(>119 mm) 

SD MMB 
Mature 

(>89 mm) 
Model Est. 
(>64 mm) 

Area-Swept 
(>64 mm) 

1975 55.181 28.862 80.871 4.868 68.875  258.686 202.731 
1976 60.500 35.327 90.622 4.121 104.651 31.872 296.909 331.868 
1977 61.823 37.953 93.471 3.457 129.165 38.027 305.504 375.661 
1978 67.177 38.749 95.460 2.874 121.635 44.519 294.382 349.545 
1979 62.750 39.874 79.902 2.406 104.512 68.830 268.628 167.627 
1980 44.253 32.317 21.998 0.799 94.153 60.600 227.861 249.322 
1981 13.288 7.627 6.097 0.303 43.619 25.041 91.978 132.669 
1982 6.274 2.417 6.560 0.309 20.234 123.733 44.608 143.740 
1983 5.913 2.566 7.631 0.317 13.281 61.639 39.559 49.320 
1984 5.875 2.810 5.880 0.315 14.021 83.152 41.110 155.311 
1985 7.157 2.358 9.835 0.448 13.599 8.474 34.818 34.535 
1986 11.740 4.535 14.439 0.663 19.972 42.837 46.690 48.158 
1987 15.102 6.504 20.735 0.817 23.688 12.428 53.469 70.263 
1988 15.874 8.814 26.530 0.905 28.287 7.426 57.689 55.372 
1989 17.269 10.607 30.131 0.946 25.770 7.693 61.129 55.941 
1990 17.445 11.600 27.889 0.953 21.832 22.559 61.553 60.321 
1991 14.053 10.321 22.887 0.933 19.638 13.910 55.799 85.055 
1992 10.972 8.183 20.747 0.894 19.317 1.952 49.494 37.687 
1993 11.503 7.367 18.104 0.870 17.176 10.068 47.509 53.703 
1994 11.267 6.727 23.545 0.893 14.030 1.442 41.708 32.335 
1995 11.760 8.539 26.342 0.872 13.598 55.425 48.371 38.396 
1996 11.797 9.169 24.351 0.831 18.930 6.373 55.959 44.649 
1997 11.065 8.234 22.531 0.797 27.672 2.627 59.961 85.277 
1998 15.257 7.950 24.681 0.860 25.843 11.354 63.115 85.176 
1999 16.829 9.501 29.080 0.950 22.525 31.460 62.984 65.604 
2000 14.936 10.861 28.993 0.950 24.874 11.234 65.437 68.342 
2001 13.931 10.376 27.889 0.918 28.968 8.892 68.099 53.188 
2002 15.558 9.904 29.745 0.915 28.698 53.453 72.565 69.786 
2003 16.307 10.722 28.446 0.904 34.159 8.020 77.559 116.794 
2004 14.548 10.182 26.444 0.871 41.453 15.651 79.208 131.910 
2005 16.909 9.669 26.785 0.881 39.663 52.109 84.177 107.341 
2006 17.185 10.240 28.823 0.924 43.430 17.698 87.348 95.676 
2007 16.657 10.820 26.184 0.938 50.304 11.930 92.529 104.841 
2008 18.276 10.050 27.415 1.036 47.373 9.252 92.576 114.430 
2009 19.478 10.859 31.255 1.185 43.143 10.341 90.199 91.673 
2010 18.496 12.095 31.527 1.273 39.791 16.349 88.044 81.642 
2011 15.945 11.720 31.713 1.296 37.985 15.901 84.609 67.053 
2012 14.527 11.237 30.579 1.288 37.675 10.219 83.722 61.248 
2013 14.259 10.499 29.488 1.304 36.823 6.748 82.131 62.410 
2014 14.307 10.089 28.306 1.360 33.977 2.284 78.549 114.103 
2015 13.507 9.726 26.928 1.419 29.931 5.261 72.983 64.240 
2016 12.198 9.205 25.056 1.454 26.093 6.184 66.873 61.231 
2017 10.382 8.405 20.814 1.126 23.773 2.669 60.831 52.922 
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Table 7(2b). Comparison of projected mature male biomass (1000 t) on Feb. 15, retained catch (1000 t), 
their 95% limits, and mean fishing mortality with no directed fishery, F40%, and F35% harvest strategy with 
F35% constraint during 2017-2026. Parameter estimates with scenario 2 are used for the projection. 
  

No Directed Fishery 
Year MMB 95% LCI 95% UCI Catch 95% LCI 95% UCI 

2017 26.310 23.719 28.757 0.000 0.000 0.000 
2018 25.868 23.321 28.274 0.000 0.000 0.000 
2019 25.350 22.853 27.709 0.000 0.000 0.000 
2020 24.805 22.432 27.316 0.000 0.000 0.000 
2021 26.554 22.133 36.148 0.000 0.000 0.000 
2022 30.811 22.341 49.368 0.000 0.000 0.000 
2023 35.911 22.448 60.877 0.000 0.000 0.000 
2024 41.038 23.713 70.650 0.000 0.000 0.000 
2025 45.760 25.333 78.897 0.000 0.000 0.000 
2026 49.955 26.680 85.860 0.000 0.000 0.000 

 

F40% 

2017 21.981 20.158 23.665 4.465 3.672 5.252 
2018 18.845 17.476 20.094 3.238 2.735 3.724 
2019 16.757 15.642 17.767 2.448 2.101 2.778 
2020 15.364 14.354 16.580 1.968 1.713 2.252 
2021 16.352 13.274 23.896 1.961 1.451 3.227 
2022 19.337 12.876 33.427 2.458 1.311 4.734 
2023 22.430 13.092 40.377 3.243 1.285 6.517 
2024 24.947 13.938 43.503 3.999 1.388 8.018 
2025 26.726 15.000 47.101 4.599 1.601 8.656 
2026 27.928 15.453 49.508 5.002 1.802 9.333 

 
F35% 

2017 21.339 19.616 22.926 5.127 4.231 6.014 
2018 17.968 16.717 19.104 3.545 3.014 4.056 
2019 15.820 14.818 16.725 2.607 2.254 2.941 
2020 14.444 13.521 15.592 2.065 1.806 2.355 
2021 15.435 12.466 22.807 2.062 1.513 3.439 
2022 18.316 12.089 31.744 2.645 1.365 5.335 
2023 21.187 12.329 37.890 3.535 1.345 7.308 
2024 23.414 13.155 41.078 4.362 1.465 8.990 
2025 24.898 14.135 43.504 4.986 1.714 9.510 
2026 25.839 14.579 45.380 5.379 1.901 10.226 
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Figure 1. Current harvest rate strategy (line) for the Bristol Bay red king crab fishery and 
annual prohibited species catch (PSC) limits (numbers of crab) of Bristol Bay red king crab 
in the groundfish fisheries in zone 1 in the eastern Bering Sea. Harvest rates are based on 
current-year estimates of effective spawning biomass (ESB), whereas PSC limits apply to 
previous-year ESB.  
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Figure 2. Data types and ranges used for the stock assessment.  
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Figure 3. Retained catch biomass and bycatch mortality biomass (t) for Bristol Bay red king crab 
from 1953 to 2016. Handling mortality rates were assumed to be 0.2 for the directed pot fishery 
0.25 for the Tanner crab fishery and 0.8 for the trawl fisheries.  
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Figure 4. Comparison of survey legal male abundances and catches per unit effort for Bristol Bay 
red king crab from 1968 to 2016. 
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Figure 5a. Survey abundances by 5-mm carapace length bin for male Bristol Bay red king crab from 1968 to 2017. 
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Figure 5b. Survey abundances by 5 mm carapace length bin for female Bristol Bay red king crab from 1968 to 2017. 
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Figure 6. Relationship between implied effective sample sizes (section 3(a)(5)(i)) and effective 
sample sizes (see effective sample sizes for scenario 2b) for length/sex composition data with 
scenario 2b: trawl survey data.  

Survey Females 
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Figure 7. Relationship between implied effective sample sizes (section 3(a)(5)(i)) and effective 
sample sizes (see effective sample sizes for scenario 2b) for length/sex composition data with 
scenario 2b: directed pot fishery data.  
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Figure 8a(2b). Estimated trawl survey selectivities under scenario 2b. Pot, fixed gear and trawl 
handling mortality rates were assumed to be 0.2 0.5 and 0.8, respectively. 
 

September 2017 Plan Team Draft Bristol Bay Red King Crab

NPFMC Bering Sea/Aleutian Islands Crab SAFE209



 
 
Figure 8a(2d). Estimated trawl survey selectivities under scenario 2d. Pot, fixed gear and trawl 
handling mortality rates were assumed to be 0.2, 0.5 and 0.8, respectively. 
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Figure 8b. Comparisons of estimated NMFS trawl survey selectivities for period 1982-2017 
under scenarios 2a, 2b, 2b1, and 2d. Pot, fixed gear and trawl handling mortality rates were 
assumed to be 0.2, 0.5 and 0.8, respectively. 
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Figure 8c. Estimated pot fishery selectivities and groundfish trawl bycatch selectivities under 
scenario 2b. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 and 
0.8, respectively. 
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Figure 9(2b). Comparison of estimated probabilities of molting of male red king crab in Bristol 
Bay for different periods. Molting probabilities for periods 1954-1961 and 1966-1969 were 
estimated by Balsiger (1974) from tagging data. Molting probabilities for 1975-2017 were 
estimated with a length-based model with pot handling mortality rate of 0.2 under scenario 2b. 
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Figure 10a. Comparisons of area-swept estimates of total survey biomass and model prediction 
for model estimates in 2017 under scenarios 2a, 2a1, 2a2, 2b, 2b1, 2b2, 2d, 2d1, and 2d2. Pot, 
fixed gear, and trawl handling mortality rates were assumed to be 0.2, 0.5 and 0.8, respectively. 
The error bars are plus and minus 2 standard deviations.  
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Figure 10b. Comparisons of area-swept estimates of male (>119 mm) and female (>89 mm) 
abundance and model prediction for model estimates in 2017 under scenarios 2a, 2b, 2b1, and 
2d. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 and 0.8, 
respectively.  
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Figure 10c. Comparisons of total survey biomass estimates by the BSFRF survey and the model 
for model estimates in 2017 (scenarios 2a, 2a1, 2a2, 2b, 2b1, 2b2, 2d, 2d1, and 2d2). The error 
bars are plus and minus 2 standard deviations of scenario 2b. 
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Figure 10d. Comparisons of estimated BSFRF survey selectivities with scenarios 2a, 2b, 2b1, 
and 2d. The catchability is assumed to be 1.0. 
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Figure 10e(2a, 2b & 2d). Comparisons of length compositions by the BSFRF survey and the 
model estimates during 2007-2008 and 2013-2016 with scenarios 2a (solid black), 2b (dashed 
red), and 2d (green lines). 
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Figure 10e(2b, 2b1 & 2b2). Comparisons of length compositions by the BSFRF survey and the 
model estimates during 2007-2008 and 2013-2016 with scenarios 2b (solid black), 2b1 (dashed 
red), and 2b2 (green lines). 
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Figure 11. Estimated absolute mature male biomasses during 1975-2017 for scenarios 2a, 2a1, 2a2, 
2b, 2b1, 2b2, 2d, 2d1, and 2d2. 
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Figure 12(2b). Estimated recruitment time series during 1976-2017 with scenario 2b. Mean male 
recruits during 1984-2016 was used to estimate B35%. 
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Figure 12(2d). Estimated recruitment time series during 1976-2017 with scenario 2d. Mean male 
recruits during 1984-2017 was used to estimate B35%. 
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Figure 13(2b). Relationships between full fishing mortalities for the directed pot fishery and mature 
male biomass on Feb. 15 during 1975-2016 under scenario 2b. Average of recruitment from 1984 to 
2017 was used to estimate BMSY. Pot, fixed gear and trawl handling mortality rates were assumed to 
be 0.2, 0.5 and 0.8, respectively. 
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Figure 13(2d). Relationships between full fishing mortalities for the directed pot fishery and mature 
male biomass on Feb. 15 during 1975-2016 under scenario 2d. Average of recruitment from 1984 to 
2017 was used to estimate BMSY. Pot, fixed gear and trawl handling mortality rates were assumed 
to be 0.2, 0.5 and 0.8, respectively. 
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Figure 14a. Relationships between mature male biomass on Feb. 15 and total recruits at age 5 
(i.e., 6-year time lag) for Bristol Bay red king crab with pot handling mortality rate of 0.2 under 
scenario 2b. Numerical labels are years of mating, and the vertical dotted line is the estimated 
B35% based on the mean recruitment level during 1984 to 2017. 
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Figure 14b. Relationships between log recruitment per mature male biomass and mature male 
biomass on Feb. 15 for Bristol Bay red king crab with pot handling mortality rate of 0.2 under 
scenario 2b. Numerical labels are years of mating, and the line is the regression line for data of 
1978-2011.  
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Figure 15. Average clutch fullness and proportion of empty clutches of newshell (shell 
conditions 1 and 2) mature female crab >89 mm CL from 1975 to 2017 from survey data. 
Oldshell females were excluded.  
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Figure 16a. Observed and predicted catch mortality biomass under scenarios 2a(solid black), 2b 
(dashed red), and 2d (green lines). Mortality biomass is equal to caught biomass times a handling 
mortality rate. Pot handling mortality rate is 0.2. 
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Figure 16b. Observed and predicted bycatch mortality biomass from groundfish fisheries and the 
Tanner crab fishery under scenarios 2a(solid black), 2b (dashed red), and 2d (green lines). 
Mortality biomass is equal to caught biomass times a handling mortality rate. Trawl handling 
mortality rate is 0.8, fixed gear handling mortality rate is 0.5, and Tanner crab pot handling 
mortality is 0.25. Trawl bycatch biomass was 0 before 1976. 
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Figure 17(2b). Standardized residuals of total survey biomass under scenario 2b. Pot, fixed gear 
and trawl handling mortality rates were assumed to be 0.2, 0.5 and 0.8, respectively. 
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Figure 17(2d). Standardized residuals of total survey biomass under scenario 2d. Pot, fixed gear 
and trawl handling mortality rates were assumed to be 0.2, 0.5 and 0.8, respectively. 
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Figure 18(2a, 2b & 2d). Comparison of area-swept and model estimated survey length 
frequencies of Bristol Bay male red king crab by year under scenarios 2a(solid black), 2b 
(dashed red), and 2d (green lines). Pot, fixed gear and trawl handling mortality rates were 
assumed to be 0.2, 0.5 and 0.8. 
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Figure 18(2b, 2b1 & 2b2). Comparison of area-swept and model estimated survey length 
frequencies of Bristol Bay male red king crab by year under scenarios 2b(solid black), 2b1 
(dashed red), and 2b2 (green lines). Pot, fixed gear and trawl handling mortality rates were 
assumed to be 0.2, 0.5 and 0.8. 
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Figure 19(2a, 2b & 2d). Comparison of area-swept and model estimated survey length 
frequencies of Bristol Bay female red king crab by year under scenarios 2a(solid black), 2b 
(dashed red), and 2d (green lines). Pot, fixed gear and trawl handling mortality rates were 
assumed to be 0.2, 0.5 and 0.8. 
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Figure 19(2b, 2b1 & 2b2). Comparison of area-swept and model estimated survey length 
frequencies of Bristol Bay female red king crab by year under scenarios 2b(solid black), 2b1 
(dashed red), and 2b2 (green lines). Pot, fixed gear and trawl handling mortality rates were 
assumed to be 0.2, 0.5 and 0.8. 
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Figure 20(2a, 2b & 2d). Comparison of observed and model estimated retained length 
frequencies of Bristol Bay male red king crab by year in the directed pot fishery under scenarios 
2a(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl handling 
mortality rates were assumed to be 0.2, 0.5 and 0.8. 
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Figure 21(2a, 2b & 2d). Comparison of observer and model estimated discarded length 
frequencies of Bristol Bay male red king crab by year in the directed pot fishery under scenarios 
2a(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl handling 
mortality rates were assumed to be 0.2, 0.5 and 0.8.  
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Figure 22(2a, 2b & 2d). Comparison of observer and model estimated discarded length 
frequencies of Bristol Bay female red king crab by year in the directed pot fishery under 
scenarios 2a(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl 
handling mortality rates were assumed to be 0.2, 0.5 and 0.8. 
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Figure 23(2a, 2b & 2d). Comparison of observer and model estimated discarded length 
frequencies of Bristol Bay male red king crab by year in the groundfish trawl fisheries under 
scenarios 2a(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl 
handling mortality rates were assumed to be 0.2, 0.5 and 0.8.  
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Figure 23(2a, 2b & 2d). Comparison of observer and model estimated discarded length 
frequencies of Bristol Bay female red king crab by year in the groundfish trawl fisheries under 
scenarios 2a(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl 
handling mortality rates were assumed to be 0.2, 0.5 and 0.8.  
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Figure 24(2b1, 2b & 2d). Comparison of observer and model estimated discarded length 
frequencies of Bristol Bay male red king crab by year in the groundfish fixed gear fisheries under 
scenarios 2b1(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl 
handling mortality rates were assumed to be 0.2, 0.5 and 0.8. 
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Figure 24(2b1, 2b & 2d). Comparison of observer and model estimated discarded length 
frequencies of Bristol Bay female red king crab by year in the groundfish fixed gear fisheries 
under scenarios 2b1(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl 
handling mortality rates were assumed to be 0.2, 0.5 and 0.8. 
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Figure 24(2a, 2b & 2d). Comparison of observer and model estimated discarded length 
frequencies of Bristol Bay red king crab by year in the Tanner crab fishery under scenarios 
2a(solid black), 2b (dashed red), and 2d (green lines). Pot, fixed gear and trawl handling 
mortality rates were assumed to be 0.2, 0.5 and 0.8. 
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Figure 25(2a). Standardized residuals of proportions of survey male red king crab by year and 
carapace length (mm) under scenario 2a. Green circles are positive residuals, and red circles are 
negative residuals. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 
and 0.8, respectively. 
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Figure 25(2b). Standardized residuals of proportions of survey male red king crab by year and 
carapace length (mm) under scenario 2b. Green circles are positive residuals, and red circles are 
negative residuals. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 
and 0.8, respectively. 
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Figure 25(2d). Standardized residuals of proportions of survey male red king crab by year and 
carapace length (mm) under scenario 2d. Green circles are positive residuals, and red circles are 
negative residuals. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 
and 0.8, respectively. 
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Figure 25(2a). Standardized residuals of proportions of survey female red king crab by year and 
carapace length (mm) under scenario 2a. Green circles are positive residuals, and red circles are 
negative residuals. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 
and 0.8, respectively. 
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Figure 25(2b). Standardized residuals of proportions of survey female red king crab by year and 
carapace length (mm) under scenario 2b. Green circles are positive residuals, and red circles are 
negative residuals. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 
and 0.8, respectively. 
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Figure 25(2d). Standardized residuals of proportions of survey female red king crab by year and 
carapace length (mm) under scenario 2d. Green circles are positive residuals, and red circles are 
negative residuals. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 
and 0.8, respectively. 
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Figure 27. Comparison of hindcast estimates of mature male biomass on Feb. 15 (top) and total 
abundance (bottom) of Bristol Bay red king crab from 1975 to 2017 made with terminal years 2011-
2017 with scenario 2b. These are results of the 2017 model. Legend shows the terminal year. Pot, 
fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 and 0.8, respectively.  
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Figure 28. Comparison of hindcast estimates of total recruitment for scenario 2b of Bristol Bay red 
king crab from 1976 to 2017 made with terminal years 2011-2017. These are results of the 2017 
model. Legend shows the terminal year. Pot, fixed gear and trawl handling mortality rates were 
assumed to be 0.2, 0.5 and 0.8, respectively.   
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Figure 29. Comparison of estimates of legal male abundance (top) and mature males (bottom) of 
Bristol Bay red king crab from 1968 to 2017 made with terminal years 2004-2017 with the base 
scenarios. Scenario 2b is used for 2017. These are results of historical assessments. Legend shows 
the year in which the assessment was conducted. Pot, fixed gear and trawl handling mortality rates 
were assumed to be 0.2, 0.5 and 0.8, respectively.   
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Figure 30. Probability distributions of estimated trawl survey catchability (Q) under scenario 2b 
with the mcmc approach. Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 
0.5 and 0.8, respectively.   
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Figure 31a(2b & 2d). Probability distributions of estimated mature male biomass on Feb. 15, 2017 
with F35% under scenarios 2b (upper panel) and 2d (lower panel) with the mcmc approach. Pot, fixed 
gear and trawl handling mortality rates were assumed to be 0.2, 0.5 and 0.8, respectively.  
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Figure 31b(2b & 2d). Probability distributions of the 2017 estimated OFL with scenarios 2b (upper 
panel) and 2d (lower panel) with the mcmc approach. Pot, fixed gear and trawl handling mortality 
rates were assumed to be 0.2, 0.5 and 0.8, respectively. 
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Figure 32(2b & 2d). Projected mature male biomass on Feb. 15 with F40% and F35% harvest 
strategy during 2017-2026. Input parameter estimates are based on scenarios 2b (upper panel) 
and 2d (lower panel). Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 
0.5 and 0.8, respectively, and the confidence limits are for the F35% harvest strategy. 
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Figure 33(2b&2d). Projected retained catch biomass with F40% and F35% harvest strategy during 
2017-2126. Input parameter estimates are based on scenarios 2b (upper panel) and 2d (lower 
panel). Pot, fixed gear and trawl handling mortality rates were assumed to be 0.2, 0.5 and 0.8, 
respectively, and the confidence limits are for the F35% harvest strategy. 
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Figure 34. Length frequency distributions of male (top panel) and female (bottom panel) red king 
crab in Bristol Bay from NMFS trawl surveys during 2013-2017. For purposes of these graphs, 
abundance estimates are based on area-swept methods. 
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Appendix A. Description of the Bristol Bay Red King Crab Model 
 
a. Model Description 

i. Population model 
The original LBA model was described in detail by Zheng et al. (1995a, 1995b) and Zheng and 
Kruse (2002). Crab abundances by carapace length and shell condition in any one year are 
modeled to result from abundances in the previous year minus catch and handling and natural 
mortalities, plus recruitment, and additions to or losses from each length class due to growth:  
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where  is the number of new shell crab of sex s in length-class l at the start of year t,  the 

number of old shell crab of sex s in length-class l at the start of year t,  the proportion during 

year t of an animals of sex s in length-class l’ which grow into length-class l given that they 
moulted,  the rate of natural mortality on animals of sex s during year t, s

tlm , the probability 

that an animal of sex s in length-class l will moult during year t,  the recruitment [to the 

model] of animals of sex s during year t, s
lU  the proportion of recruits of sex s which recruit to 

length-class l,  the retained catch (in numbers) of animals of sex s in length-class l during 

year t,  the discarded catch of animals of sex s in length-class l during year t in the directed 

fishery,  the discarded catch of animals of sex s in length-class l during year t in the Tanner 

crab fishery and the groundfish fisheries,  the time in years between survey and the directed 

pot fishery during year t, and  the time in years between survey and the Tanner and groundfish 

fisheries during year t.  

The minimum carapace length for both males and females is set at 65 mm, and crab abundance is 
modeled with a length-class interval of 5 mm. The last length class includes all crab 160-mm 
CL for males and 140-mm CL for females. Thus, length classes/groups are 20 for males and 16 
for females. Since females moult annually (Powell 1967), females have only the first part of the 
equation (A1). 

The growth increment is assumed to be gamma distributed with mean which depends linearly on 
pre-moult length, i.e.: 
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where  is the mid-point of length-class l,  the width of each size-class (5 mm carapace 

length),  the parameters of the length–growth increment relationship for sex s and year t, 

and  the parameter determining the variance of the growth increment. Growth is time-
invariant for males, and specified for three time-blocks for females (1968-82; 1983-93; 1994-
2017) based on changes to the size at maturity for females. The probability of moulting as a 
function of length for males is given by an inverse logistic function, i.e.: 

                                                        (A3) 

where  are the parameters which determine the relationship between length and the 

probability of moulting.  

Recruitment is defined as recruitment to the model and survey gear rather than recruitment to the 
fishery. Recruitment is separated into a time-dependent variable, , and size-dependent 

variables, s
lU , representing the proportion of recruits belonging to each length class. is 

assumed to consist of crab at the recruiting age with different lengths and thus represents year 
class strength for year t. The proportion of recruits by length-class, s

lU , is described using a 

gamma distribution with parameters s
l and s

l . Because of different growth rates, recruitment is 

estimated separately for males and females under a constraint of approximately equal sex ratios 
of recruitment over time.  

ii. Catches and Fisheries Selectivities 
Before 1990, no observed bycatch data were available in the directed pot fishery; the crab that 
were discarded and died in those years were estimated as the product of handling mortality rate, 
legal harvest rates, and mean length-specific selectivities. It is difficult to estimate bycatch from 
the Tanner crab fishery before 1991. A reasonable index to estimate bycatch fishing mortalities 
is potlifts of the Tanner crab fishery within the distribution area of Bristol Bay red king crab. 
Thus, bycatch fishing mortalities from the Tanner crab fishery before 1991 were estimated to be 
proportional to the smoothing average of potlifts east of 163o W. The smoothing average is equal 
to (Pt-2+2Pt-1+3Pt)/6 for the potlifts in year t. The smoothing process not only smoothes the 
annual number of potlifts, it also indexes the effects of lost pots during the previous years. All 
bycatches are death catches because the model fits the estimated observed death bycatches.  

The catch (by sex) in numbers by the directed fishery is: 

                                                    (A4) 

where  is the fishing mortality rate during year t on animals of sex s in length-class l due to 
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where  is the selectivity pattern for the landings by the directed fishery,  the 

selectivity pattern for the discards in the directed fishery by sex,  the fully-selected fishing 

mortality during year t (on males), femdisc
tF ,  the fully-selected fishing mortality on female animals 

during year t related to discards in the directed fishery,  the handling mortality (the proportion 

of animals which die due to being returned to the water following capture), and  the rate of 

high-grading during year t , i.e. discards of animals which can be legally-retained by the directed 
pot fishery (non-zero only for 2005-2016). 

There are no landings of females in a male-only fishery, while the landings C of males in the 
directed fishery and discards D of males in the directed fishery are: 

                                        (A6) 

The catch (by sex) in numbers by the Tanner crab and groundfish fisheries in length-class l 
during year t is given by:  

)1()( ,,
~

,,,

s
tl

s
tl

s
tt FFMjs

tl
s
tl

s
tl eeeONT                                                                               (A7)                         

where  is the fishing mortality rate during year t on animals of sex s in length-class l due to 

the Tanner crab and groundfish fisheries: 
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where  is the selectivity pattern for the discards in the Tanner crab fishery by sex,  

 the fully-selected fishing mortality during year t on animals of sex s during year t due to 

this fishery,  the selectivity pattern for the bycatch in the groundfish trawl fishery,  the 

fully-selected fishing mortality due to the groundfish trawl fishery, fix
lS  the selectivity pattern for 

the bycatch in the groundfish fixed gear fishery, and fix
tF  the fully-selected fishing mortality due 

to the groundfish fixed gear fishery.  

The bycatches by sex are estimated from the Tanner crab fishery, s
tlTC , , groundfish trawl fishery, 

s
tlGT , , and groundfish fixed gear fishery, s

tlGF , , as follow: 
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For scenarios separating mature and immature crab, discarded female bycatch in numbers is 
separated into immature and mature bycatches. The female bycatches in the directed fishery in 
length-class l and during year t, i

tlD , and m
tlD , , and i

tlT ,  and m
tlT , , are: 
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The female bycatches (by maturity) in numbers by the Tanner crab and groundfish fisheries in 
length-class l during year t for scenario 2 are given by: 
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Retained selectivity, , selectivity for females in the directed fishery, , selectivities 

for males and females in the groundfish trawl and fixed gear fisheries, and fixS , and 
selectivity for males and females in the Tanner crab fishery, , are all assumed to be 
logistic functions of length: 

e +1
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 S typetype L -
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l )( 50

                                                                                                (A12) 

Different sets of parameters (β, L50) are estimated for retained males, female pot bycatch, male and 
female trawl bycatch, and discarded males and females from the Tanner crab fishery.  

Male pot bycatch selectivity in the directed fishery is modeled by two linear functions:  
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where  φ, κ,   are parameters. 

 

iii. Trawl Survey Selectivities 

Trawl survey selectivities are estimated as 
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with different sets of parameters (β, L50) estimated for males and females as well as two different 
periods (1975-81 and 1982-17). Survey selectivity for the first length group (67.5 mm) was 
assumed to be the same for both males and females, so only three parameters (β, L50 for females 
and L50 for males) were estimated in the model for each of the four periods. Parameter Q was 
called the survey catchability that was estimated based on a trawl experiment by Weinberg et al. 
(2004; Figure A1). Q was assumed to be constant over time.  

Assuming that the BSFRF survey caught all crab within the area-swept, the ratio between NMFS 
abundance and BSFRF abundance is a capture probability for the NMFS survey net. The Delta 
method was used to estimate the variance for the capture probability. A maximum likelihood 
method was used to estimate parameters for a logistic function as an estimated capture 
probability curve (Figure A1). For a given size, the estimated capture probability is smaller based 
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on the BSFRF survey than from the trawl experiment, but the Q value is similar between the 
trawl experiment and the BSFRF surveys (Figure A1). Because many small-sized crab are likely 
in the shallow water areas that are not accessible for the trawl survey, NMFS trawl survey 
selectivity consists of capture probability and crab availability.   

iv. Estimating Bycatch Fishing Mortalities for Years without Observer Data 

Observer data are not available for the directed pot fishery before 1990 and the Tanner crab 
fishery before 1991. There are also extremely low observed bycatches in the Tanner crab fishery 
during 1994 and 2006-2009.  Bycatch fishing mortalities for male and females during 1975-1989 
in the directed pot fishery were estimated as  

dir
t

ssdisc
t FrF ,                                                                                                              (A15)   

where rs is the median ratio of estimated bycatch discard fishing mortalities to the estimated 
directed pot fishing mortalities during 1990-2004 for sex s. Directed pot fishing practice has 
changed after 2004 due to fishery rationalization.  

We used pot fishing effort (potlifts) east of 163o W in the Tanner crab fishery to estimate red 
king crab bycatch discard fishing mortalities in that fishery when observer data are not available 
(1975-1990, 1994, 2006-2009):  

t
ssTanner

t EaF ,                                                                                                              (A16) 

where as is the mean ratio of estimated Tanner crab fishery bycatch fishing mortalities to fishing 
efforts during 1991-1993 for sex s, and Et is Tanner crab fishery fishing efforts east of 163o W in 
year t.  Due to fishery rationalization after 2004, we used the data only during 1991-1993 to 
estimate the ratio.    

b. Software Used: AD Model Builder (Fournier et al. 2012). 

c. Likelihood Components  

A maximum likelihood approach was used to estimate parameters. For length compositions 
(pl,t,s,sh), the likelihood functions are :  

nLpp
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                                      (A17) 

where L is the number of length groups, T the number of years, and n the effective sample size, 
which was estimated for trawl survey and pot retained catch and bycatch length composition data 
from the directed pot fishery, and was assumed to be 50 for groundfish trawl and Tanner crab 
fisheries bycatch length composition data.  

The weighted negative log likelihood functions are:  
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where Rt is the recruitment in year t, R the mean recruitment, MR the mean male recruitment,  

FR the mean female recruitment, tF  the mean trawl bycatch fishing mortality, fF  the mean pot 
female bycatch fishing mortality, Q summer trawl survey catchability, and σ the estimated 
standard deviation of Q (all scenarios) or each of six growth increment parameters for scenario 2.  

For BSFRF total survey biomass, CV is the survey CV plus AV, where AV is additional CV and 
estimated in the model.  

Weights λj are assumed to be 500 for retained catch biomass, and 100 for all bycatch biomasses, 
2 for recruitment variation, 10 for recruitment sex ratio, 0.2 for pot female bycatch fishing 
mortality, and 0.1 for trawl bycatch fishing mortality. These λj values represent prior assumptions 
about the accuracy of the observed catch biomass data.  

 
d. Population State in Year 1. 

The total abundance and proportions for the first year are estimated in the model.  

 
e. Parameter estimation framework: 

i. Parameters estimated independently  

Basic natural mortality, length-weight relationships, and mean growth increments per 
molt were estimated independently outside of the model. Mean length of recruits to the 
model depends on growth and was assumed to be 72.5 for both males and females. High 
grading parameters ht were estimated to be 0.2785 in 2005, 0.0440 in 2006, 0.0197 in 
2007,  0.0198 in 2008, 0.0337 in 2009, 0.0153 in 2010, 0.0113 in 2011, 0.0240 in 2012,  
0.0632 in 2013, 0.1605 in 2014, 0.07 in 2015, and 0.0826 in 2016, based on the 
proportions of discarded legal males to total caught legal males. Handling mortality rates 
were set to 0.2 for the directed pot fishery, 0.25 for the Tanner crab fishery, 0.5 for the 
groundfish fixed gear fishery, and 0.8 for the groundfish trawl fishery.   
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(1). Natural Mortality 
Based on an assumed maximum age of 25 years and the 1% rule (Zheng 2005), basic M 
was estimated to be 0.18 for both males and females. Natural mortality in a given year, 
Mt, equals to M +Mmt (for males) or M + Mft (females). One value of Mmt  during 1980-
1985 was estimated and two values of Mft during 1980-1984 and 1976-79, 1985-93 were 
estimated in the model for scenarios.  

 
(2). Length-weight Relationship 
 Length-weight relationships for males and females were as follows: 

      Immature Females:    W = 0.000408 L3.127956 

      Ovigerous Females:  W = 0.003593 L2.666076                                                        (A19) 

      Males:                 W = 0.0004031 L3.141334 

      where W is weight in grams, and L CL in mm. 

(3). Growth Increment per Molt 
 A variety of data are available to estimate male mean growth increment per molt for 

Bristol Bay RKC. Tagging studies were conducted during the 1950s, 1960s and 1990s, 
and mean growth increment per molt data from these tagging studies in the 1950s and 
1960s were analyzed by Weber and Miyahara (1962) and Balsiger (1974). Modal 
analyses were conducted for the data during 1957-1961 and the 1990s (Weber 1967; 
Loher et al. 2001). Mean growth increment per molt may be a function of body size and 
shell condition and vary over time (Balsiger 1974; McCaughran and Powell 1977); 
however, for simplicity, mean growth increment per molt was assumed to be only a 
function of body size in the models. Tagging data were used to estimate mean growth 
increment per molt as a function of pre-molt length for males (Figure A2). The results 
from modal analyses of 1957-1961 and the 1990s were used to estimate mean growth 
increment per molt for immature females during 1975-1993 and 1994-2017, respectively, 
and the data presented in Gray (1963) were used to estimate those for mature females for 
scenarios 1, 1n and 2 (Figure A2). To make a smooth transition of growth increment per 
molt from immature to mature females, weighted growth increment averages of 70% and 
30% at 92.5 mm CL pre-molt length and 90% and 10% at 97.5 mm CL were used, 
respectively, for mature and immature females during 1983-1993. These percentages are 
roughly close to the composition of maturity. During 1975-1982, females matured at a 
smaller size, so the growth increment per molt as a function of length was shifted to 
smaller increments. Likewise, during 1994-2017, females matured at a slightly higher 
size, so the growth increment per molt was shifted to high increments for immature crab 
(Figure A2). Once mature, the growth increment per molt for male crab decreases slightly 
and annual molting probability decreases, whereas the growth increment for female crab 
decreases dramatically but annual molting probability remains constant at 1.0 (Powell 
1967). 

 (4). Sizes at Maturity for Females 
 The NMFS collected female reproductive condition data during the summer trawl 

surveys. Mature females are separated from immature females by a presence of egg 
clutches or egg cases. Proportions of mature females at 5-mm length intervals were 
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summarized and a logistic curve was fitted to the data each year to estimate sizes at 50% 
maturity. Sizes at 50% maturity are illustrated in Figure A3 with mean values for three 
different periods (1975-82, 1983-93, and 1994-2017).  

(5). Sizes at Maturity for Males 
 Although size at sexual maturity for Bristol Bay red king crab males has been estimated 

(Paul et al. 1991), there are no data for estimating size of functional maturity collected in 
the natural environment. Sizes at functional maturity for Bristol Bay male RKC have 
been assumed to be 120 mm CL (Schmidt and Pengilly 1990). This is based on mating 
pair data collected off Kodiak Island (Figure A4). Sizes at maturity for Bristol Bay 
female RKC are about 90 mm CL, about 15 mm CL less than Kodiak female RKC 
(Pengilly et al. 2002). The size ratio of mature males to females is 1.3333 at sizes at 
maturity for Bristol Bay RKC, and since mature males grow at much larger increments 
than mature females, the mean size ratio of mature males to females is most likely larger 
than this ratio. Size ratios of the large majority of Kodiak mating pairs were less than 
1.3333, and in some bays, only a small proportion of mating pairs had size ratios above 
1.3333 (Figure A4).  

 In the laboratory, male RKC as small as 80 mm CL from Kodiak and Southeast Alaska 
can successfully mate with females (Paul and Paul 1990). But few males less than 100 
mm CL were observed to mate with females in the wild. Based on the size ratios of males 
to females in the Kodiak mating pair data, setting 120 mm CL as a minimum size of 
functional maturity for Bristol Bay male RKC is proper in terms of managing the fishery. 

(6). Potential Reasons for High Mortality during the Early 1980s 
 Bristol Bay red king crab abundance had declined sharply during the early 1980s. Many 

factors have been speculated for this decline: (i) completely wiped out by fishing: the 
directed pot fishery, the other directed pot fishery (Tanner crab fishery), and bottom 
trawling; and (ii) high fishing and natural mortality. With the survey abundance, harvest 
rates in 1980 and 1981 were among the highest, thus the directed fishing definitely had a 
big impact on the stock decline, especially legal and mature males. However, for the 
sharp decline during 1980-1984 for males, 3 out of 5 years had low mature harvest rates. 
During the 1981-1984 decline for females, 3 out of 4 years had low mature harvest rates. 
Also pot catchability for females and immature males are generally much lower than for 
legal males, so the directed pot fishing alone cannot explain the sharp decline for all 
segments of the stock during the early 1980s. 

 Red king crab bycatch in the eastern Bering Sea Tanner crab fishery is another potential 
factor (Griffin et al. 1983). The main overlap between Tanner crab and Bristol Bay red 
king crab is east of 163o W. No absolute red king crab bycatch estimates are available 
until 1991. So there are insufficient data to fully evaluate the impact. Retained catch and 
potlifts from the eastern Bering Sea Tanner crab fishery are illustrated in Figure A5. The 
observed red king crab bycatch in the Tanner crab fishery during 1991-1993 and total 
potlifts east of 163o W during 1968 to 2005 were used to estimate the bycatch mortality 
in the current model. Because winter sea surface temperatures and air temperatures were 
warmer (which means a lower handling mortality rate) and there were fewer potlifts 
during the early 1980s than during the early 1990s, bycatch in the Tanner crab fishery is 
unlikely to have been a main factor for the sharp decline of Bristol Bay red king crab. 
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 Several factors may have caused increases in natural mortality. Crab diseases in the early 
1980s were documented by Sparks and Morado (1985), but inadequate data were 
collected to examine their effects on the stock. Stevens (1990) speculated that senescence 
may be a factor because many crab in the early 1980s were very old due to low 
temperatures in the 1960s and early 1970s. The biomass of the main crab predator, 
Pacific cod, increased about 10 times during the late 1970s and early 1980s. Yellowfin 
sole biomass also increased substantially during this period. Predation is primarily on 
juvenile and molting/softshell crab. But we lack stomach samples in shallow waters 
(juvenile habitat) and during the period when red king crab molt. Also cannibalism 
occurs during molting periods for red king crab. High crab abundance in the late 1970s 
and early 1980s may have increased the occurrence of cannibalism. 

 Overall, the likely causes for the sharp decline in the early 1980s are combinations of the 
above factors, such as pot fisheries on legal males, bycatch, and predation on females and 
juvenile and sublegal males, senescence for older crab, and disease for all crab. In our 
model, we estimated one mortality parameter for males and another for females during 
1980-1984. We also estimated a mortality parameter for females during 1976-1979 and 
1985-1993. These three mortality parameters are additional to the basic natural mortality 
of 0.18yr-1, all directed fishing mortality, and non-directed fishing mortality. These three 
mortality parameters could be attributed to natural mortality as well as undocumented 
non-directed fishing mortality. The model fit the data much better with these three 
parameters than without them. 

ii. Parameters estimated conditionally  

The following model parameters were estimated for male and female crab: total recruits 
for each year (year class strength Rt for t = 1976 to 2017), total abundance in the first year 
(1975), growth parameter , and recruitment parameter r for males and females 
separately. Molting probability parameters  and L50 were also estimated for male crab. 
Estimated parameters also include  and L50 for retained selectivity,  and L50 for pot-
discarded female selectivity,  and L50 for pot-discarded male and female selectivities 
from the eastern Bering Sea Tanner crab fishery,  and L50 for groundfish trawl discarded 
selectivity, φ, κ and  for pot-discarded male selectivity, and  for trawl survey selectivity 
and L50 for trawl survey male and females separately. The NMFS survey catchabilities Q 
for some scenarios were also estimated. Three selectivity parameters were estimated for 
the survey data from the Bering Fisheries Research Foundation. Annual fishing 
mortalities were also estimated for the directed pot fishery for males (1975-2016), pot-
discarded females from the directed fishery (1990-2016), pot-discarded males and 
females from the eastern Bering Sea Tanner crab fishery (1991-93, 2013-15), and 
groundfish trawl discarded males and females (1976-2016). Three additional mortality 
parameters for Mmt and Mft were also estimated. Some estimated parameters were 
constrained in the model. For example, male and female recruitment estimates were 
forced to be close to each other for a given year. 

f. Definition of model outputs. 

i. Biomass: two population biomass measurements are used in this report: total survey 
biomass (crab >64 mm CL) and mature male biomass (males >119 mm CL). Mating time 
is assumed to Feb. 15.  

September 2017 Plan Team Draft Bristol Bay Red King Crab

NPFMC Bering Sea/Aleutian Islands Crab SAFE267



ii. Recruitment: new entry of number of males in the 1st seven length classes (65- 99 mm 
CL) and new entry of number of females in the 1st five length classes (65-89 mm CL).  

iii. Fishing mortality: full-selected instantaneous annual fishing mortality rate at the time of 
fishery.  
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Figure A1. Estimated capture probabilities for NMFS Bristol Bay red king crab trawl surveys by 
Weinberg et al. (2004) and the Bering Sea Fisheries Research Foundation surveys. 
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Figure A2. Mean growth increments per molt for Bristol Bay red king crab. Note: “tagging”---
based on tagging data; “mode”---based on modal analysis. The female growth increments per 
molt are for scenarios 1, 1n and 2. 
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Figure A3. Estimated sizes at 50% maturity for Bristol Bay female red king crab from 1975 to 
2008. Averages for three periods (1975-82, 1983-93, and 1994-08) are plotted with a line. 
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Figure A4. Histograms of carapace lengths (CL) and CL ratios of males to females for male shell 
ages ≤13 months of red king crab males in grasping pairs; Powell’s Kodiak data. Upper plot: all 
locations and years pooled; middle plot: location 11; lower plot: locations 4 and 13. Sizes at 
maturity for Kodiak red king crab are about 15 mm larger than those for Bristol Bay red king 
crab. (Doug Pengilly, ADF&G, pers. comm.). 
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Figure A5. Retained catch and potlifts for total eastern Bering Sea Tanner crab fishery (upper plot) 
and the Tanner crab fishery east of 163o W (bottom).  
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Appendix B. Recruitment Breakpoint Analysis 
 
 
Introduction 

SSC asked authors to conduct a recruitment breakpoint analysis similar to that conducted for 
eastern Bering Sea Tanner crab in 2013 (Stockhausen 2013). We obtained the R codes from Dr. 
William (Buck) Stockhausen of NMFS and slightly modified them to conduct the analysis for 
Bristol Bay red king crab for better understanding the temporal change of stock productivity and 
the recruitment time series used for overfishing/overfished definitions. Results from assessment 
model scenario 2d were used for this analysis. We are very grateful for the help of Dr. 
Stockhausen for this analysis.  
 
Methods 

The methods are the same as Punt et al. (2014) and Stockhausen (2013). Stock productivity is 
represented by ln(R/MMB), where R is recruitment and MMB is mature male biomass, with 
recruitment lagging to the brood year of mature biomass. Let yt = ln(R/MMB) and yt can be 
estimated directly from the stock assessment model as observed values or from a stock-
recruitment model as ŷt. For Ricker stock-recruitment models,  
 

,ˆ
,ˆ
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btMMBy

t

t                                                                                              (1) 

where α1 and β1 are the Ricker stock-recruit function parameters for the early time period before 
the potential breakpoint in year b and α2 and β2 are the parameters for the time period after the 
breakpoint in year b. For Beverton-Holt stock-recruitment models, 
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where α1 and β1 are the Beverton-Holt stock-recruit function log-transformed parameters for the 
early time period before the potential breakpoint in year b and α2 and β2 are the log-transformed 
parameters for the time period after the breakpoint in year b.  

A maximum likelihood approach was used to estimate stock-recruitment model and error 
parameters. Because yt is measured with error, the negative log-likelihood function is   
 

),ˆ()ˆ(5.0)ln(5.0)ln( ,
1

jjjttt j t yyyyL ΩΩ                                   (3) 

where Ω contains observation and process error as 
 

,POΩ                                                                                                                    (4) 

where O is the observation error covariance matrix estimated from the stock assessment model 
and P is the process error matrix and is assumed to reflect a first-order autoregressive process to 
have σ2 on the diagonal and σ2 ρ|t-j| on the off-diagonal elements.  σ2 represents process error 
variance and ρ represents the degree of autocorrelation.  
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For each candidate breakpoint year b, the negative log likelihood value of equation (3) was 
minimized with respect to the six model parameters: α1, β1, α2, β2, ln(σ)  and tan(ρ). The minimum 
time span considered as a potential regime was 5 years. Each brood year from 1980 to 2005 was 
evaluated as a potential breakpoint b using time series of ln(R/MMB) and MMB for brood years 
1975-2010. A model with no breakpoint was also evaluated. Models with different breakpoints 
were then ranked using AICc (AIC corrected for small sample size; Burnham and Anderson 
2004),   

  ,
1

)1(2
)ln(2

kn
kk

LAICc                                                                                (5) 

where k is the number of parameters and n is the number of observations. Using AICc, the model 
with the smallest AICc is regarded as the “best” model among the set of models evaluated. 
Different models can be compared in terms of θm, the relative probability (odds) that the model 
with the minimum AICc score is a better model than model m, where 

].2/)exp([( minAICcAICcmm                                                                                 (6) 

 
Results 

Results are summarized in Tables B1-B4 and Figures B1-B6. Discarding the implausible 
breakpoint year of 1980 for the Ricker model due to implausible stock-recruitment model 
parameters, both Ricker model and Beverton-Holt model result in the same breakpoint brood 
year of 1986, which corresponds to recruitment year of 1992. The model with no breakpoint (i.e., 
a single time period) is about 5 times less probable than the 1986 breakpoint model for Beverton-
Holt stock-recruitment models and about eight times less probable for Ricker stock-recruitment 
relationships, which may suggest a possible change in stock productivity from the early high 
period to the recent low period. Alternative breakpoint brood years of 1980-1985 for both Ricker 
and Beverton-Holt models are also reasonably reported. Both Ricker and Beverton-Holt stock-
recruitment models fit the data poorly.  

 
Discussion 

A recruitment breakpoint analysis was conducted on Bristol Bay red king crab by Punt et al. 
(2014) with data from 1968 to 2010 to estimate a breakpoint brood year of 1984, corresponding 
to recruitment year of 1990, which is two years earlier than our estimate, even though our results 
show that brood year of 1984 is also a likely breakpoint. The different time series of data may 
explain the different results. Our data start in 1975 and have only two brood-year data points 
before the regime shift of 1976/77 and thus we cannot detect any stock productivity changes due 
to the 1976/77 regime shift because of lack of data. Without the early data, the fits of stock-
recruitment models to the data are also more poorly.  

Time series of estimated recruitment during 1984-present have been used to compute Bmsy 
proxy. The mean recruitment with scenario 2d during 1984-present is 17.77 million of crab, 
compared with the mean recruitment of 15.45 million of crab during 1992-present, about 13.0% 
reduction (Figure 12(2d)). If the estimated breakpoint year is used to set the new recruitment 
time series, estimated Bmsy proxy will be correspondingly lower than the current estimated 
value.   
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Table B1. Results of the breakpoint analysis, with AICc and the relative probability (odds) 
against the Ricker stock-recruitment model being correct by breakpoint year.  The model with no 
breakpoint is listed first in the table. The “best” model is shaded with a plausible stock-
recruitment model. Years are brood year. 
 
 Year AICc Odds 

NA 46.4933 15.0232 
1980 41.0741 1.0000 
1981 43.5372 3.4266 
1982 43.4335 3.2535 
1983 43.5460 3.4417 
1984 43.5839 3.5075 
1985 43.0025 2.6227 
1986 42.4169 1.9570 
1987 45.4294 8.8255 
1988 46.1588 12.7097 
1989 49.4106 64.6036 
1990 46.6891 16.5684 
1991 47.9850 31.6723 
1992 48.2826 36.7550 
1993 48.0169 32.1822 
1994 48.9392 51.0375 
1995 48.9373 50.9899 
1996 49.2335 59.1297 
1997 48.8284 48.2862 
1998 48.8394 48.5532 
1999 48.8440 48.6658 
2000 46.3349 13.8795 
2001 45.4607 8.9648 
2002 45.5360 9.3088 
2003 45.9752 11.5951 
2004 46.2300 13.1701 
2005 45.8085 10.6673 
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Table B2. Parameter estimates and standard deviations for the Ricker stock-recruitment model 
with no breakpoint (first row) and the single breakpoint models (by year of breakpoint). The 
“best” model is shaded. Years are brood year. 
 
Year      α1    std.dev.    α2    std.dev.      β1     std.dev.    β2     std.dev.    ln(σ)   std.dev.   tan(ρ)  std.dev.  
   -0.523 0.319   0.005 0.008 0.001 0.122 0.191 0.285 
1980 -7.356 5.342 0.708 0.505 -0.077 0.061 0.061 0.021 -0.117 0.122 -0.052 0.286 
1981 0.428 1.239 0.688 0.494 0.012 0.016 0.062 0.021 -0.111 0.122 -0.102 0.279 
1982 0.517 0.750 0.615 0.540 0.013 0.010 0.060 0.022 -0.112 0.122 -0.100 0.275 
1983 0.337 0.582 0.675 0.602 0.011 0.008 0.062 0.024 -0.111 0.122 -0.107 0.273 
1984 0.265 0.493 0.747 0.694 0.010 0.008 0.065 0.028 -0.111 0.122 -0.108 0.274 
1985 0.512 0.431 0.035 0.872 0.013 0.007 0.037 0.034 -0.118 0.122 -0.116 0.275 
1986 0.500 0.397 -0.677 1.148 0.013 0.007 0.011 0.044 -0.132 0.122 -0.083 0.281 
1987 0.179 0.380 0.578 1.468 0.009 0.007 0.057 0.056 -0.088 0.122 -0.102 0.273 
1988 0.089 0.392 0.706 1.693 0.009 0.007 0.062 0.064 -0.081 0.121 0.002 0.279 
1989 -0.174 0.384 0.819 1.738 0.007 0.007 0.063 0.066 -0.038 0.121 -0.029 0.281 
1990 -0.069 0.389 1.505 1.759 0.008 0.007 0.093 0.067 -0.076 0.122 0.080 0.274 
1991 -0.173 0.385 1.457 1.805 0.007 0.008 0.090 0.069 -0.057 0.122 0.088 0.272 
1992 -0.342 0.374 2.270 1.875 0.005 0.008 0.118 0.071 -0.051 0.122 0.090 0.271 
1993 -0.354 0.358 2.646 2.036 0.005 0.007 0.131 0.076 -0.054 0.121 0.068 0.270 
1994 -0.259 0.357 1.700 2.961 0.006 0.008 0.097 0.109 -0.042 0.121 0.079 0.283 
1995 -0.290 0.344 2.037 3.181 0.006 0.007 0.109 0.116 -0.041 0.121 0.064 0.276 
1996 -0.336 0.333 2.213 3.163 0.006 0.007 0.114 0.116 -0.036 0.121 -0.036 0.121 
1997 -0.236 0.342 -0.002 3.514 0.007 0.008 0.038 0.127 -0.048 0.122 0.111 0.292 
1998 -0.293 0.322 1.265 4.351 0.006 0.007 0.082 0.156 -0.044 0.121 0.060 0.272 
1999 -0.298 0.312 0.359 5.150 0.006 0.007 0.051 0.183 -0.045 0.121 0.041 0.270 
2000 -0.249 0.294 2.030 5.027 0.006 0.007 0.116 0.179 -0.082 0.122 0.013 0.268 
2001 -0.260 0.275 2.972 4.984 0.006 0.006 0.153 0.178 -0.096 0.122 -0.060 0.268 
2002 -0.281 0.269 2.991 5.003 0.005 0.006 0.155 0.179 -0.095 0.122 -0.076 0.269 
2003 -0.312 0.268 3.717 5.370 0.005 0.006 0.183 0.193 -0.089 0.122 -0.079 0.270 
2004 -0.336 0.266 4.122 5.359 0.005 0.006 0.200 0.193 -0.086 0.122 -0.078 0.267 
2005 -0.338 0.261 2.435 5.684 0.005 0.006 0.143 0.203 -0.093 0.122 -0.082 0.267 
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Table B3. Results of the breakpoint analysis, with AICc and the relative probability (odds) 
against the Beverton-Holt stock-recruitment model being correct by breakpoint year. The model 
with no breakpoint is listed first in the table. The “best” model is shaded. Years are brood year. 
 
Year AICc Odds 

NA 45.3981 5.0697 
1980 43.8995 2.3964 
1981 42.3954 1.1297 
1982 42.3742 1.1177 
1983 42.5415 1.2153 
1984 42.6196 1.2637 
1985 42.6775 1.3008 
1986 42.1516 1.0000 
1987 45.3144 4.8618 
1988 45.9970 6.8395 
1989 49.1365 32.8664 
1990 47.0869 11.7947 
1991 48.2198 20.7824 
1992 49.4103 37.6892 
1993 49.4378 38.2106 
1994 49.0962 32.2110 
1995 49.2897 35.4830 
1996 49.7282 44.1816 
1997 48.3534 22.2179 
1998 48.8959 29.1420 
1999 48.7480 27.0641 
2000 46.5764 9.1378 
2001 45.9210 6.5844 
2002 45.8966 6.5046 
2003 46.4147 8.4280 
2004 46.6195 9.3366 
2005 45.6408 5.7238 
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Table B4. Parameter estimates and standard deviations for the Beverton-Holt stock-recruitment 
model with no breakpoint (first row) and the single breakpoint models (by year of breakpoint). 
The “best” model is shaded. Years are brood year. 
 
 
Year         α1     std.dev.         α2      std.dev.        β1     std.dev.       β2     std.dev.       ln(σ)   std.dev.      tan(ρ)  std.dev.  

-0.159 0.894 -3.713 2.225 -0.005 0.123 0.215 0.295 

1980 -0.625 0.391 7.820 66.239 -11.19 60.247 5.471 66.254 -0.101 0.123 -0.164 0.282 

1981 1.500 4.577 7.493 50.669 -2.440 5.381 5.185 50.685 -0.129 0.122 -0.078 0.287 

1982 0.796 1.109 6.982 47.358 -3.321 1.661 4.681 47.381 -0.129 0.122 -0.097 0.276 

1983 0.460 0.724 7.357 43.960 -3.817 1.354 5.044 43.974 -0.126 0.122 -0.108 0.275 

1984 0.349 0.586 8.411 65.301 -3.999 1.241 6.091 65.308 -0.126 0.122 -0.111 0.274 

1985 0.666 0.573 0.959 3.804 -3.492 1.065 -1.508 4.519 -0.123 0.122 -0.108 0.276 

1986 0.647 0.530 -0.690 1.307 -3.514 1.031 -4.454 5.662 -0.135 0.122 -0.080 0.280 

1987 0.292 0.483 5.501 41.505 -3.983 1.175 3.163 41.573 -0.092 0.122 -0.096 0.274 

1988 0.227 0.528 6.910 83.603 -3.992 1.316 4.571 83.636 -0.084 0.121 0.031 0.276 

1989 -0.005 0.560 5.507 42.863 -4.127 1.569 3.080 42.939 -0.042 0.121 0.007 0.280 

1990 0.103 0.571 5.404 31.615 -4.034 1.491 3.066 31.672 -0.071 0.122 0.107 0.279 

1991 0.016 0.593 5.997 43.869 -4.059 1.603 3.631 43.913 -0.054 0.122 0.107 0.276 

1992 -0.179 0.584 6.277 42.024 -4.316 1.863 3.830 42.059 -0.037 0.122 0.115 0.277 

1993 -0.194 0.571 6.265 41.986 -4.334 1.867 3.820 42.021 -0.037 0.122 0.121 0.277 

1994 -0.049 0.608 4.133 30.922 -4.054 1.719 1.753 31.120 -0.040 0.122 0.135 0.282 

1995 -0.090 0.592 4.862 43.254 -4.112 1.752 2.481 43.386 -0.038 0.122 0.118 0.279 

1996 -0.143 0.583 4.980 43.179 -4.170 1.810 2.577 43.299 -0.033 0.121 -0.033 0.121 

1997 -0.027 0.598 0.689 17.930 -4.018 1.685 -1.771 21.766 -0.052 0.122 0.129 0.297 

1998 -0.112 0.548 3.575 39.931 -4.175 1.718 1.269 40.335 -0.047 0.122 0.078 0.275 

1999 -0.124 0.528 1.114 24.395 -4.213 1.703 -1.266 27.474 -0.050 0.121 0.051 0.273 

2000 -0.096 0.481 3.838 44.284 -4.274 1.592 1.729 44.563 -0.084 0.122 0.030 0.272 

2001 -0.117 0.449 5.966 109.07 -4.344 1.556 3.936 109.14 -0.094 0.122 -0.033 0.270 

2002 -0.133 0.450 4.710 58.628 -4.345 1.571 2.726 58.765 -0.094 0.122 -0.038 0.269 

2003 -0.150 0.470 4.518 51.104 -4.308 1.611 2.561 51.245 -0.086 0.122 -0.031 0.269 

2004 -0.169 0.476 4.207 43.439 -4.307 1.638 2.300 43.595 -0.082 0.121 -0.036 0.269 

2005 -0.176 0.459 2.668 27.512 -4.331 1.609 0.892 27.915 -0.096 0.122 -0.058 0.268 
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Figure B1. Results from the Ricker stock-recruit breakpoint analysis. Upper graph: AICc vs. year 
of breakpoint for the 1-breakpoint models (circles) and AICc for the model with no breakpoint 
(horizontal line). Lower graph: probabilistic odds for all 1-breakpoint models (circles) and the no 
breakpoint model (horizontal solid line) relative to the model with the smallest AICc score. The 
dashed lines indicate the value for the model with the lowest AICc score. Not shown are 1-
breakpoint models with high odds (>10) of being incorrect. 
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Figure B2. Fits for Ricker models with no breakpoint (upper left graph) and with 1-breakpoint 
for break years 1975-2005. For 1-breakpoint models, the pre-break data (circles) and model fit 
(line) are shown in red, whereas the post-break data and fit are shown in black. 
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Figure B2. Continue. 
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Figure B2. Continue. 
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Figure B2. Continue. 
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Figure B3. Fits on the arithmetic scale for Ricker models with no breakpoint (upper left graph) 
and with 1-breakpoint for break years 1975-2005. For 1-breakpoint models, the pre-break data 
(circles) and model fit (line) are shown in red, whereas the post-break data and fit are shown in 
black. 
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Figure B3. Continue. 
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Figure B4. Results from the B-H stock-recruit breakpoint analysis. Upper graph: AICc vs. year 
of breakpoint for the 1-breakpoint models (circles) and AICc for the model with no breakpoint 
(horizontal line). Lower graph: probabilistic odds for all 1-breakpoint models (circles) and the no 
breakpoint model (horizontal solid line) relative to the model with the smallest AICc score. The 
dashed lines indicate the value for the model with the lowest AICc score (breakpoint in 1986). 
Not shown are 1-breakpoint models with high odds (>10) of being incorrect. 
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Figure B5. Fits for B-H models with no breakpoint (upper left graph) and with 1-breakpoint for 
break years 1975-2005. For 1-breakpoint models, the pre-break data (circles) and model fit (line) 
are shown in red, whereas the post-break data and fit are shown in black. 
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Figure B6. Fits on the arithmetic scale for B-H models with no breakpoint (upper left graph) and 
with 1-breakpoint for break years 1975-2005. For 1-breakpoint models, the pre-break data 
(circles) and model fit (line) are shown in red, whereas the post-break data and fit are shown in 
black. 
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Appendix C. Francis’ Approaches for Re-weighting Effective Sample Sizes 
 
The Francis’ (2011) mean length based method to estimate the effective sample size re-weighing 
multiplier W [i.e., Francis TA1.8 method, 2011] uses: 

Observed mean length for year t, =  ∑ , × ,         (C.1) 
 
Predicted mean length for year t, 

 ̅ =  ∑ , × ,         (C.2) 
 

Variance of the predicted mean length in year t, 

     ̅ =  ∑ , ,   ̅
       (C.3) 

 
            Francis’ reweighting parameter W, 

  =  ̅   ̅  ̅
             (C.4) 

where ,  and ,  are the estimated and observed proportions of catches or survey abundances 
during year t in length-class i, ,  is the mid length of the length-class i during year t,  is the 

effective sample size in year t, ̅  and   are predicted and observed mean lengths of catches or 
survey abundances during year t, and W is the re-weighting multiplier of Stage-1 effective 
sample sizes. 

 is related to the initial input (Stage-1) effective sample size according to: 

 , =  ,              (C.5) 

where ,   is the effective sample size for year t in iteration i,  is the Francis weight calculated 
using Equation C.4 during iteration i, and ,  is the initial input effective sample size for year t 
for a size composition. 

There are two issues for applying Francis’ approach to Bristol Bay red king crab: first, some 
observed sample sizes are very large, like 58097, and some ways to scale down are needed for 
the initial run. This issue itself is a challenging task. We simply use the same approach as 
scenarios 2a, 2b and 2d to scale down the observed sample sizes for the initial run: sample sizes 
are equal to min(0.5*observed-size, N) for trawl surveys and min(0.1* observed-size, N) for 
catch and bycatch, where N is the maximum sample size (200 for trawl surveys, 100 for males 
from the pot fishery and 50 for females from pot fishery and both males and females from the 
groundfish fisheries). 
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Second, length composition values, P, are computed with both sexes combined for survey and 
groundfish fisheries bycatch data. Mean lengths in equations C.1 and C.2 can be computed with 
two approaches:  

1. Both male and female length compositions are stacked into a vector used to compute a mean 
length for both sexes for each of survey and groundfish fisheries bycatch datasets.  

For example, in year t,  and  are male and female length compositions, and   

=[m1, m2, …, m20],  =[f1, f2, …, f16], where mi and fi are length proportions for length 
group i with corresponding mid length, , then, the stacked vector, Pt in year t, Pt=[ , ], 
and ∑ = ∑( + ) = 1.0. Therefore, Pt=[m1, m2, …, m20, f1, f2, …, f16] with mid 
length vector as [  , …, , , , …, ]. A re-weighting factor for both sexes is 
computed.  

2. Sex-specific length compositions are normalized so that the sum is equal to 1.0 for each sex 
for each of survey and groundfish fisheries bycatch datasets. The normalized length 
compositions are used to estimate mean lengths.  

Using the above example, the normalized length composition vectors are  

= /∑ , and = /∑ . Two different re-weighting factors are computed for both 
sexes.  

These two approaches are called as Francis’ approaches 1 and 2 in this report. Generally, it takes 
three or four iterations to obtain stable estimates of effective sample sizes for length composition 
data.  
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Appendix D. Estimated Effective Sample Sizes for Nine Model Scenarios 
 
Table D1. Estimated effective sample sizes for scenario 2A. 
 

Trawl survey BSFRF Retained Pot discard Trawl discard Tanner discard 
Year Females Males Females Males Males Females Males Females Males Females Males 
1975 200 200 100 
1976 200 200 100 50 50 
1977 200 200 100 50 50 
1978 200 200 100 50 50 
1979 200 200 100 50 50 
1980 200 200 100 50 50 
1981 200 200 100 50 50 
1982 200 200 100 50 50 
1983 200 200 50 50 
1984 200 200 100 50 50 
1985 200 200 100 50 50 
1986 184 200 100 28 50 
1987 200 200 100 50 50 
1988 200 200 100 28 44 
1989 200 200 100 19 50 
1990 200 200 100 50 87 50 50 
1991 200 200 100 38 100 40 21 50 50 
1992 180 200 100 50 100 11 21 50 28 
1993 200 200 100 50 100 27 23 
1994 133 200 25 33 
1995 200 200 4 10 
1996 200 200 100 1 23 50 50 
1997 200 200 100 50 100 48 50 
1998 200 200 100 50 100 50 50 
1999 200 200 100 4 100 50 50 
2000 200 200 100 50 100 50 50 
2001 200 200 100 50 100 50 50 
2002 200 200 100 30 100 50 50 
2003 200 200 100 50 100 50 50 
2004 200 200 100 50 100 50 50 
2005 200 200 100 50 100 50 50 
2006 200 200 100 50 100 50 50 
2007 200 200 200 200 100 50 100 50 50 
2008 200 200 200 200 100 50 100 50 50 
2009 200 200 100 50 100 50 50 
2010 200 200 100 50 100 50 50 
2011 200 200 100 50 100 50 50 
2012 200 200 100 50 100 50 50 
2013 200 200 57 95 100 50 100 50 50 50 22 
2014 200 200 103 109 100 50 100 50 50 38 26 
2015 200 200 92 106 100 50 100 50 50 50 50 
2016 200 187 99 48 100 50 100 50 50 
2017 200 200 
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Table D2. Estimated effective sample sizes for scenario 2A1. 
 

Trawl survey BSFRF Retained Pot discard Trawl discard Tanner discard 
Year Females Males Females Males Males Females Males Females Males Females Males 
1975 34 34 31 
1976 34 34 31 4 4 
1977 34 34 31 4 4 
1978 34 34 31 4 4 
1979 34 34 31 4 4 
1980 34 34 31 4 4 
1981 34 34 31 4 4 
1982 34 34 31 4 4 
1983 34 34 4 4 
1984 34 34 31 4 4 
1985 34 34 31 4 4 
1986 31 34 31 2 4 
1987 34 34 31 4 4 
1988 34 34 31 2 4 
1989 34 34 31 2 4 
1990 34 34 31 7 14 4 4 
1991 34 34 31 5 16 3 2 10 12 
1992 31 34 31 7 16 1 2 10 7 
1993 34 34 31 7 16 5 6 
1994 23 34 2 3 
1995 34 34 0 1 
1996 34 34 31 0 4 4 4 
1997 34 34 31 7 16 4 4 
1998 34 34 31 7 16 4 4 
1999 34 34 31 1 16 4 4 
2000 34 34 31 7 16 4 4 
2001 34 34 31 7 16 4 4 
2002 34 34 31 4 16 4 4 
2003 34 34 31 7 16 4 4 
2004 34 34 31 7 16 4 4 
2005 34 34 31 7 16 4 4 
2006 34 34 31 7 16 4 4 
2007 34 34 66 66 31 7 16 4 4 
2008 34 34 66 66 31 7 16 4 4 
2009 34 34 31 7 16 4 4 
2010 34 34 31 7 16 4 4 
2011 34 34 31 7 16 4 4 
2012 34 34 31 7 16 4 4 
2013 34 34 19 31 31 7 16 4 4 10 5 
2014 34 34 34 36 31 7 16 4 4 7 6 
2015 34 34 30 35 31 7 16 4 4 10 12 
2016 34 32 33 16 31 7 16 4 4 
2017 34 34 

 
 
 
  

September 2017 Plan Team DraftBristol Bay Red King Crab

NPFMC Bering Sea/Aleutian Islands Crab SAFE 302



Table D3. Estimated effective sample sizes for scenario 2A2. 
 

Trawl survey BSFRF Retained Pot discard Trawl discard Tanner discard 
Year Females Males Females Males Males Females Males Females Males Females Males 
1975 32 24 32 
1976 32 24 32 3 5 
1977 32 24 32 3 5 
1978 32 24 32 3 5 
1979 32 24 32 3 5 
1980 32 24 32 3 5 
1981 32 24 32 3 5 
1982 32 24 32 3 5 
1983 32 24 3 5 
1984 32 24 32 3 5 
1985 32 24 32 3 5 
1986 30 24 32 2 5 
1987 32 24 32 3 5 
1988 32 24 32 2 4 
1989 32 24 32 1 5 
1990 32 24 32 7 14 3 5 
1991 32 24 32 5 16 3 2 10 12 
1992 29 24 32 7 16 1 2 10 7 
1993 32 24 32 7 16 5 6 
1994 21 24 2 3 
1995 32 24 0 1 
1996 32 24 32 0 4 3 5 
1997 32 24 32 7 16 3 5 
1998 32 24 32 7 16 3 5 
1999 32 24 32 1 16 3 5 
2000 32 24 32 7 16 3 5 
2001 32 24 32 7 16 3 5 
2002 32 24 32 4 16 3 5 
2003 32 24 32 7 16 3 5 
2004 32 24 32 7 16 3 5 
2005 32 24 32 7 16 3 5 
2006 32 24 32 7 16 3 5 
2007 32 24 58 41 32 7 16 3 5 
2008 32 24 58 41 32 7 16 3 5 
2009 32 24 32 7 16 3 5 
2010 32 24 32 7 16 3 5 
2011 32 24 32 7 16 3 5 
2012 32 24 32 7 16 3 5 
2013 32 24 16 20 32 7 16 3 5 10 5 
2014 32 24 30 22 32 7 16 3 5 7 6 
2015 32 24 27 22 32 7 16 3 5 10 12 
2016 32 23 29 10 32 7 16 3 5 
2017 32 24 
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Table D4. Estimated effective sample sizes for scenarios 2B and 2D.  
 

Trawl survey BSFRF Ret. Pot discard Trawl gear Fixed gear Tanner discard 
Year Fem. Ma. Fem. Ma. Ma. Fem. Ma. Fem. Ma. Fem. Ma. Fem. Ma. 
1975 200 200 100 
1976 200 200 100 50 50 
1977 200 200 100 50 50 
1978 200 200 100 50 50 
1979 200 200 100 50 50 
1980 200 200 100 50 50 
1981 200 200 100 50 50 
1982 200 200 100 50 50 
1983 200 200 50 50 
1984 200 200 100 50 50 
1985 200 200 100 50 50 
1986 184 200 100 28 50 
1987 200 200 100 50 50 
1988 200 200 100 28 44 
1989 200 200 100 19 50 
1990 200 200 100 50 87 50 50 
1991 200 200 100 38 100 40 21 50 50 
1992 180 200 100 50 100 11 21 50 28 
1993 200 200 100 50 100 27 23 
1994 133 200 25 33 
1995 200 200 4 10 
1996 200 200 100 1 23 50 50 
1997 200 200 100 50 100 48 50 
1998 200 200 100 50 100 50 50 
1999 200 200 100 4 100 50 50 
2000 200 200 100 50 100 50 50 
2001 200 200 100 50 100 50 50 
2002 200 200 100 30 100 50 50 
2003 200 200 100 50 100 50 50 
2004 200 200 100 50 100 50 50 
2005 200 200 100 50 100 50 50 
2006 200 200 100 50 100 50 50 
2007 200 200 200 200 100 50 100 50 50 
2008 200 200 200 200 100 50 100 50 50 
2009 200 200 100 50 100 49 50 36 50 
2010 200 200 100 50 100 44 46 40 15 
2011 200 200 100 50 100 21 23 50 34 
2012 200 200 100 50 100 13 15 50 50 
2013 200 200 57 95 100 50 100 18 31 50 50 50 22 
2014 200 200 103 109 100 50 100 9 17 50 50 38 26 
2015 200 200 92 106 100 50 100 20 21 50 50 50 50 
2016 200 187 99 48 100 50 100 17 44 50 50 
2017 200 200 
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Table D5. Estimated effective sample sizes for scenario 2B1. 
 

Trawl survey BSFRF Ret. Pot discard Trawl gear Fixed gear Tanner discard 
Year Fem. Ma. Fem. Ma. Ma. Fem. Ma. Fem. Ma. Fem. Ma. Fem. Ma. 
1975 34 34 31 
1976 34 34 31 11 11 
1977 34 34 31 11 11 
1978 34 34 31 11 11 
1979 34 34 31 11 11 
1980 34 34 31 11 11 
1981 34 34 31 11 11 
1982 34 34 31 11 11 
1983 34 34 11 11 
1984 34 34 31 11 11 
1985 34 34 31 11 11 
1986 32 34 31 6 11 
1987 34 34 31 11 11 
1988 34 34 31 6 10 
1989 34 34 31 4 11 
1990 34 34 31 7 14 11 11 
1991 34 34 31 5 16 9 5 10 12 
1992 31 34 31 7 16 2 5 10 7 
1993 34 34 31 7 16 5 6 
1994 23 34 6 7 
1995 34 34 1 2 
1996 34 34 31 0 4 11 11 
1997 34 34 31 7 16 11 11 
1998 34 34 31 7 16 11 11 
1999 34 34 31 1 16 11 11 
2000 34 34 31 7 16 11 11 
2001 34 34 31 7 16 11 11 
2002 34 34 31 4 16 11 11 
2003 34 34 31 7 16 11 11 
2004 34 34 31 7 16 11 11 
2005 34 34 31 7 16 11 11 
2006 34 34 31 7 16 11 11 
2007 34 34 66 66 31 7 16 11 11 
2008 34 34 66 66 31 7 16 11 11 
2009 34 34 31 7 16 11 11 3 4 
2010 34 34 31 7 16 10 10 4 1 
2011 34 34 31 7 16 5 5 4 3 
2012 34 34 31 7 16 3 3 4 4 
2013 34 34 19 31 31 7 16 4 7 4 4 10 5 
2014 34 34 34 36 31 7 16 2 4 4 4 7 6 
2015 34 34 30 35 31 7 16 5 5 4 4 10 12 
2016 34 32 33 16 31 7 16 4 10 4 4 
2017 34 34 
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Table D6. Estimated effective sample sizes for scenario 2B2. 
 

Trawl survey BSFRF Ret. Pot discard Trawl gear Fixed gear Tanner discard 
Year Fem. Ma. Fem. Ma. Ma. Fem. Ma. Fem. Ma. Fem. Ma. Fem. Ma. 
1975 32 24 32 
1976 32 24 32 4 11 
1977 32 24 32 4 11 
1978 32 24 32 4 11 
1979 32 24 32 4 11 
1980 32 24 32 4 11 
1981 32 24 32 4 11 
1982 32 24 32 4 11 
1983 32 24 4 11 
1984 32 24 32 4 11 
1985 32 24 32 4 11 
1986 30 24 32 3 11 
1987 32 24 32 4 11 
1988 32 24 32 2 10 
1989 32 24 32 2 11 
1990 32 24 32 7 14 4 11 
1991 32 24 32 5 16 4 5 10 12 
1992 29 24 32 7 16 1 5 10 7 
1993 32 24 32 7 16 5 6 
1994 21 24 2 7 
1995 32 24 0 2 
1996 32 24 32 0 4 4 11 
1997 32 24 32 7 16 4 11 
1998 32 24 32 7 16 4 11 
1999 32 24 32 1 16 4 11 
2000 32 24 32 7 16 4 11 
2001 32 24 32 7 16 4 11 
2002 32 24 32 4 16 4 11 
2003 32 24 32 7 16 4 11 
2004 32 24 32 7 16 4 11 
2005 32 24 32 7 16 4 11 
2006 32 24 32 7 16 4 11 
2007 32 24 65 39 32 7 16 4 11 
2008 32 24 65 39 32 7 16 4 11 
2009 32 24 32 7 16 4 11 5 3 
2010 32 24 32 7 16 4 10 6 1 
2011 32 24 32 7 16 2 5 8 2 
2012 32 24 32 7 16 1 3 8 3 
2013 32 24 18 19 32 7 16 2 7 8 3 10 5 
2014 32 24 33 21 32 7 16 1 4 8 3 7 6 
2015 32 24 30 21 32 7 16 2 5 8 3 10 12 
2016 32 23 32 9 32 7 16 1 10 8 3 
2017 32 24 
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Table D7. Estimated effective sample sizes for scenario 2D1. 
 

Trawl survey BSFRF Ret. Pot discard Trawl gear Fixed gear Tanner discard 
Year Fem. Ma. Fem. Ma. Ma. Fem. Ma. Fem. Ma. Fem. Ma. Fem. Ma. 
1975 34 34 31 
1976 34 34 31 11 11 
1977 34 34 31 11 11 
1978 34 34 31 11 11 
1979 34 34 31 11 11 
1980 34 34 31 11 11 
1981 34 34 31 11 11 
1982 34 34 31 11 11 
1983 34 34 11 11 
1984 34 34 31 11 11 
1985 34 34 31 11 11 
1986 31 34 31 6 11 
1987 34 34 31 11 11 
1988 34 34 31 6 10 
1989 34 34 31 4 11 
1990 34 34 31 7 14 11 11 
1991 34 34 31 5 16 9 5 10 12 
1992 31 34 31 7 16 2 5 10 7 
1993 34 34 31 7 16 5 6 
1994 23 34 6 7 
1995 34 34 1 2 
1996 34 34 31 0 4 11 11 
1997 34 34 31 7 16 11 11 
1998 34 34 31 7 16 11 11 
1999 34 34 31 1 16 11 11 
2000 34 34 31 7 16 11 11 
2001 34 34 31 7 16 11 11 
2002 34 34 31 4 16 11 11 
2003 34 34 31 7 16 11 11 
2004 34 34 31 7 16 11 11 
2005 34 34 31 7 16 11 11 
2006 34 34 31 7 16 11 11 
2007 34 34 67 67 31 7 16 11 11 
2008 34 34 67 67 31 7 16 11 11 
2009 34 34 31 7 16 11 11 3 4 
2010 34 34 31 7 16 10 10 3 1 
2011 34 34 31 7 16 5 5 4 3 
2012 34 34 31 7 16 3 3 4 4 
2013 34 34 19 32 31 7 16 4 7 4 4 10 5 
2014 34 34 34 36 31 7 16 2 4 4 4 8 6 
2015 34 34 31 35 31 7 16 5 5 4 4 10 12 
2016 34 32 33 16 31 7 16 4 10 4 4 
2017 34 34 
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Table D8. Estimated effective sample sizes for scenario 2D2. 
 

Trawl survey BSFRF Ret. Pot discard Trawl gear Fixed gear Tanner discard 
Year Fem. Ma. Fem. Ma. Ma. Fem. Ma. Fem. Ma. Fem. Ma. Fem. Ma. 
1975 32 24 33 
1976 32 24 33 4 11 
1977 32 24 33 4 11 
1978 32 24 33 4 11 
1979 32 24 33 4 11 
1980 32 24 33 4 11 
1981 32 24 33 4 11 
1982 32 24 33 4 11 
1983 32 24 4 11 
1984 32 24 33 4 11 
1985 32 24 33 4 11 
1986 29 24 33 2 11 
1987 32 24 33 4 11 
1988 32 24 33 2 9 
1989 32 24 33 2 11 
1990 32 24 33 7 14 4 11 
1991 32 24 33 5 16 3 4 10 12 
1992 29 24 33 7 16 1 5 10 7 
1993 32 24 33 7 16 5 6 
1994 21 24 2 7 
1995 32 24 0 2 
1996 32 24 33 0 4 4 11 
1997 32 24 33 7 16 4 11 
1998 32 24 33 7 16 4 11 
1999 32 24 33 1 16 4 11 
2000 32 24 33 7 16 4 11 
2001 32 24 33 7 16 4 11 
2002 32 24 33 4 16 4 11 
2003 32 24 33 7 16 4 11 
2004 32 24 33 7 16 4 11 
2005 32 24 33 7 16 4 11 
2006 32 24 33 7 16 4 11 
2007 32 24 66 39 33 7 16 4 11 
2008 32 24 66 39 33 7 16 4 11 
2009 32 24 33 7 16 4 11 5 3 
2010 32 24 33 7 16 4 10 6 1 
2011 32 24 33 7 16 2 5 8 2 
2012 32 24 33 7 16 1 3 8 3 
2013 32 24 19 19 33 7 16 2 7 8 3 10 5 
2014 32 24 34 21 33 7 16 1 4 8 3 7 6 
2015 32 24 30 21 33 7 16 2 4 8 3 10 12 
2016 32 23 33 9 33 7 16 1 9 8 3 
2017 32 24 
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2017 Stock Assessment and Fishery Evaluation Report for the Tanner Crab 
Fisheries of the Bering Sea and Aleutian Islands Regions 

William T. Stockhausen 
Alaska Fisheries Science Center 

21 September 2017 
 

THIS INFORMATION IS DISTRIBUTED SOLELY FOR THE PURPOSE OF PREDISSEMINATION PEER REVIEW UNDER 
APPLICABLE INFORMATION QUALITY GUIDELINES. IT HAS NOT BEEN FORMALLY DISSEMINATED BY NOAA 

FISHERIES/ALASKA FISHERIES SCIENCE CENTER AND SHOULD NOT BE CONSTRUED TO REPRESENT ANY AGENCY 
DETERMINATION OR POLICY 

Executive Summary 

1. Stock: species/area. 
Southern Tanner crab (Chionoecetes bairdi) in the eastern Bering Sea (EBS). 

2. Catches: trends and current levels. 
Legal-sized male Tanner crab are caught and retained in the directed (male-only) Tanner crab fishery in 
the EBS. The directed fishery was opened in 2013/14 for the first time since 2009/10 because the stock 
was not overfished in 2012/13 (Stockhausen et al., 2013) and stock metrics met the State of Alaska (SOA) 
criteria for opening the fishery in 2013/14. TAC was set at 1,645,000 lbs (746 t) for the area west of 166o 
W and at 1,463,000 lbs (664 t) for the area east of 166o W in the SOA’s Eastern Subdistrict of the Bering 
Sea District Tanner crab Registration Area J. The fisheries opened on October 15 and closed on March 
31. On closing, 79.6% (594 t) of the TAC was taken in the western area while 98.6% (654 t) was taken in 
the eastern area. Prior to the closures, the retained catch averaged 770 t per year between 2005/06-
2009/10.  

Following the 2014 assessment (Stockhausen, 2014), TAC was set at 6,625,000 lbs (2,329 t) for the area 
west of 166o W and at 8,480,000 lbs (3,829 t) for the area east of 166o W. On closing, 77.5% (2,329 t) of 
the TAC was taken in the western area while 99.6% (3,829 t) were taken in the eastern area.  

Following the 2015 assessment (Stockhausen, 2015), TAC was set at 11,272,000 lbs (5,113 t) for the 
eastern area and 8,396,000 lbs (3,808 t) for the western area. On closing, essentially 100% of the TAC 
was taken in both areas (11,268,885 lbs [5,111 t] in the eastern area, 8,373,493 lbs [3,798 t] in the western 
area based on the 5/20/2016 in-season catch report). 

Following the 2016 assessment (Stockhausen, 2016), the Alaska Department of Fish and Game (ADFG) 
determined that mature female Tanner crab biomass did not meet their criteria for opening a fishery; thus, 
the fishery was closed and the TAC was set to 0. No directed harvest occurred in 2016/17. 

Non-retained females and sub-legal males are caught in the directed fishery, when it occurs, as bycatch 
and discarded. Because it was closed, no bycatch occurred in the directed fishery in 2016/17. Tanner crab 
are also caught as bycatch in the snow crab and Bristol Bay red king crab fisheries, in the groundfish 
fisheries and, to a minor extent, in the scallop fishery. Over the last five years, the snow crab fishery has 
been the major source of Tanner crab bycatch among these fisheries, averaging 1,500 t for the 5-year 
period 2012/13-2016/17. Bycatch in the snow crab fishery in 2016/17 was 2,592 t. The groundfish 
fisheries have been the next major source of Tanner crab bycatch over the same five year time period, 
averaging 360 t. Bycatch in the groundfish fisheries in 2016/17 was 318 t. The Bristol Bay red king crab 
fishery has typically been the smallest source of Tanner crab bycatch among these fisheries, averaging 85 
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t over the 5-year time period, although 297 t caught and discarded in 2014/15. In 2016/17, this fishery 
accounted for 180 t of Tanner crab bycatch. 

In order to account for mortality of discarded crab, handling mortality rates are assumed to be 32.1% for 
Tanner crab discarded in the crab fisheries, 50% for Tanner crab in the groundfish fisheries using fixed 
gear, and 80% for Tanner crab discarded in the groundfish fisheries using trawl gear to account for 
differences in gear and handling procedures used in the various fisheries. 

3. Stock biomass: trends and current levels relative to virgin or historic levels 
For EBS Tanner crab, spawning stock biomass is expressed as mature male biomass (MMB) at the time 
of mating (mid-February). From the author’s preferred model (Model B2b), estimated MMB for 2016/17 
was 78.0 thousand t (Table 34, Figures 217-220 in Appendix F). This was smaller than those for 2014/15 
and 2015/16 (84.8 and 83.8 thousand t, respectively), but larger than that for 2013/14 (70.6 thousand t). 
MMB may have had a recent peak in 2014/15, but it remains above the very low levels seen in the mid-
1990s to early 2000s (1990 to 2005 average: 36.5 thousand t) and the 2014/15 estimate is the largest since 
1978/79. However, it is considerably below model-estimated historic levels in the early 1970s when 
MMB peaked at ~259 thousand t (1971). 

4. Recruitment: trends and current levels relative to virgin or historic levels. 
From the author’s preferred model (Model B2b), the estimated total recruitment for 2017/18 (the number 
of crab entering the population on July 1) is 414.88 million crab (Table 37, Figures 213-216 in Appendix 
F), however, this value is highly uncertain. The average recruitment during the recent 2012/13-2016/17 
period was 74.0 million crab. The longterm (1982+) mean is 214.0 million crab. 

5. Management performance 
Historical status and catch specifications for eastern Bering Sea Tanner crab. 

 (a) in 1000’s t. 

Year MSST 
Biomass 
(MMB) 

TAC               
(East + West) 

Retained 
Catch 

Total Catch 
Mortality OFL ABC 

2013/14 16.98 72.70A 1.41 1.26 2.78 25.35 17.82 
2014/15 13.40 71.57A 6.85 6.16 9.16 31.48 25.18 
2015/16 12.82 73.93A 8.92 8.91 11.38 27.19 21.75 
2016/17 14.58 C  77.96A  0  0  1.14 25.61 20.49 
2017/18   43.31B       25.42C 20.33C 

(b) in millions lbs. 

Year MSST 
Biomass 
(MMB) 

TAC               
(East + West) 

Retained 
Catch 

Total Catch 
Mortality OFL ABC 

2013/14 37.43 160.28A 3.11 2.78 6.14 55.89 39.29 

2014/15 29.53 157.78A 15.10 13.58 20.19 69.40 55.51 

2015/16 28.27 162.99A 19.67 19.64 25.09 59.94 47.95 

2016/17  32.15C 171.87A 0   0  2.52 56.46 45.17 
2017/18   95.49B       56.03C 44.83C 

A—Estimated at time of mating for the year concerned. This is a revised estimate, based on the subsequent assessment. 
B—Projected biomass from the current stock assessment. This value will be updated next year. 
C—Based on the author’s preferred model (Model B2b).   
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6. Basis for the OFL 

a) in 1000’s t. 

Year TierA BMSY
A 

Current 
MMBA B/BMSY

A 
FOFL

A 
(yr-1) 

Years to 
define 
BMSY

A 

Natural 
MortalityA,B 

(yr-1) 

2013/14 3a 33.54 59.35 1.77 0.73 1982-2013 0.23 

2014/15 3a 29.82 63.80 2.14 0.61 1982-2014 0.23 

2015/16 3a 26.79 53.70 2.00 0.58 1982-2015 0.23 

2016/17 3a 25.65 45.34 1.77 0.79 1982-2016 0.23 

2017/18 3a 29.17 43.31 1.49 0.75 1982-2017 0.23 

b) in millions lbs. 

Year TierA BMSY
A 

Current 
MMBA B/BMSY

A 
FOFL

A 
(yr-1) 

Years to 
define 
BMSY

A 

Natural 
MortalityA,B 

(yr-1) 

2013/14 3a 73.94 130.84 1.77 0.73 1982-2013 0.23 

2014/15 3a 65.74 140.66 2.14 0.61 1982-2014 0.23 

2015/16 3a 59.06 118.38 2.00 0.58 1982-2015 0.23 

2016/17 3a 56.54 99.95 1.77 0.79 1982-2016 0.23 

2017/18 3a 64.30 95.49 1.49 0.75 1982-2017 0.23 
A—Calculated from the assessment reviewed by the Crab Plan Team in 20XX of 20XX/(XX+1) or based on the author’s 

preferred model for 2016/17. 
B—Nominal rate of natural mortality. Actual rates used in the assessment are estimated and may be different. 

Current male spawning stock biomass (MMB), as projected for 2017/18, is estimated at 43.31 thousand t. 
BMSY for this stock is calculated to be 29.17 thousand t, so MSST is 14.58 thousand t. Because current 
MMB > MSST, the stock is not overfished. Total catch mortality (retained + discard mortality in all 
fisheries, using a discard mortality rate of 0.321 for pot gear and 0.8 for trawl gear) in 2016/17 was 1.14 
thousand t, which was less than the OFL for 2016/17 (25.61 thousand t); consequently overfishing did 
not occur. The OFL for 2017/18 based on the author’s preferred model (Model B2b) is 25.42 thousand t. 
The ABCmax for 2017/18, based on the p* ABC, is 25.57 thousand t. In 2014, the SSC adopted a 20% 
buffer to calculate ABC for Tanner crab to incorporate concerns regarding model uncertainty for this 
stock. Based on this buffer, the ABC would be 20.33 thousand t. 

7. Rebuilding analyses summary. 
The EBS Tanner crab stock was found to be above MSST (and BMSY) in the 2012 assessment (Rugolo and 
Turnock, 2012b) and was subsequently declared rebuilt. The stock remains not overfished. Consequently 
no rebuilding analyses were conducted. 
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A. Summary of Major Changes 

1. Changes (if any) to the management of the fishery. 
At the March, 2015 SOA Board of Fish (BOF) meeting, the Board adopted a revised harvest strategy for 
Tanner crab in the Bering Sea District1, wherein the TAC for the area east of 166o W longitude would be 
based on a minimum preferred harvest size of 127 mm CW (5.0 inches), including the lateral spines. 
Formerly, this calculation was based on a minimum preferred size of 140 mm CW (5.5 inches). The TAC 
in the area west of 166o W longitude continues to be based on a minimum preferred harvest size of 127 
mm CW (including lateral spines). 

The directed Tanner crab fisheries in the EBS (i.e., east and west of 166o W longitude) were closed in 
2016/17 because mature female Tanner crab biomass in 2016 failed to meet the criteria defined in the 
SOA’s harvest strategy to open the fisheries. [Note: These criteria were not among the changes to the 
harvest strategy adopted by the BOF in March, 2015.] 

2. Changes to the input data 
The following table summarizes data sources that have been updated for this assessment: 

Updated data sources. 

 

3. Changes to the assessment methodology. 
Following a considerable development effort and substantial review by the CPT at the January 2017 
Modeling Workshop and the May 2017 CPT Meeting, with additional review by the SSC at its February 
and June 2017 meetings, a new modeling “framework”, TCSAM02, was recommended by the CPT at its 
May 2017 meeting (and approved by the SSC at its June 2017 meeting) for use in this assessment. 
TCSAM02, while based on the previous assessment model (TCSAM2013), constitutes a completely 
rewritten code library for the Tanner crab assessment model. Results presented at the May CPT meeting 

1 https://aws.state.ak.us/OnlinePublicNotices/Notices/Attachment.aspx?id=100244 

Data source Data types Time frame Notes Agency

area-swept abundance, biomass 1975-2017 recalculated, new
size compositions

NMFS/BSFRF molt-increment data 2014-16 new NMFS, BSFRF
Directed fishery retained catch (numbers, biomass) 2005/06-2016/17 updated, new ADFG

retained catch size compositions 2013/14-2015/16 updated ADFG
effort 2015/16, 2016/17 updated, new ADFG
total catch (abundance, biomass) 2015/16, 2016/17 updated, new ADFG
total catch size compositions 2015/16, 2016/17 updated, new ADFG

Snow Crab Fishery effort 1990/91-2013/14 updated, new ADFG
total bycatch (abundance, biomass) 1990/91-2016/17 updated, new ADFG
total bycatch size compositions 2016/17 new ADFG

Bristol Bay effort 1990/91-2013/14 updated, new ADFG
Red King Crab Fishery total bycatch (abundance, biomass) 1990/91-2016/17 updated, new ADFG

total bycatch size compositions 2016/17 new ADFG
Groundfish Fisheries total bycatch (abundance, biomass) 1991/92-2016/17 updated, new
(all gear types) total bycatch size compositions 1991/92-2016/17 updated, new
Groundfish Fixed-Gear total bycatch (abundance, biomass) 1991/92--2016/17 new
Fisheries total bycatch size compositions 1991/92--2016/17 new
Groundfish Trawl total bycatch (abundance, biomass) 1991/92--2016/17 new
Fisheries total bycatch size compositions 1991/92--2016/17 new

NMFS EBS Bottom         
Trawl Survey

NMFS/AKFIN

NMFS

NMFS/AKFIN

NMFS/AKFIN
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demonstrated that TCSAM02 could be configured to exactly match results from the TCSAM2013 code, 
thus providing continuity with the old model code. However, demonstrating this “exact equivalence” 
required some minor modifications to the 2016 assessment model. These changes were reviewed and 
approved at the May CPT meeting, with the understanding that the “exactly equivalent” TCSAM02 
model would be the base model for this assessment (rather than the 2016 assessment model). 

The changes from the 2016 assessment model to the “exactly equivalent” base model are discussed in 
detail in the May CPT report (Stockhausen, 2017) and included: 1) removing a size-specific 
reclassification of “old shell” males with regards to the survey data used in the model; 2) fitting to total 
capture size composition data, rather than trying to incorporate handling mortality prior to fitting the data; 
3) fitting to total capture biomass, rather than mortality; 4) seasonally applying natural mortality rates for 
mature crab from spring to summer to crab that underwent terminal molt in the spring; 5) basing 
aggregated survey biomass on 1-mm size bins, not the 5mm size bins used to fit size compositions; 6) 
using a more-precise value to convert from pounds to kilograms; 7) setting bycatch capture rates in the 
Bristol Bay red king crab fishery explicitly to 0 for years when the fishery was closed, 8) using the 
estimated median (rather than the mean) size-at-50% selected for males in the directed fishery after 1990 
to males in the directed fishery prior to 1991; and 9) using the estimated median (rather than the mean) 
bycatch F for the groundfish fisheries post-1972 as the value pre-1973. The resulting model is the base 
model, B0, for this assessment. 

The author’s preferred model, B2b, builds on B0 principally by: 1) fitting EBS model-increment data 
inside the model to inform growth parameters, b) estimating separate retention functions for three time 
periods (pre-1997/98, 2005/06-2009/10, and 2013/14-2015/16), and c) estimating the asymptotic value 
for the fraction of male crab retained in the directed fishery (in the same three time periods as (b)), rather 
than assuming it was 1 (i.e., 100% retention at large sizes). 

4. Changes to the assessment results 
Results from the author’s preferred model this year (Model B2b) are reasonably similar to those from the 
previous assessment, considering the large number of changes in the model. Perhaps the largest change is 
due to somewhat higher recruitment estimates in this year’s preferred model. Average recruitment (1982-
present) was estimated at 182 million in last year’s model, whereas it was estimated at 214 million in the 
author’s preferred model this year. BMSY was consequently estimated somewhat larger than last year 
(29.17 thousand t vs. 25.65 thousand t) and FMSY was smaller (0.75 yr-1 this year vs. 0.79 yr-1 last year).  
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B. Responses to SSC and CPT Comments 

1. Responses to the most recent two sets of SSC and CPT comments on assessments in general. [Note: for 
continuity with the previous assessment, the following includes unaddressed comments prior to the most 
recent two sets of comments.] 

June 2017 SSC Meeting 
The SSC requested an evaluation of all parameters estimated to be at or very near bounds, or 
substantially limited by priors (unless those priors can be logically defended). 

Response: An initial approach to evaluating parameters at or near bounds using ADMB’s likelihood 
profiling capability revealed that errors had apparently been introduced to the profiling algorithm in a 
recent version (11.2) of the ADMB libraries. These errors have subsequently been resolved, and will 
be incorporated in the next scheduled version release (11.7). However, likelihood profiling results 
from the author’s version (11.5/11.6) would provide erroneous results. 

May 2017 Crab Plan Team Meeting 
No general comments. 

October 2016 SSC Meeting 
No general comments. 

September 2016 Crab Plan Team Meeting 
No general comments. 

2. Responses to the most recent two sets of SSC and CPT comments specific to the assessment. [Note: for 
continuity with the previous assessment, the following includes comments prior to the most recent two 
sets of comments.] 

June 2017 SSC Meeting 
The SSC endorsed the CPT suggestions from its May meeting. 
Response: none. 

The SSC requested an evaluation of all parameters estimated to be at or very near bounds, or 
substantially limited by priors (unless those priors can be logically defended). 
Response: See response above to general comments from the June 2017 SSC Meeting.   

May2017 Crab Plan Team Meeting 
The CPT noted that the EBS growth data should be used in the assessment if at all possible, that the 
growth increment function should be adopted, and that the scale parameter should be estimated rather 
than being set to 0.75. 
Response: All three requests have been addressed in the assessment (Model B1 and subsequent models). 

The CPT noted that there was a tendency for the model to overpredict the abundance of large crab and 
recommended that the issue be evaluated by modeling retention with a logistic curve that asymptotes to a 
value less than one. 
Response: The option of fitting a retention curve that asymptotes less than one has been implemented in 
the model framework. Models B2a, B2b and B3 incorporate this option and address this issue. Results 
from these models suggest that retention is indeed asymptotically less than one. 

The CPT outlined the base model to be used for this assessment, based on results presented by the author 
for a suite of models. 
Response: The base model recommended by the CPT is the base model used here (Model B0). 
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The CPT outlined a number of alternative models built on its recommended base model to be evaluated. 
Response: Models B1, B2, and B3 were evaluated for this assessment. Requests to address time-varying 
retention and potential less-than-complete retention of legal-size crab were also addressed (models B2, 
B2a, and B2b). It was not possible to address the potential use of Francis-style iterative re-weighting for 
size composition data. 

October 2016 SSC Meeting 
Comment: “The SSC endorses all of the CPT recommendations with respect to the poor fits to some of 
the retained catch time series, poor fits to the size composition data for retained catch and survey data, 
and issues with the total directed fishery selectivity curve for males (in particular the 1996 ‘outlier’).” 
Response: With respect to the 1996 ‘outlier’, this was a result of the combination of a very small sample 
size for the 1996 size compositions and the using the mean size-st-50%-selected for 1991-1996 as the 
value for the size-at-50%-selected prior to 1991. Because the sample size for 1996 was small, the 1996 
size-at-50%-selected essentially became a free parameter uninformed by the 1996 data but sensitive to 
changes in the overall likelihood through changes in the mean value. Regarding the other issues, see the 
responses to CPT comments below. 

September 2016 CPT Meeting 
Comment: “The model fits total catch well, but does a poorer job in fitting retained catch, catch of 
females, and catch in the bycatch fisheries.” 
Response: Catch of females was improved by estimating a female-specific offset to fully-selected male 
capture rates in the fisheries. There appears to be a conflict in the model between fitting total (male) catch 
and retained catch in the directed fishery. In this assessment, I’ve explored the use of varying the 
estimated retention function annually and within time blocks, as well as the possibility that retention is 
not 100% for the largest male crab (i.e., the retention function asymptotes at less than 1). These options 
seem to reduce the conflict, but not eliminate it.  
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C. Introduction 

1. Scientific name. 
Chionocoetes bairdi.Tanner crab is one of five species in the genus Chionoecetes (Rathbun, 1924). The 
common name “Tanner crab” for C. bairdi (Williams et al. 1989) was recently modified to “southern 
Tanner crab” (McLaughlin et al. 2005). Prior to this change, the term “Tanner crab” had also been used to 
refer to other members of the genus, or the genus as a whole. Hereafter, the common name “Tanner crab” 
will be used in reference to “southern Tanner crab”. 

2. Description of general distribution 
Tanner crabs are found in continental shelf waters of the north Pacific. In the east, their range extends as 
far south as Oregon (Hosie and Gaumer 1974) and in the west as far south as Hokkaido, Japan (Kon 
1996). The northern extent of their range is in the Bering Sea (Somerton 1981a), where they are found 
along the Kamchatka peninsula (Slizkin 1990) to the west and in Bristol Bay to the east.  

In the eastern Bering Sea (EBS), the Tanner crab distribution may be limited by water temperature 
(Somerton 1981a). The unit stock is that defined across the geographic range of the EBS continental shelf, 
and managed as a single unit (Fig. 1). C. bairdi is common in the southern half of Bristol Bay, around the 
Pribilof Islands, and along the shelf break, although males less than the industry-preferred size (>125 mm 
CW) and ovigerous and immature females of all sizes are distributed broadly from southern Bristol Bay 
northwest to St. Matthew Island (Rugolo and Turnock, 2011a). The southern range of the cold water 
congener the snow crab, C. opilio, in the EBS is near the Pribilof Islands (Turnock and Rugolo, 2011). 
The distributions of snow and Tanner crab overlap on the shelf from approximately 56° to 60°N, and in 
this area, the two species hybridize (Karinen and Hoopes 1971). 

3. Evidence of stock structure 
Tanner crabs in the EBS are considered to be a separate stock distinct from Tanner crabs in the eastern 
and western Aleutian Islands (NPFMC 1998). Somerton (1981b) suggests that clinal differences in some 
biological characteristics may exist across the range of the unit stock. These conclusions may be limited 
since terminal molt at maturity in this species was not recognized at the time of that analysis, nor was 
stock movement with ontogeny considered. Biological characteristics estimated based on comparisons of 
length frequency distributions across the range of the stock, or on modal length analysis over time may be 
confounded as a result. 

Although the State of Alaska’s (SOA) harvest strategy and management controls for this stock are 
different east and west of 166oW, the unit stock of Tanner crab in the EBS appears to encompass both 
regions and comprises crab throughout the geographic range of the NMFS bottom trawl survey. Evidence 
is lacking that the EBS shelf is home to two distinct, non-intermixing, non-interbreeding stocks that 
should be assessed and managed separately.  

4. Life history characteristics 

a. Molting and Shell Condition 
Tanner crabs, like all crustaceans, normally exhibit a hard exoskeleton of chitin and calcium carbonate. 
This hard exoskeleton requires individuals to grow through a process referred to as molting, in which the 
individual sheds its current hard shell, revealing a new, larger exoskeleton that is initially soft but which 
rapidly hardens over several days. Newly-molted crab in this “soft shell” phase can be vulnerable to 
predators because they are generally torpid and have few defenses if discovered. Subsequent to hardening, 
an individual’s shell provides a settlement substrate for a variety of epifaunal “fouling” organisms such as 
barnacles and bryozoans. The degree of hard-shell fouling was once thought to correspond closely to 
post-molt age and led to a classification of Tanner crab by shell condition (SC) in survey and fishery data 
similar to that described in the following table (NMFS/AFSC/RACE, unpublished): 
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Although these shell classifications continue to be applied to crab in the field, it has been shown that there 
is little real correspondence between post-molt age and shell classifications SC 3 through 5, other than 
that they indicate that the individual has probably not molted within the previous year (Nevisi et al, 1996). 
In this assessment, crab classified into SCs 3-5 have been aggregated as “old-shell” crab, indicating that 
these are crab likely to have not molted within the previous year. In a similar fashion, crab classified in 
SCs 0-2 have been combined as “new shell” crab, indicating that these are crab have certainly (SCs 0 and 
1), or are likely to have (SC 2), molted within the previous year. 

b. Growth 
Work by Somerton (1981a) estimated growth for EBS Tanner crab based on modal size frequency 
analysis of Tanner crab in survey data assuming no terminal molt at maturity. Somerton’s approach did 
not directly measure molt increments and his findings are constrained by not considering that the 
progression of modal lengths between years was biased because crab ceased growing after their terminal 
molt to maturity. 

Growth in immature Tanner crab larger than approximately 25 mm CW proceeds by a series of annual 
molts, up to a final (terminal) molt to maturity (Tamone et al., 2007). Rugolo and Turnock (2012a) 
derived growth relationships for male and female Tanner crab used as priors for estimated growth 
parameters in this (and previous) assessments from data on observed growth in males to approximately 
140 mm carapace width (CW) and in females to approximately 115 mm CW that were collected near 
Kodiak Island in the Gulf of Alaska (Munk, unpublished.; Donaldson et al. 1981). Rugolo and Turnock 
(2010) compared the resulting growth per molt (gpm) relationships with those of Stone et al. (2003) for 
Tanner crab in southeast Alaska in terms of the overall pattern of gpm over the size range of crab and 
found that the pattern of gpm for both males and females was characterized by a higher rate of growth to 
an intermediate size (90-100 mm CW) followed by a decrease in growth rate from that size thereafter. 
Similarly-shaped growth curves were found by Somerton (1981a) and Donaldson et al. (1981), as well.  

Molt increment data was collected for Tanner crab in the EBS during 2015, 2016, and 2017 in 
cooperative research between NMFS and the Bering Sea Research Foundation (R. Foy, NMFS, pers. 
comm.). Preliminary analysis of the data suggests it is not substantially different from that obtained near 
Kodiak Island (see Appendix D). However, this data is incorporated for the first time to inform inferred 
growth trajectories within several of the alternative models evaluated in this assessment. 

Shell Condition 
Class

Description

0 pre-molt and molting crab
1 carapace soft and pliable
2 carapace firm to hard, clean

3

carapace hard; topside usually yellowish brown; thoracic sternum and underside of legs yellow 
with numerous scratches; pterygostomial and bronchial spines worn and polished; dactyli on 
meri and metabranchial region rounded; epifauna (barnacles and leech cases) usually present 
but not always.

4

carapace hard, topside yellowish-brown to dark brown; thoracic sternum and undersides of legs 
data yellow with many scratches and dark stains; pterygostomial and branchial spines rounded 
with tips sometimes worn off; dactyli very worn, sometimes flattened on tips; spines on meri 
and metabranchial region worn smooth, sometimes completely gone; epifauna most always 
present (large barnacles and bryozoans).

5

conditions described in Shell Condition 4 above much advanced; large epifauna almost 
completely covers crab; carapace is worn through in metabranchial regions, pterygostomial 
branchial spines, or on meri; dactyli flattened, sometimes worn through, mouth parts and eyes 
sometimes nearly immobilized by barnacles.
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c. Weight at Size 
Weight-at-size relationships used in this assessment were revised in 2014 based on a comprehensive re-
evaluation of data from the NMFS EBS Bottom Trawl Survey (Daly et al., 2014). Weight-at-size is 
described by a power-law model of the form 𝑤𝑤 = 𝑎𝑎 ∙ 𝑧𝑧𝑏𝑏, where w is weight in kg and z is size in mm CW 
(Daly et al., 2016; table below). Parameter values are presented in the following table: 

 

d. Maturity and Reproduction 
It is now generally accepted that both Tanner crab males (Tamone et al. 2007) and females (Donaldson 
and Adams 1989) undergo a terminal molt to maturity, as in most majid crabs. Maturity in females can be 
determined visually rather unambiguously from the relative size of the abdomen. Females usually 
undergo their terminal molt from their last juvenile, or pubescent, instar while being grasped by a male 
(Donaldson and Adams 1989). Subsequent mating takes place annually in a hard shell state (Hilsinger 
1976) and after extruding the female’s clutch of eggs. While mating involving old-shell adult females has 
been documented (Donaldson and Hicks 1977), fertile egg clutches can be produced in the absence of 
males by using sperm stored in the spermathacae (Adams and Paul 1983, Paul and Paul 1992). Two or 
more consecutive egg fertilization events can follow a single copulation using stored sperm to self-
fertilize the new clutch (Paul 1982, Adams and Paul 1983), although egg viability decreases with time and 
age of the stored sperm (Paul 1984). 

Maturity in males can be classified either physiologically or morphometrically, but is not as easily 
determined as with females. Physiological maturity refers to the presence or absence of spermataphores in 
the gonads whereas morphometric maturity refers to the presence or absence of a large claw (Brown and 
Powell 1972). During the molt to morphometric maturity, there is a disproportionate increase in the size 
of the chelae in relation to the carapace (Somerton 1981a). While many earlier studies on Tanner crabs 
assumed that morphometrically mature male crabs continued to molt and grow, there is now substantial 
evidence supporting a terminal molt for males (Otto 1998, Tamone et al. 2007). A consequence of the 
terminal molt in male Tanner crab is that a substantial portion of the population may never achieve legal 
size (NPFMC 2007). 

Although observations are lacking in the EBS, seasonal differences have been observed between mating 
periods for pubescent and multiparous females in the Gulf of Alaska and Prince William Sound. There, 
pubescent molting and mating takes place over a protracted period from winter through early summer, 
whereas multiparous mating occurs over a relatively short period during mid April to early June 
(Hilsinger 1976, Munk et al. 1996, and Stevens 2000). In the EBS, egg condition for multiparous Tanner 
crabs assessed between April and July 1976 also suggested that hatching and extrusion of new clutches 
for this maturity state began in April and ended sometime in mid-June (Somerton 1981a). 

e. Fecundity 
A variety of factors affect female fecundity, including somatic size, maturity status (primiparous vs. 
multiparous), age post terminal molt, and egg loss (NMFS 2004). Of these factors, somatic size is the 
most important, with estimates of 89 to 424 thousand eggs for females 75 to 124 mm CW, respectively 
(Haynes et al. 1976). Maturity status is another important factor affecting fecundity, with primiparous 
females being only ~70% as fecund as equal size multiparous females (Somerton and Meyers 1983). The 
number of years post maturity molt, and whether or not, a female has had to use stored sperm from that 
first mating can also affect egg counts (Paul 1984, Paul and Paul 1992). Additionally, older senescent 

sex maturity a b
males 0.000270 3.022134

immature          
(non-ovigerous)

0.000562 2.816928

mature 
(ovigerous)

0.000441 2.898686
females
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females often carry small clutches or no eggs (i.e., are barren) suggesting that female crab reproductive 
output is a concave function of age (NMFS 2004). 

f. Size at Maturity 
Rugolo and Turnock (2012b) estimated size at 50% mature for females (all shell classes combined) from 
data collected in the NMFS bottom trawl survey at 68.8 mm CW, and 74.6 mm CW for new shell 
females. For males, Rugolo and Turnock (2012a) estimated classification lines using mixture-of-two-
regressions analysis to define morphometric maturity for the unit Tanner crab stock, and for the sub-stock 
components east and west of 166oW, based on chela height and carapace width data collected during the 
2008 NMFS bottom trawl survey. These rules were then applied to historical survey data from 1990-2007 
to apportion male crab as immature or mature based on size (Rugolo and Turnock, 2012b). Rugolo and 
Turnock (2012a) found no significant differences between the classification lines of the sub-stock 
components (i.e., east and west of 166oW), or between the sub-stock components and that of the unit 
stock classification line. Size at 50% mature for males (all shell condition classes combined) was 
estimated at 91.9 mm CW, and at 104.4 mm CW for new shell males. By comparison, Zheng and Kruse 
(1999) used knife-edge maturity at >79 mm CW for females and >112 mm CW for males in development 
of the current SOA harvest strategy. 

Some preliminary work towards incorporating chela height measurements on male crab directly into the 
assessment has been done, but not completed. One concern is the representativeness of this data for the 
entire stock, given the somewhat haphazard nature of collections in previous years. To address this issue, 
substantial effort was devoted during the 2017 NMFS EBS bottom trawl survey to obtain chela heights on 
all male Tanner crab collected during the survey (R. Foy, NMFS, pers. comm.). However, this data is not 
yet available to incorporate into the assessment. 

g. Mortality 
Due to the lack of age information for crab, Somerton (1981a) estimated mortality separately for 
individual EBS cohorts of immature and adult Tanner crab. Somerton postulated that age five crab (mean 
CW = 95 mm) were the first cohort to be fully recruited to the NMFS trawl survey sampling gear and 
estimated an instantaneous natural mortality rate of 0.35 for this size class using catch curve analysis. 
Using this analysis with two different data sets, Somerton estimated natural mortality rates of adult male 
crab from the fished stock to range from 0.20 to 0.28. When using CPUE data from the Japanese fishery, 
estimates of M ranged from 0.13 to 0.18. Somerton concluded that estimates of M from 0.22 to 0.28 
obtained from models that used both the survey and fishery data were the most representative. 

Rugolo and Turnock (2011a) examined empirical evidence for reliable estimates of oldest observed age 
for male Tanner crab. Unlike its congener the snow crab, information on longevity of the Tanner crab is 
lacking. They reasoned that longevity in a virgin population of Tanner crab would be analogous to that of 
the snow crab, where longevity would be at least 20 years, given the close analogues in population 
dynamic and life-history characteristics (Turnock and Rugolo 2011a). Employing 20 years as a proxy for 
longevity and assuming that this age represented the upper 98.5th percentile of the distribution of ages in 
an unexploited population, M was estimated to be 0.23 based on Hoenig’s (1983) method. If 20 years was 
assumed to represent the 95% percentile of the distribution of ages in the unexploited stock, the estimate 
for M was 0.15. Rugolo and Turnock (2011a) adopted M=0.23 for both male and female Tanner because 
the value corresponded with the range estimated by Somerton (1981a), as well as the value used in the 
analysis to estimate new overfishing definitions underlying Amendment 24 to the Crab Fishery 
Management Plan (NPFMC 2007). 

5. Brief summary of management history.  
A complete summary of the management history is provided in the ADFG Area Management Report 
appended to the annual SAFE. Fisheries have historically taken place for Tanner crab throughout their 
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range in Alaska, but currently only the fishery in the EBS is managed under a federal Fishery 
Management Plan (FMP; NPFMC 2011). The plan defers certain management controls for Tanner crab to 
the State of Alaska, with federal oversight (Bowers et al. 2008). The State of Alaska manages Tanner crab 
based on registration areas divided into districts. Under the FMP, the state can adjust districts as needed to 
avoid overharvest in a particular area, change size limits from other stocks in the registration area, change 
fishing seasons, or encourage exploration (NPFMC 2011). 

The Bering Sea District of Tanner crab Registration Area J (Figure 1) includes all waters of the Bering 
Sea north of Cape Sarichef at 54° 36’N and east of the U.S.-Russia Maritime Boundary Line of 1991. 
This district is divided into the Eastern and Western Subdistricts at 173°W. The Eastern Subdistrict is 
further divided at the Norton Sound Section north of the latitude of Cape Romanzof and east of 168°W 
and the General Section to the south and west of the Norton Sound Section (Bowers et al. 2008). In this 
report, I use the terms “east region” and “west region” as shorthand to refer to the regions demarcated by 
166oW. 

In March 2011, the Alaska Board of Fisheries (BOF) approved a new minimum size limit harvest strategy 
for Tanner crab effective for the 2011/12 fishery. Prior to this change, the minimum legal size limit was 
5.5” (138 mm CW) throughout the Bering Sea District. The new regulations established different 
minimum size limits east and west of 166o W. The minimum size limit for the fishery to the east of 
166oW is now 4.8” (122 mm CW) and that to the west is 4.4” (112 mm CW), where the size measurement 
includes the lateral spines. For economic reasons, fishers may adopt larger minimum sizes for retention of 
crab in both areas, and the SOA’s harvest strategy and total allowable catch (TAC) calculations are based 
on assumed minimum preferred sizes that are larger than the legal minimums. In 2011, these minimum 
preferred sizes were set at 5.5” (140 mm CW) in the east and 5” (127 mm CW) in the west, including the 
lateral spines. In 2015, following a petition by the crab industry, the BOF revised the minimum preferred 
size for TAC calculations in the area east of 166o W longitude to 5” (127 mm CW), the same as that in the 
western area. These new “preferred” sizes were used to set the TAC for the 2015/16 fishery season.  

In assessments prior to 2016, the term “legal males” was used to refer to male crab ≥ 138 mm CW (not 
including the lateral spines), although this was not strictly correct as it referred to the industry’s 
“preferred” crab size in the east region, as well as to the minimum size in the east used in the SOA’s 
harvest strategy for TAC setting. In this assessment, I use the term “legal males” to refer to crab 125 mm 
CW, the minimum “preferred” size used in both eastern and western areas the SOA’s harvest strategy, 
and larger. 

Landings of Tanner crab in the Japanese pot and tangle net fisheries were reported in the period 1965-
1978, peaking at 19.95 thousand t in 1969. The Russian tangle net fishery was prosecuted during 1965-
1971 with peak landings in 1969 at 7.08 thousand t. Both the Japanese and Russian Tanner crab fisheries 
were displaced by the domestic fishery by the late-1970s (Table 1; Figure 3). Foreign fishing for Tanner 
crab ended in 1980. 

The domestic Tanner crab pot fishery developed rapidly in the mid-1970s (Tables 1 and 2; Figure 3). 
Domestic US landings were first reported for Tanner crab in 1968 at 0.46 thousand t taken incidentally to 
the EBS red king crab fishery. Tanner crab was targeted thereafter by the domestic fleet and landings rose 
sharply in the early 1970s, reaching a high of 30.21 thousand t in 1977/78. Landings fell sharply after the 
peak in 1977/78 through the early 1980s, and domestic fishing was closed in 1985/86 and 1986/87 due to 
depressed stock status. In 1987/88, the fishery reopened and landings rose again in the late-1980s to a 
second peak in 1990/91 at 18.19 thousand t, and then fell sharply through the mid-1990s. The domestic 
Tanner crab fishery was closed between 1996/97 and 2004/05 as a result of conservation concerns 
regarding depressed stock status. It re-opened in 2005/06 and averaged 0.77 thousand t retained catch 
between 2005/06-2009/10 (Tables 1 and 2). For the 2010/11-2012/13 seasons, the State of Alaska closed 
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directed commercial fishing for Tanner crab due to estimated female stock metrics being below thresholds 
adopted in the state harvest strategy. However, these thresholds were met in fall 2013 and the directed 
fishery was opened in 2013/14. TAC was set at 1,645,000 lbs (746 t) for the area west of 166o W and at 
1,463,000 lbs (664 t) for the area east of 166o W in the State of Alaska’s Eastern Subdistrict of Tanner 
crab Registration Area J. The fisheries opened on October 15 and closed on March 31. On closing, 79.6% 
(594 t) of the TAC had been taken in the western area while 98.6% (654 t) had been taken in the eastern 
area. Prior to the closures, the retained catch averaged 770 t per year between 2005/06-2009/10. In 2014, 
TAC was set at 6,625,000 lbs (3,005 t) for the area west of 166o W and at 8,480,000 lbs (3,846 t) for the 
area east of 166o W. On closing, 77.5% (2,329 t) of the TAC was taken in the western area while 99.6% 
(3,829 t) were taken in the eastern area. In 2015, TAC was set at 8,396,000 lbs (3,808 t) in the western 
area and 11,272,000 lbs (5,113 t) in the eastern area. On closing, essentially 100% of the TAC was taken 
in each area (3,798 t in the west, 5,111 t in the east). The total retained catch in 2015/16 (8,910 t) was the 
largest taken in the fishery since 1992/93 (Tables 1, 2; Figure 2). The directed fisheries in both areas were 
closed in 2016/17 because mature female biomass in the NMFS EBS Bottom Trawl Survey did not 
exceed the threshold set in the SOA’s harvest strategy to allow them to open. Total retained catch was 
thus 0 in 2016/17. 

Bycatch and discard losses of Tanner crab originate from the directed pot fishery, non-directed snow crab 
and Bristol Bay red king crab pot fisheries, and the groundfish fisheries (Tables 3 and 4; Figures 5-7). 
Bycatch estimates are converted to discard mortality using assumed handling mortality rates of 32.1% for 
bycatch in the crab fisheries and 80% for bycatch in the groundfish fisheries. Bycatch was persistently 
high during the early-1970s; a subsequent peak mode of discard losses occurred in the early-1990s. In the 
early-1970s, the groundfish fisheries contributed significantly to total bycatch losses (although bycatch in 
the crab fisheries was undocumented at the time). From 1992/93 (when reliable crab fishery bycatch 
estimates are first available) to 2004/05, the groundfish fisheries accounted for the largest proportion of 
discard mortality. Since 2005/06, however, the crab fisheries have accounted for the largest proportion. 

D. Data 

1. Summary of new information 
Because the directed fisheries were closed in 2016/17, retained catch abundance and biomass for the 
previous year were both 0 and no retained catch size composition data was available. Similarly, total 
catch (retained + discards) abundance and biomass in the directed fishery were both 0 for 2016/17, and no 
total catch size composition data from at-sea sampling was available. Updated estimates of total retained 
biomass and abundance in the 2015/16 directed fisheries, as well as retained size frequencies by shell 
condition, based on fish ticket data and dockside observer sampling were provided by ADFG (B. Daly, 
ADFG, pers. comm.).  

ADFG also provided estimates of Tanner crab bycatch (abundance, biomass and size compositions) in the 
2016/17 snow crab and Bristol Bay red king crab fisheries by several categories (e.g., by sex and shell 
condition), as well as updated estimates of total bycatch abundance and biomass, total fishery (potlifts) 
and observer sampling (pots examined) effort in both fisheries for 1990/91 to 2015/16. 

Tanner crab bycatch data in the groundfish fisheries (abundance, biomass, size compositions) were 
extracted for 1991/92-2016/17 from the groundfish observer and AKRO databases on AKFIN. One model 
scenario for this assessment explored the use of fitting gear-specific data types, but most scenarios fit the 
data aggregated over gear types (see below). More details of this data are discussed in Appendix A. 

Swept-area abundance, biomass and size composition data from the 2017 NMFS EBS Bottom Trawl 
Survey were added to the assessment. Survey results for the assessment were calculated directly from the 
survey “crab haul” data files and station strata file to incorporate assessment criteria (e.g., excluding crab 
< 25 mm CW, aggregating crab > 185 mm CW into the upper-most size bin in size compositions) and 
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facilitate comparisons across multiple areas and population categories. More details are provided in 
Appendices B and C.  

For the first time, molt increment data from growth studies conducted in the EBS as cooperative research 
by NMFS and BSFRF are fit in a number of the model scenarios included in this assessment. These data 
are examined in more detail in Appendix D. 

The following table summarizes data sources that have been updated for this assessment: 

 

The following table summarizes the data coverage in the assessment model (color shading highlights 
different model time periods and data components): 

 

Data source Data types Time frame Notes Agency

area-swept abundance, biomass 1975-2017 recalculated, new
size compositions

NMFS/BSFRF molt-increment data 2014-16 new NMFS, BSFRF
Directed fishery retained catch (numbers, biomass) 2005/06-2016/17 updated, new ADFG

retained catch size compositions 2013/14-2015/16 updated ADFG
effort 2015/16, 2016/17 updated, new ADFG
total catch (abundance, biomass) 2015/16, 2016/17 updated, new ADFG
total catch size compositions 2015/16, 2016/17 updated, new ADFG

Snow Crab Fishery effort 1990/91-2013/14 updated, new ADFG
total bycatch (abundance, biomass) 1990/91-2016/17 updated, new ADFG
total bycatch size compositions 2016/17 new ADFG

Bristol Bay effort 1990/91-2013/14 updated, new ADFG
Red King Crab Fishery total bycatch (abundance, biomass) 1990/91-2016/17 updated, new ADFG

total bycatch size compositions 2016/17 new ADFG
Groundfish Fisheries total bycatch (abundance, biomass) 1991/92-2016/17 updated, new
(all gear types) total bycatch size compositions 1991/92-2016/17 updated, new
Groundfish Fixed-Gear total bycatch (abundance, biomass) 1991/92--2016/17 new
Fisheries total bycatch size compositions 1991/92--2016/17 new
Groundfish Trawl total bycatch (abundance, biomass) 1991/92--2016/17 new
Fisheries total bycatch size compositions 1991/92--2016/17 new

NMFS EBS Bottom         
Trawl Survey

NMFS/AKFIN

NMFS

NMFS/AKFIN

NMFS/AKFIN
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2. Data presented as time series 
For the data presented in this document, the convention is that ‘year’ refers to the year in which the 
NMFS bottom trawl survey was conducted (nominally July 1, yyyy), and fishery data are those 
subsequent to the survey (July 1, yyyy to June 30, yyyy+1)--e.g., 2015/16 indicates the 2015 bottom trawl 
survey and the winter 2015/16 fishery.  

a. Total catch 
Retained catch in the directed fisheries for Tanner crab conducted by the foreign fisheries (Japan and 
Russia) and the domestic fleet, starting in 1965/66, is presented in Table 1 and Figure 2 by fishery year. 
More detailed information on retained catch in the directed domestic pot fishery is provided in Table 2, 
which lists total annual catches in numbers of crab and biomass (in lbs), as well as the SOA’s Guideline 
Harvest Level (GHL) or Total Allowable Catch (TAC) , number of vessels participating in the directed 
fishery, and the fishery season. Information from the Community Development Quota (CDQ) is included 
in the totals starting in 2005/06. 

Directed fisheries for Tanner crab in the EBS began in 1965. Retained catch has followed a “boom-and-
bust” cycle over the years, with the fishery experiencing periods of rapidly increasing catches followed by 
rapidly declining ones, after which it is closed for a time during which the stock partially recovers. 
Retained catch increased rapidly from 1965 to 1975, reaching ~ 25,000 t in 1970. It declined to ~13,000 t 
in 1973/74 coinciding with the termination of Russian fishing and the beginning of the domestic pot 
fishery. It increased again, this time to its highest level, in 1977/78 (~35,000 t) as the domestic fishery 
developed rapidly, but it subsequently declined again and the fishery was closed in 1985/86 and 1986/87. 
In the late 1980s and early 1990s, the fishery experienced another, somewhat smaller, “boom” followed 
by a “bust” and closure of the fishery from 1997/98 to 2004/05. From 2005/06 to 2009/10, the fishery 
experienced its smallest boom-and-bust cycle, peaking at only ~1,000 t retained catch, and was closed 
again from 2010/11 to 2012/13. The fishery was re-opened in 2013/14, and retained catch increased each 
subsequent year until 2016/17 as TACs increased (Figures 2 and 6). The retained catch for 2015/16 (8,910 
t) was the largest since 1992/1993 (15,920 t; Table 1). However, the TAC for both directed fisheries was 
set at 0, and both fisheries closed for the year, by ADFG prior to the start of the 2016/17 fishing season 
because mature female biomass in the 2016 NMFS EBS bottom trawl survey did not meet the SOA’s 
criteria for opening the fisheries. 

b. Information on bycatch and discards  
Annual bycatch (discards) of Tanner crab are provided in Tables 3 and 4 and Figures 3-5 based on ADFG 
crab observer sampling, starting in 1992/93 for the directed Tanner crab fishery, the snow crab fishery, 
and the BBRKC fishery. Annual discards for the groundfish fisheries, based on NMFS groundfish 
observer programs, are also provided starting in 1973/74, but sex is undifferentiated. A value of 0.321 is 
used for “handling mortality” in the crab fisheries to convert observed bycatch to (unobserved) mortality 
(Stockhausen, 2014). For the groundfish fisheries, values of 0.5, 0.8, and 0.8 for handling mortality are 
used to reflect differences in gear effects and on-deck operations compared with the crab fleets for fixed 
gear fleets, trawl gear fleets, and aggregated gear fleets, respectively. 

Estimated bycatch mortality in the groundfish fisheries (without distinguishing gear type) was highest 
(~15,000 t) in the early 1970s, but was substantially reduced by1977 to ~2,000 t with the curtailment of 
foreign fishing fleets. It declined further in the 1980s (to ~500 t) but increased somewhat in the late 1980s 
to a peak of ~2,000 t in the early 1990s before undergoing a slow but rather steady decline to the present 
(255 t in 2016/17). Since reliable at-sea ADFG crab observer data has been available (1992), the snow 
crab fishery has consistently accounted for the highest fraction of bycatch mortality among the crab 
fisheries, followed by the directed fishery and the BBRKC fishery (Table 4, Figure 4). Estimated bycatch 
mortality was highest for all crab fisheries in the early 1990s (~12,000 t total) but subsequently declined 
as (presumably) the stock declined and the directed fishery was curtailed. Since the directed fishery re-
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opened in 2013/14, bycatch mortality has averaged 325 t in the directed fishery, 554 t in the snow crab 
fishery, 32 t in the BBRKC fishery, and 309 t in the groundfish fisheries. 

In the crab fisheries, the largest component of bycatch occurs on males. In the early 1990s, female 
bycatch ranged between 6 and 40% of the bycatch in the directed and snow crab fisheries. Since the 
directed fishery re-opened in 2013/14, the fraction of bycatch that is female has ranged between 2% and 
6% in the directed fishery, between 0.3 and 3% in the BBRKC fishery, and has been below 1% in the 
snow crab fishery. Estimates of total groundfish bycatch are not currently available by sex. 

c. Catch-at-size for fisheries, bycatch, and discards 
Retained (male) catch-at-size in the directed Tanner crab fishery from ADFG crab observer sampling is 
presented in Figure 6 by fishery region (and total) for the two most recent periods the fishery was open 
(spanning 2005/06-2015/16). These appear to indicate a shift to retaining somewhat smaller minimum 
sizes since 2013/14, compared with 2005/06-2009/10. In fact, the BOF in 2014/15, in response to a 
petition by industry, changed its harvest strategy for calculating TACs to reflect a smaller minimum 
industry-preferred size of 125 mm CW east of 166W longitude. 

Size compositions expanded to total catch (retained + discards) from at-sea crab fishery observer 
sampling in the directed fishery are presented by shell condition and fishery region in Figure 7 for male 
crab and in Figure 8 for female crab. The male size compositions suggest that about half the males caught 
in the directed fishery in 2015/16 were less than the minimum preferred size of 125 mm CW. If old shell 
males really are males at least one year past their terminal molt (as assumed in the assessment model), the 
size compositions for these crab suggest that 30-50% of these crab (which will not grow) are less than the 
preferred size. 

Size compositions expanded to total bycatch of Tanner crab in the snow crab fishery, based on at-sea crab 
fishery observer sampling, are presented by sex and shell condition in Figure 9. Because this fishery is 
prosecuted further north and west, on average, than the directed fishery, its bycatch composition consists 
of somewhat smaller males than in the directed fishery. Conversely, the expanded bycatch size 
compositions for the BBRKC fishery tend to be shifted toward somewhat larger males than the directed 
fisheries because the BBRKC fishery is prosecuted further to the south and east on average than the 
directed fishery (Figure 10). Figure 11 presents size compositions expanded to total bycatch based on 
observer sampling in the groundfish fisheries for 1991/92 to the present. Size compositions prior to 
1991/92 have not been expanded to total bycatch; thus, the scales are incompatible with those after 
1990/91. Male bycatch size compositions in the snow crab fishery clearly reflect some sort of “dome-
shaped” selectivity pattern (as assumed in the assessment model), with selectivity small for small and 
large males and highest for intermediate-sized males. In contrast, the BBRKC fishery appears to catch 
mostly larger Tanner crab males (consistent with asymptotic selection), while the groundfish fisheries 
take a wide range of sizes as bycatch. 

Raw and input sample sizes (number of individuals measured) for the various fisheries are presented in 
Tables 5-9. 

d. Survey biomass estimates 
Time series trends from the NMFS EBS bottom trawl survey suggest the Tanner crab stock in the EBS 
has undergone decadal-scale fluctuations (Table 10, Figure 12; see also Appendix B, Figures 1-12). 
Estimated biomass of mature crab in the survey time series started at its maximum (277,000 t) in 1975, 
decreased rapidly to a low (17,000 t) in 1986, and rebounded quickly to a smaller peak (157,000 t) in 
1991. After 1991, mature survey biomass decreased again, reaching a minimum of 13,100 t in 1998. 
Recovery following this decline was slow and mature survey biomass did not peak again until 2008 
(82,900 t), after which it has fluctuated more rapidly—decreasing within two years by almost 50% and 
reaching a minimum in 2010 (44,600 t), followed by an increase of almost 50% to reach a peak in 2014 
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(97,300 t). The most recent trend (2014-2017) has been a declining one (Figures 12 and 13). Trends in the 
male and female components of mature survey biomass, as well as legal male abundance, have primarily 
been in synchrony with one another (Appendix B, Figures 5, 6, 9 and 10), as have changes in the eastern 
and western fishery regions (east and west of 166oW longitude; Figures 14 and 15; Appendix B, Figures 
5, 6), although the magnitudes differ. 

 

e. Survey catch-at-length 
Plots of survey size compositions for male crab, expanded to total abundance by shell condition and 
fishery region, in Figures 16 and 17. The absence of small (new shell) crab in the eastern region since 
2009 is notable, as is the progression of a possible cohort (with two size modes) through the new shell 
size classes in both regions starting in 2009 that starts to show up, but much reduced in amplitude, in the 
old shell crab size comps in 2014. Plots of survey size compositions for female crab, expanded to total 
abundance by maturity status (based on morphometric characteristics) and fishery region, are shown in 
Figures 18 and 19. Similar to males, a cohort progression of immature females starting in 2009 is evident 
in both regions, although it is much clearer in the eastern region. It can also be tracked into the mature 
female size comps starting in 2013. A potential new cohort is also evident in the size comps for both 
sexes in the western region, but not the eastern region, in 2017. 

Observed sample sizes for the size compositions, aggregated to the EBS regional level used in the 
assessment, are presented in Table 11. Given the large number of individuals sampled, a sample size of 
200 is used to fit survey size compositions in the assessment model to prevent convergence issues 
associated with using the actual sample sizes.  

f. Other time series data. 
Spatial patterns of abundance in the 1975-2017 NMFS bottom trawl surveys are mapped in Appendix C 
for immature males, mature males, immature females, mature females and legal males. There is some 
suggestion that an extensive cold pool in the middle region of the EBS shelf may act to diminish relative 
crab densities in this region, particularly for mature males (e.g., Appendix C: compare 1984, Figure 11 vs. 
2016, Figure 43). 

Annual effort in the snow crab and BBRKC fisheries is used in the model to “project” bycatch fishing 
mortality rates backward in time from the period when data on bycatch in these fisheries exists (1992-
present). A table of annual effort (number of potlifts) is provided for the snow crab and BBRKC fisheries 
(Table 12). 

3. Data which may be aggregated over time: 

a. Growth-per-molt 
Sex-specific growth curves derived by Rugolo and Turnock (2010) provide the basis for priors on sex-
specific growth estimated within the assessment model. Molt increment data is now available to fit in the 
model (see Appendix D), but it is assumed to reflect growth rates over the entire model period. 

b. Weight-at size 
Weight-at-size relationships used in the assessment model for males, immature females, and mature 
females is depicted in Figure 21. 

c. Size distribution at recruitment 
The assumed size distribution for recruits to the population in the assessment model is presented in Figure 
22. 
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4. Information on any data sources that were available, but were excluded from the assessment. 
The 1974 NMFS trawl survey was dropped entirely from the standardized survey dataset in 2015 due to 
inconsistencies in spatial coverage with the standardized dataset. Chela height data from the NMFS 
survey are not yet fit in the model, although a subset of the available data forms the basis for the maturity 
ogive used to assign a probability of maturity to male crab collected in NMFS surveys. Data collected on 
Tanner crab abundance and size compositions collected in BSFRF surveys are not yet incorporated in the 
assessment. 

E. Analytic Approach 

1. History of modeling approaches for this stock 
Prior to the 2012 stock assessment, Tanner crab was managed as a Tier-4 stock using a survey-based 
assessment approach (Rugolo and Turnock 2011b). The Tier 3 Tanner Crab Stock Assessment Model 
(TCSAM) was developed by Rugolo and Turnock and presented for review in February 2011 to the Crab 
Modeling Workshop (Martel and Stram 2011), to the SSC in March 2011, to the CPT in May 2011, and 
to the CPT and SSC in September 2011. The model was revised after May 2011 and the report to the CPT 
in September 2011 (Rugolo and Turnock 2011a) described the developments in the model per 
recommendations of the CPT, SSC and Crab Modeling Workshop through September 2011. In January 
2012, the TCSAM was reviewed at a second Crab Modeling Workshop. Model revisions were made 
during the Workshop based on consensus recommendations. The model resulting from the Workshop was 
presented to the SSC in January 2012. Recommendations from the January 2012 Workshop and the SSC, 
as well as the authors’ research plans, guided changes to the model. A model incorporating all revisions 
recommended by the CPT, the SSC and both Crab Modeling Workshops was presented to the SSC in 
March 2012. 

 In May 2012 and June 2012, respectively, the TCSAM was presented to the CPT and SSC to determine 
its suitability for stock assessment and the rebuilding analysis (Rugolo and Turnock 2012b). The CPT 
agreed that the model could be accepted for management of the stock in the 2011/12 cycle, and that the 
stock should be promoted to Tier-3 status. The CPT also agreed that the TCSAM could be used as the 
basis for rebuilding analyses to underlie a rebuilding plan developed in 2012. In June 2012, the SSC 
reviewed the model and accepted the recommendations of the CPT. The Council subsequently approved 
the SSC recommendations in June 2012. For 2011/12, the Tanner crab was assessed as a Tier-3 stock and 
the model was used for the first time to estimate status determination criteria and overfishing levels. 

Modifications have been made to the TCSAM computer code to improve code readability, computational 
speed, model output, and user friendliness without altering its underlying dynamics and overall 
framework. A detailed description of the 2013 model (TCSAM2013) is presented in Appendix 3 of the 
2014 SAFE chapter (Stockhausen, 2014). Following the 2014 assessment, the model code was put under 
version control using “git” software and is publicly available for download from the GitHub website2.  

A new model “framework”, TCSAM02, has been under development for the past two years. In May 2017, 
the CPT reviewed this framework and recommended its use in this assessment. At its June 2017 meeting, 
the SSC concurred. The new framework is a completely-rewritten basis for the Tanner crab model: 
substantially different model scenarios can be created and run by editing model configuration files rather 
than modifying the underlying code itself. Most importantly, no time blocks are “hard-wired” into the 
code—any time blocks are defined in the configuration files. In addition, the new frame work can 
incorporate new data types (e.g., molt increment data), new survey data (e.g., the BSFRF surveys), and 
new fishery data (e.g., bycatch in the groundfish fisheries by gear type). The new model framework also 
incorporates status determination and OFL calculation directly within a model run, so a follow-on, stand-

2 https://github.com/wStockhausen/wtsTCSAM2013.git 
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alone projection model does not need to be run, as with TCSAM2013. This approach has the added 
benefit of allowing a more complete characterization of model uncertainty in the OFL calculation, 
because the OFL calculations can now be included in Markov Chain Monte Carlo (MCMC) evaluation of 
a model’s posterior probability distribution. Although TCSAM02 is a new model framework, it was 
demonstrated at the May 2017 CPT meeting that it could exactly reproduce an “exactly equivalent” model 
developed using the old TCSAM2013 model code. This “exactly equivalent” model, while not identical 
to the 2016 assessment model, provides the base model (B0) for this assessment. 

The code for the TCSAM02 model framework is publicly available on GitHub3. 

2. Model Description 
a. Overall modeling approach 

TCSAM02 is a stage/size-based population dynamics model that incorporates sex (male, female), shell 
condition (new shell, old shell), and maturity (immature, mature) as different categories into which the 
overall stock is divided on a size-specific basis. For details of the model, the reader is referred to 
Appendix E.  

In brief, crab enter the modeled population as recruits following the size distribution in Figure 22. An 
equal (50:50) sex ratio is assumed at recruitment, and all recruits begin as immature, new shell crab. 
Within a model year, new shell, immature recruits are added to the population numbers-at-sex/shell 
condition/maturity state/size remaining on July 1 from the previous year. These are then projected 
forward to Feb. 15 (𝛿𝛿𝛿𝛿 = 0.625 yr) and reduced for the interim effects of natural mortality. Subsequently, 
the various fisheries that either target Tanner crab or catch them as bycatch are prosecuted as pulse 
fisheries (i.e., instantaneously). Catch by sex/shell condition/maturity state/size in the directed Tanner 
crab, snow crab, BBRKC, and groundfish fisheries is calculated based on fishery-specific stage/size-
based selectivity curves and fully-selected fishing mortalities and removed from the population. The 
numbers of surviving immature, new shell crab that will molt to maturity are then calculated based on 
sex/size-specific probabilities of maturing, and growth (via molt) is calculated for all surviving new shell 
crab. Crab that were new shell, mature crab become old shell, mature crab (i.e., they don’t molt) and old 
shell crab remain old shell. Population numbers are then adjusted for the effects of maturation, growth, 
and change in shell condition. Finally, population numbers are reduced for the effects of natural mortality 
operating from Feb. 15 to July 1 (𝛿𝛿𝛿𝛿 = 0.375 yr) to calculate the population numbers (prior to 
recruitment) on July 1. 

Model parameters are estimated using a maximum likelihood approach, with Bayesian-like priors on 
some parameters and penalties for smoothness and regularity on others. Data components in the base 
model entering the likelihood include fits to mature survey biomass, survey size compositions, retained 
catch, retained catch size compositions, bycatch mortality in the bycatch fisheries, and bycatch size 
compositions in the bycatch fisheries. 

b. Changes since the previous assessment. 
As noted above, this assessment uses the TCSAM02 model framework, a completely re-written basis for 
the Tanner crab assessment. Substantive changes from the 2016 TCSAM2013 assessment model to the 
base model addressed here (with 2016 data: B0.2016) were fully documented in a set of incremental-
change models in the May 2017 report to the CPT (Stockhausen, 2017). These are summarized here 
briefly in the following table: 

3  https://github.com/wStockhausen/wtsTCSAM02.git 
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The TCSAM2013 model B6 was demonstrated to be “exactly equivalent” to the TCSAM02 base model 
for this assessment, B0, using 2016 data.  

i. Methods used to validate the code used to implement the model 
The TCSAM02 model framework was demonstrated to produce results that were exactly equivalent to 
those from the 2016 assessment model incorporating the changes listed in the previous table. TCSAM02 
also underwent a review in July 2017 conducted by the Center for Independent Experts. 

3. Model Selection and Evaluation 

a. Description of alternative model configurations 
 The following tables provide a summary of the baseline model configuration, B0, for this assessment. 

TCSAM2013 
Model

Incremental change

AM 2016 assessment model
AMa AM + removed size-specific "old shell" re-classification for input data
AMb AMa + fit to total capture (not mortality) size compositions
AMc AMb + fit to total capture (not mortality) biomass
AMd AMc + apply seasonal M after molt-to-maturity
B0 same as AMd
B1 B0 + fit to input survey biomass based on 1-mm size bins
B2 B1 + using 2.20462262 to convert from kg to lbs
B3 B2 + capture rates in RKF not explicitly set to 0 for 1984,1985 and 1994, 1995
B4 B3 + corrected retained size comps for 2015/16
B5 B4 + using median size-at-50% selected for TCF males pre1991 (not average)
B6 B5 + using post-1972 median F for GTF before 1973 (not average)
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Model B0: Model description of population processes and survey characteristics. 

 

process time blocks description
Population rates and quantities
Population built from annual recruitment
Recruitment 1949-1974 ln-scale mean + annual devs constrained as AR1 process

1975-2017 ln-scale mean + annual devs 
Growth 1949-2016 sex-specific

mean post-molt size: power function of pre-molt size
priors on mean post-molt parameters from Kodiak growth data
post-molt size: gamma distribution conditioned on pre-molt size

Maturity 1949-2016 sex-specific
size-specific probability of terminal molt
logit-scale parameterization

Natural mortalty 1949-1979, 1985-2estimated sex/maturity state-specific multipliers on base rate
priors on multipliers based on uncertainty in max age

1980-1984 estimated "enhanced mortality" period multipliers
Surveys
NMFS EBS trawl survey
male survey q 1975-1981 ln-scale

1982+ ln-scale w/ prior based on Somerton's underbag experiment
female survey q 1975-1981 ln-scale

1982+ ln-scale w/ prior based on Somerton's underbag experiment
male selectivity 1975-1981 ascending logistic

1982+ ascending logistic
female selectivity 1975-1981 ascending logistic

1982+ ascending logistic
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Model B0: Model description of fishery characteristics. 

 

Fishery/process time blocks description
TCF directed Tanner crab fishery
capture rates pre-1965 male nominal rate

1965-2016 male ln-scale mean + annual devs
1949-2016 ln-scale female offset

male selectivity 1949-1990 ascending logistic
1991-1996 annually-varying ascending logistic
2005-2016 annually-varying ascending logistic

female selectivity 1949-2016 ascending logistic
male retention 1949-1990 ascending logistic

1991-2016 ascending logistic
SCF bycatch in  snow crab fishery
capture rates pre-1978 nominal rate on males

1979-1991 extrapolated from effort
1992-2016 male ln-scale mean + annual devs
1949-2016 ln-scale female offset

male selectivity 1949-1996 dome-shaped
1997-2004 dome-shaped
2005-2016 dome-shaped

female selectivity 1949-1996 ascending logistic
1997-2004 ascending logistic
2005-2016 ascending logistic

RKF bycatch in BBRKC fishery
capture rates pre-1952 nominal rate on males

1953-1991 extrapolated from effort
1992-2016 male ln-scale mean + annual devs
1949-2016 ln-scale female offset

male selectivity 1949-1996 ascending logistic
1997-2004 ascending logistic
2005-2016 ascending logistic

female selectivity 1949-1996 ascending logistic
1997-2004 ascending logistic
2005-2016 ascending logistic

GTF bycatch in groundfish fisheries
capture rates pre-1973 male ln-scale mean from 1973+

1973+ male ln-scale mean + annual devs
1973+ ln-scale female offset

male selectivity 1949-1986 ascending logistic
1987-1996 ascending logistic
1997+ ascending logistic

female selectivity 1949-1986 ascending logistic
1987-1996 ascending logistic
1997+ ascending logistic
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The following alternative model scenarios were evaluated as part of this assessment: 

Description of the alternative model scenarios evaluated for this assessment. The number of estimated 
parameters and the final value of the objective function for each converged model are also listed. B2b is 
the author’s preferred model. 

 

Scenario B0.2016 is the baseline model scenario without the updated and new data for 2017. It is identical 
to the “exactly equivalent” model from the May 2017 CPT meeting. Scenario B0 is the baseline model 
with new and updated data for 2017. Scenario B0a introduces a new parameterization for mean growth to 
address CPT and SSC concerns with B0.2016 and previous assessments that some growth parameters 
ended up at one of the bounds set on them.  

The “old” parameterization for mean growth estimated the asymptote (a) and slope (b) of the following 
log-log (or power law, on the arithmetic scale) model for post-molt size in terms of pre-molt size: 

 ln�𝑧𝑧�̅�𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 𝑎𝑎 + 𝑏𝑏 ∙ ln (𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝) (1) 

Note that the interpretation of a here is that 𝑒𝑒𝑎𝑎 is the mean post-molt size for a crab of pre-molt size 1. 
The “new” parameterization for mean growth estimates the mean post-molt sizes (𝑧𝑧�̅�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

 and 𝑧𝑧�̅�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑎𝑎𝑚𝑚
) 

at two pre-molt sizes (𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
 and 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑎𝑎𝑚𝑚

) based on an alternative form for the linear (in ln-space) 
relationship: 

 ln�𝑧𝑧�̅�𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = ln (𝑧𝑧�̅�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
) +

�ln (�̅�𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)−ln (�̅�𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)�

�ln (𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)−ln (𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)�
∙ �ln�𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝� − ln (𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

)� (2) 

The new parameters are much more easily interpreted, as would priors put on them. I chose 25 mm CW 
for 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

 for both sexes, and 100 and 125 mm CW for 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑎𝑎𝑚𝑚
 for females and males, respectively, so 

the estimated parameters are the mean post-molt sizes corresponding to the associated 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝’s. No priors 
were placed on the new parameters in scenario B0a.  

Scenario B1 and subsequent scenarios included the molt-increment data from the EBS in their model 
fitting procedures. B1 used the “old” growth parameterization, but the priors placed on the growth 
parameters were removed and the scale parameter for the growth model’s gamma probability distribution 
was estimated. Scenario B1a replaced the “old” growth parameterization with the new parameterization.  

model 
scenario

number of 
parameters

objective 
function value

  description

B0.2016 332 2,665.27 "fully-equivalent" model from May 2017 CPT meeting
B0 336 2,765.43 Base model for 2017 assessment (B0.2016 + 2017 data)
B0a 336 2,763.31 B0 + new growth parameterization (growth data not fit)
B1 337 3,109.39 B0 + fit to EBS growth data, drop riors on growth, estimate growth scale parameter
B1a 337 3,108.64 B1 + new growth parameterization
B1b 337 3,110.35 B1a + new parameterization for RKF selectivity
B1c 337 8,367.14 B1b + 20 x  higher likelihood weight on EBS growth data
B2 350 2,872.42 B1b + annual devs on retention function z50's
B2a 353 2,870.33 B2 + 3 time blocks for asymptotic retention level
B2b 344 2,894.80 B2a + 3 time blocks for retention function substituted for annual devs
B3 391 2,381.20 B2b + bycatch in groundfish fisheries by gear type (1991+)
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Several of the parameters estimated for the ascending logistic functions used to describe bycatch 
selectivity in the BBRKC fishery (denoted RKF here) also had a tendency to end up at one of the bounds 
placed on them in the B0 scenarios and previous assessment models. Scenario B1b introduced a new 
parameterization for an ascending logistic curve based on the size-at-95%-selected (z95) and the ln-scale 
interval between the sizes at 50%-selected and 95%-selected (ln (∆𝑧𝑧95−50)), rather than the more common 
size-at-50%-selected and scale parameter, to try to eliminate this behavior. 

In scenarios B1, B1a and B1b, the EBS molt-increment data was added to the model objective function 
using a log-likelihood function appropriate for a gamma distribution without any additional weighting 
(i.e., a likelihood weight of 1). However, it is unclear whether or not this is an appropriate weight for this 
data vis-à-vis other components contributing to the objective function. To explore the implications of 
increasing the weight placed on the molt-increment data in fitting the model, scenario B1c increased the 
weight on the molt-increment data in the likelihood by a factor of 20 (essentially decreasing variances by 
a factor of 4.5). As discussed below, this model performed unsatisfactorily and subsequent scenarios (B2, 
B2a, B2b and B3) kept the weight on the molt-increment data in the likelihood at 1. 

Scenario B2 was based on scenario B1b, but allowed the value of the size-at-50% retention for males in 
the directed fishery to vary annually during the 1991/92-2015/16 time period. Scenario B2a built on B2 
by estimating parameters reflecting the maximum fraction of crab retained in the directed fishery in three 
time periods: 1) 1965/66-1996/97, 2) 2005/06-2009/10, and 3) 2013/14-2015/16. The latter two time 
blocks reflect potentially different fleet composition and fishing practices following fishery closures 
(1997/98-2004/05, 2010/11-2012/13) and rationalization of the fishery (2005). Scenario B2b attempted to 
reduce the number of parameters used to model retention in the directed fishery by replacing the annual 
deviations in size-at-50%-retention from 1991/92 to 2015/16 with the three time blocks associated with 
the maximum retention parameters (1965/66-1996/97, 2005/06-2009/10, and  2013/14-2015/16) for the 
same reasons.  

Finally, scenario B3, otherwise based on B2b, decomposed the bycatch in the groundfish fisheries after 
1990/91 into fixed gear and trawl gear components to try to better resolve handling mortality on discarded 
Tanner crab in these fisheries. In prior scenarios, bycatch in the groundfish fisheries was aggregated 
across gear types and a handling mortality rate appropriate to trawl gear (80%) was assumed to apply to 
the total. In B3, bycatch in the fixed gear fleets was separated from that in the trawl gear fleets and a 
separate handling mortality rate (equal to the handling mortality rate for crab pot gear, 32.1%) was 
assumed to apply. Separate sex-specific selectivity functions were estimated in two time blocks (1991/92-
1996/97 and 1997/98-2016/17) for each gear type. Ascending logistic functions were used for all six fixed 
gear selectivity functions, as well as the three trawl gear selectivities applied to females. Dome-shaped 
double-logistic functions were fit to the three trawl gear selectivity functions applied to males. 

 

b. Progression of results from the previous assessment to the preferred base model 
The following table summarizes basic model results from the 2016 assessment model (2016AM) and the 
11 scenarios considered here: 
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The author’s preferred model, B2b, is highlighted for reference. The number of estimated parameters 
reported in the table is larger for the 2016 assessment model than B02016 because the final “dev” in a 
TCSAM02 devs vector is not counted as an estimable parameter (the vector is constrained to sum to 0) 
whereas it was counted in the 2016 assessment model based on TCSAM2013. 

All new model scenarios were evaluated using 200 runs with jittered initial parameter values to select the 
run with the smallest objective function value and smallest maximum gradient. For each model, the 
selected run was re-run to invert the hessian and obtain standard deviations for parameter estimates. All 
models resulted in hessians that were invertible and provided uncertainty estimates associated with the 
parameter estimates.  

Results of the progression from the 2016 assessment model to the base model here using the 2016 data, 
B0.2016, were presented and discussed at the May 2017 CPT meeting (Stockhausen, 2017). Results from 
the model progression from B0.2016 to B3 are presented in Appendix F.  

c. Evidence of search for balance between realistic (but possibly over-parameterized) and simpler 
(but not realistic) models. 

The characteristics of retention of male crab in the directed fishery in the base model, B0, were assumed 
to be different before and after 1991, primarily reflecting changes in fleet composition and effort, and 
parameters describing two independent logistic functions were estimated for those time periods. Model 
B2 allowed potentially-annual changes in the retention curve after 1991 by estimating annual deviations 
in the size-at-50%-retained. Because B2 was possibly over-parameterized, model B2b eliminated the 
annual deviations and instead estimated parameters for independent retention functions in three time 
blocks across 1991-present (1991-1996, 2005-2009, 2013-2015). 

d. Convergence status and convergence criteria 
Convergence in all models was assessed by running each model at least 200 times with randomly-selected 
(“jittered”) initial parameter values for each run. For each model, a number of these jitter runs failed, 
primarily because the initial values for the growth parameters resulted in the mean post-molt size being 
smaller than the pre-molt size. Of those that converged, the run with the smallest objective function value 
and smallest maximum gradient was selected as the “converged” model, if it was also possible to invert 
the associated hessian and obtain standard deviation estimates for parameter values. Theoretically, all 
gradients at a minimum of the objective function would be zero. However, because numerical methods 
have finite precision, the numerical search for the minimum is terminated after achieving a minimum 
threshold for the max gradient or exceeding the maximum number of iterations. Typically, 5-10 jittered 
runs converged to the same minimum value, but sets of runs also converged to larger values—
emphasizing the need to jitter to evaluate convergence to the minimum objective function value in the 
first place.  

average 
recruitment Final MMB B0 Bmsy Fmsy MSY Fofl OFL projected MMB

projected 
MMB / 
Bmsy

projected 
MMB / Final 

MMB
millions 1000's t 1000's t 1000's t 1000's t 1000's t 1000's t

2016AM 341 2,406.75 182.27 73.90 73.29 25.65 0.79 11.13 0.79 25.61 45.34 1.77 0.61
B02016 332 2,665.27 175.94 85.19 75.83 26.54 0.93 11.21 0.93 27.38 45.47 1.71 0.53
B0 336 2,765.43 174.64 68.57 76.90 26.91 0.92 11.21 0.92 21.87 36.88 1.37 0.54
B0a 336 2,763.31 172.24 66.92 75.27 26.35 0.93 11.10 0.93 21.40 35.82 1.36 0.54
B1 337 3,109.39 194.58 74.26 79.67 27.89 0.94 11.48 0.94 24.02 39.72 1.42 0.53
B1a 337 3,108.64 194.80 73.82 79.22 27.73 0.94 11.46 0.94 23.90 39.40 1.42 0.53
B1b 337 3,110.35 195.26 73.83 79.14 27.70 0.95 11.47 0.95 23.95 39.35 1.42 0.53
B1c 337 8,367.14 270.31 98.70 91.09 31.88 1.21 13.08 1.21 35.57 49.19 1.54 0.50
B2 350 2,872.42 198.97 74.51 80.14 28.05 0.74 11.58 0.74 23.20 40.59 1.45 0.54
B2a 353 2,870.33 208.35 78.73 82.38 28.83 0.75 12.03 0.75 24.74 42.57 1.48 0.54
B2b 344 2,894.80 213.95 80.57 83.34 29.17 0.75 12.25 0.75 25.42 43.31 1.49 0.54
B3 391 2,381.20 263.90 87.47 88.82 31.09 0.89 13.40 0.89 29.76 44.67 1.44 0.51

model 
scenario

number of 
parameters

objective 
function
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e. Sample sizes assumed for the compositional data 
Input sample sizes used for compositional data are listed in Tables 5-9 for fishery-related size 
compositions. Input sample sizes for all survey size compositions were set to 200, which was also the 
maximum allowed for the fishery-related sample sizes. Otherwise, input sample sizes were scaled as 
described in Stockhausen (2014, Appendix 5): 

𝑆𝑆𝑆𝑆𝑦𝑦
𝑚𝑚𝑚𝑚𝑝𝑝 = min �200,

𝑆𝑆𝑆𝑆𝑦𝑦
(𝑆𝑆𝑆𝑆���/200)�

 

where 𝑆𝑆𝑆𝑆��� was the mean sample size for all males from dockside sampling in the directed fishery. 

f. Parameter sensibility 
Limits were placed on all estimated parameters in all model scenarios primarily to provide ranges for 
jittering initial parameter values. Although these limits, for the most part, did not constrain parameter 
estimates in the converged models, some parameters were found to be at, or very close, to one of the 
bounds placed on them. These parameters are listed for the alternative scenarios in Tables 13 and 14 
(values for all parameters are listed in Tables 15-24). The CPT and SSC have both expressed concerns 
regarding parameters estimated at their bounds, as such results frequently violate assumptions regarding 
model convergence, parameter uncertainty estimates, and suggest that model suitability may be improved 
by widening the bounds or re-parameterizing the model.  

Models B3 and B1c had the most parameters at a bound (19 and 13, respectively), while B2 had the least 
(9)(Tables 13 and 14). The author’s preferred model, B2b, had 11, but the two parameters that differed 
from B2 in this regard were the logit-scale probability of terminal model in the largest size class (the 
parameters for both models essentially yielded a probability of 1; Table 17) and the descending slope of 
the dome-shaped bycatch selectivity for males in the snow crab fishery (pS4[1]; Table ). 

In Table 13, the logit-scale parameters pLgtRet[1], pLgtPrM2M[1], and pLgtPrM2M[2] are estimated at 
one of the bounds placed on them. For these parameters, being at the upper bound (15) suggests the 
parameter could be replaced by  1 on the arithmetic scale without affecting the remaining parameters 
whereas those that are at the lower bound (-15) could be replaced by 0 on the arithmetic scale. The result 
would be, for the model scenarios concerned, assuming max retention prior to 1997 is 100% (i.e., 1; 
pLgtRet[1]), the probability of terminal molt for males in the largest model size class (180+ mm CW) is 
100% (pLgtPrM2M[1]), and the probability of terminal molt for females in the smallest size class (25-30 
mm CW) is 0 (pLgtPrM2M[2]). 

That the growth parameters (pGrA, pGrB, and pGrBeta) are estimated at their bounds in some scenarios is 
somewhat concerning, but the problems with pGrA and pGrB have been dealt with by re-parameterizing 
mean post-molt size as a function of pre-molt size from Equation 1 (scenarios B0.2016, B0, B1) above to 
Equation 2 (scenarios B0a, B1a, and subsequent ones). Of more concern is that pLnQ[1] and pLnQ[2], the 
ln-scale parameters for survey catchability for both males and females in the pre-1982 period, are 
estimated at the lower bound in all scenarios considered here. The lower limit corresponds to a survey “q” 
of 0.5, and the models all want go lower, but this is likely to result in increased population 
abundance/biomass estimates in the pre-1982 period. 

A number of selectivity parameters are also estimated at, or very close to, one of the bounds placed on 
them (Table 14). Most selectivity functions in all scenarios were ascending logistic functions, which 
would be expected to increase from near 0 at small crab sizes to 1 at large crab sizes. Upper limits on 
size-related selectivity parameters for female crab reflect the fact that they attain smaller final sizes than 
males, so their associated selectivity functions should asymptote at smaller sizes. In general, bounds on 
selectivity parameters were selected to reflect these characteristics. That parameters associated with sizes 
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at 50%-selected or 95%-selected (pS[1], pS1[22], pS1[23], pS1[24], pS1[25], pS1[26], pS1[27], pS1[33], 
pS2[1], pS2[2], pS2[4]) end up at their upper bounds suggests that the associated fully-selected fishery 
capture rate or survey catchability may be confounded with value for selectivity in the largest size bin. 
This is certainly the case for bycatch selectivity for females in the BBRKC fishery. It also appears that the 
re-parameterization of bycatch selectivity for the BBRKC fishery from size-at-50-%-selected (z50) and 
slope to size-at-95%-selected (z95) and increment from z50 to z95 rarely succeeded in moving the estimated 
parameters away from the bounds. 

Estimates of parameter uncertainty, approximations calculated by inverting the model hessian and using 
the “delta” method, were obtained from each converged model’s ADMB “std” file (Tables 15-24). 
Extremely large uncertainties were obtained for parameters related to the NMFS trawl survey selectivity 
for females after 1981 for scenario B0a (Table 27) and the slope of bycatch selectivity for females in the 
groundfish trawl gear fleet during 1991-1996 for scenario B3 (Table 24).  

g. Criteria used to evaluate the model or to choose among alternative models 
Criteria used to evaluate the alternative models were based primarily on: 1) goodness of fit and likelihood 
criteria, 2) parameter sensibility, and 3) biological realism.  

The author’s preferred model, B2b, fits the EBS growth data and has reasonable parameter estimates. It is 
more parsimonious than models B2 and B2a, using fewer parameters to model time-varying retention in 
the directed fishery.  

h. Residual analysis 
Residuals for the author’s preferred model, Model B2b, are discussed below under the Results section. 

i. Evaluation of the model(s) 
Of the models evaluated with data for 2017, B0 provided a link to the “exactly equivalent” TCSAM02 
model presented at the May 2017 CPT meeting (B0.2016 here). Model B0a tested a new parameterization 
of mean growth designed to eliminate estimated growth parameters constrained by their bounds (it did). 
Model B1 introduced fitting molt-increment data for the EBS for the first time, but used the “old” growth 
parameterization of B0 for consistency with that scenario—with the continued result of growth 
parameters hitting their bounds. Model B1a used the new parameterization of mean growth and again 
eliminated the problem with growth parameters estimated at their bounds. By incorporating the growth 
data and removing the issue with some estimated parameters hitting one of their bounds, B1a became the 
de facto “model to beat”. Model B1b was an attempt to eliminate additional parameters hitting their 
bounds by introducing re-parameterized logistic selectivity functions for bycatch in the BBRKC fishery. 
Although these changes proved unsuccessful, B1b was essentially identical to B1a and formed the basis 
for scenario B2. Scenario B1c was an unsuccessful attempt to put more emphasis on fitting the growth 
data in the model—the large weight placed on the growth data forced a number of parameters to one of 
their bounds and resulted in generally poorer fits to other data components (NMFS trawl survey size 
compositions for immature crab being the exceptions; Tables 25 and 26). Scenario B2 introduced 
annually-varying retention curves which, not surprisingly, improved the fit to retained catch size 
compositions dramatically over scenario B1b (187 likelihood units) but also improved fits to retained 
catch biomass (30 likelihood units), total catch biomass of both males and females in the directed fishery 
(36 likelihood units), and total catch size compositions for males in the directed fishery (Tables 25 and 
26). Scenario B2a allowed maximum retention to be less than 1, and estimated logit-scale parameters 
reflecting this for three different time periods. This improved fits to retained catch biomass and size 
compositions (12 likelihood units) and size compositions for immature males in the NMFS trawl survey 
(8 likelihood units), but degraded the fit to total catch biomass of females in the directed fishery (27 
likelihood units). Scenario B2b attempted to simplify B2a by reducing the allowed variability in the 
retention function for the directed fishery from annual changes in size-at-50%-retained to changes 
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between three time blocks coinciding with changes in the directed fishery. This resulted in an improved 
fit to the retained catch size compositions over B2a (9 likelihood units), but worse fits to retained catch 
biomass, female total catch biomass in the directed fishery, and total catch size compositions for males in 
the directed fishery (25 likelihood units). Scenario B3 disaggregated bycatch in the groundfish fisheries 
by gear type after 1990/91 to try to disentangle potential changes in bycatch selectivity in the groundfish 
fisheries due to changes in the relative amount of Tanner crab taken by the trawl- and fixed-gear fleets. 
B3 was not really successful, resulting in the largest number of parameters at bounds among the 11 model 
scenarios. 

4. Results (best model(s)) 
Model B2b was selected as the author’s preferred model for the 2017 assessment. 

a. List of effective sample sizes, the weighting factors applied when fitting the indices, and the 
weighting factors applied to any penalties. 

Input and effective sample sizes for size composition data fit in the model are listed in Tables 27-32 from 
the 2016 assessment model and Model B2b. A weighting factor of 20 (corresponding to a standard 
deviation of 0.158) was applied to all  fishery catch biomass likelihood components to achieve close fits 
to catch biomass time series.  

b. Tables of estimates: 

i. All parameters 
Parameter estimates and associated standard errors, based on inversion of the converged model’s Hessian, 
are listed in Tables 15-24.  

ii. Abundance and biomass time series, including spawning biomass and MMB. 
Estimates for mature survey biomass, by sex, are listed in Table 33 and for mature biomass at mating, by 
sex, in Table 34 for the 2016 assessment model and the author’s preferred model, B2b. Numbers at size 
for females and males are given by year in 5 mm CW size bins for scenario B2b in Tables 35 and 36, 
respectively. 

iii. Recruitment time series 
The estimated recruitment time series from the 2016 assessment and Model B2b are listed in Table 37.  

iv. Time series of catch divided by biomass. 
A comparison of catch divided by biomass (i.e., exploitation rate) from the 2016 assessment and Model 
B2b is listed in Table 34. 

c. Graphs of estimates 
Direct comparisons between the 2016 assessment model and scenario B2b are not available because the 
2016 assessment model results files are incompatible with the R packages developed to plot TCSAM02 
model results. Instead, comparisons between B0.2016, the “exactly equivalent” model and B2b are 
provided (along with results from the other scenarios) in Appendix F. However, results from B0.2016, 
although very similar in most respects, are not identical to the 2016 assessment model results. 

i. Fishery and survey selectivities, molting probabilities, and other schedules depending on 
parameter estimates. 

Estimated natural mortality rates are shown in Figure F1 (i.e., Appendix F, Figure 1). Mortality rates are 
assumed equal by sex for immature crab, but are allowed to differ by sex for mature crab. Mortality rates 
for mature crab were estimated by sex across two time periods: 1949-1979/80+1985/86-2016/17 and 
1980/81-1984/85. The latter period has been identified as a period of high natural mortality in the 
BBRKC stock (Zheng et al., 2012) and was identified as a separate period for Tanner crab in the 2012 
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assessment. The following table summarizes the estimated rates by stock component for B0.2016 and 
B2b: 

Stock component 
Normal period High Mortality 

B0.2016 B2b B0.2016  B2b 

immature crab 0.23 0.23 0.23 0.23 

mature females 0.33 0.32 0.46 0.42 

mature males 0.26 0.26 0.72 0.69 

 

Estimated sex- and size-specific probabilities of the terminal molt-to-maturity (Figure F2) are quite 
similar for all the models, with the exceptions that the curves are right-shifted to larger sizes in scenarios 
B1c and B3. 

Mean growth curves from scenarios B0.2016 and B2b are nearly identical for males and very similar for 
females, although B2b estimates slightly smaller growth increments at large sizes relative to B0.2016 
(Figure F3). A similar result holds for the distribution of post-molt sizes conditioned on pre-molt size 
(Figures F4-F11). Mean growth curves in both scenarios appear to overestimate the molt increment at the 
largest pre-molt size in both the EBS data (fit in B2b, Figures F13-F15) and the Kodiak data (Figures F6-
F18) for males, and to a lesser extent for females. 

Estimated catchability in the NMFS trawl survey (Figure F169) is smaller in B2b in the standardized net 
period (1982+) for both males and females (0.64 and 0.40, respectively) than in B0.2016 (0.72 and 0.50). 
The associated selectivity curves estimated in the two scenarios are quite similar, although female 
selectivity post-1981 is slightly higher at small sizes in B2b compared with B0.2016, while the opposite 
true for males Figure F170). 

iii. Estimated full selection F over time 
Estimated time series of fully-selected F (capture rates, not mortality) on males in the directed fishery 
and bycatch in the snow crab, BBRKC and groundfish fisheries are compared among the model scenarios 
in Figures F171-F176. Rates for the directed fishery (Figure 174) are generally similar between B0.2016 
and B2b, except during the period 1978/79-1979/80, when they are substantially higher in B0.2016 
(Figure F158). For the bycatch fisheries, F’s tend to be slightly higher across the model time period for 
B0.2016 compared with B2b (Figures F171-173).  

ii. Estimated male, female, mature male, total and effective mature biomass time series 
Time series of recruitment estimates from the model scenarios evaluated here are illustrated in Figure 
F213-F216. The time series for scenarios B0.2016 and B2b are quite similar in trend and timing of 
fluctuations, but B2b tends to estimate somewhat higher peaks than B0.2016. B2b estimates a large spike 
in recruitment occurred this last year. 

As with recruitment, estimates of population abundance time series from B0.2016 and B2b exhibit very 
similar patterns of variability, although B2b tends to be slightly higher than B0.2016 in almost all years 
(Figures F221-224).  
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As with population abundance, estimates of mature biomass time series from the B0.2016 and B2b also 
exhibit similar patterns of variability (Figures 217-220), being basically smoothed versions of the 
population abundance trajectories. 

iv. Estimated fishing mortality versus estimated spawning stock biomass 
See Section F (Calculation of the OFL; Figure 27). 

v. Fit of a stock-recruitment relationship, if feasible. 
Not available. 

e. Evaluation of the fit to the data: 

i. Graphs of the fits to observed and model-predicted catches 
Model fit to retained catch is shown in Figures F31-F32 for all scenarios. The fits are generally very good, 
but B2b fits the retained catch abundance almost perfectly in recent years (Figure F31), while B0.2016 
overestimates retained catch in 2005/06-2009/10 and underestimates during 2013/14-2015/6.  

Fits to total catch data from the directed fishery are also better in recent years for B2b compared with 
B0.2016, although the differences are fairly small (Figures F34-F35). Fits to total male bycatch data in the 
snow crab fishery is very good for both B0.2016 and B2b (Figures F36-F37). Fits to the BBRKC fishery 
male bycatch data  are also good, although they look somewhat worse because the values are small 
relative to the assumed uncertainties. (Figures F40-F41). 

Fits to female bycatch data in all the crab fisheries (Figures F34-F37, F40-F41) tend to be very good 
because the majority of the estimates are well within the confidence intervals assumed for the data, but 
this is because female bycatch levels in all the crab fisheries are much smaller than the assumed 
uncertainty level associated with the total catch data . When the fits are poor, it is because the observed 
female bycatch is larger than the uncertainty associated with it and its temporal pattern does not track that 
of male bycatch—in the model, the predicted female bycatch is constrained to follow the same temporal 
pattern as males. 

Bycatch in the groundfish fisheries is not sex-specific. Fits to total bycatch mortality in the groundfish 
fisheries are very good both B2b and B0.2016 (Figures F38-39). Both models nicely capture the peak at 
the beginning of the time series, followed by the rapid decline and subsequent fluctuations. Since 
2008/09, total bycatch has been less than 500 t and B2b has predicted it slightly better than B0.2016.  

The “goodness of fit” to the fishery catch data, as it influence the likelihoods in models, is also evident of 
plots of z-scores for the fishery catch data (Figures F33, F46-49). Almost all the z-scores are < 1, 
indicating that little improvement to the current fits in terms of absolute (rather than relative) error will 
occur without changing the assumed uncertainty levels for the fishery data. The two z-scores that are 
greater than 1 in magnitude both occur in 1994/94 for females, one in the directed fishery and the other in 
the snow crab fishery. 

ii. Graphs of model fits to survey numbers 
Time series of observed biomass of mature crab in the NMFS bottom trawl surveys are compared by sex 
with model-predicted values in Figures F28-F29. None of the scenarios completely follow the wide 
swings in biomass before 1995, but that is partly because the observed survey biomass gives conflicting 
information in the male and female time series, particularly in 1975 and in the early 1980s. The models do 
a better job of capturing the swing from low to high biomass in the mid-1980s to early 1990s, but all 
overestimate the valley in 1986 and underestimate the peak in 1991. More recently, the fits of all 
scenarios are pretty good but still don’t quite capture the full extent of swings in biomass (Figure F29). 
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iii. Graphs of model fits to catch proportions by size class 
Model fits to proportions at size for retained catch are summarized in Figures F106  and F110 as 
Pearson’s residuals. Compared with B0.2016, B2b fits the retained catch much better than B0.2016. The 
pattern of over-predicting the retained catch proportions for smaller males and under-predicting 
proportions for larger males is much reduced in the period prior to 2011, as is the opposite pattern of 
over-predicting retained catch proportions for large crab during 2013/14-2015/16.   

Similar improvement is not evident in the fits to proportions at size for total catch in the directed fishery 
(Figures F118-F126). B2b fits the proportions at length somewhat better before 1996/97 than B0.2016 
does, but little change is evident in the more recent time periods when the directed fishery was 
prosecuted. There also appears to be little change (if any) in the fits to proportions at size for bycatch in 
the snow crab fishery (Figures F129 and 137). For the BBRKC fishery, B2b fits the proportions-at-size 
slightly worse than B0.2016 for 1992/93 and 1993/94, but otherwise the fits are almost identical (Figures 
151 and 159). Finally, B2b shows an improvement in the fits to proportions-at-size for larger-sized crab 
bycatch in the groundfish fisheries in the 1990-2005 time period, but with a corresponding worsening of 
the fits for smaller-sized crab in this time period (Figures F140 and F148). 

iv. Graphs of model fits to survey proportions by size class  
Model fits to proportions-at-size in the NMFS trawl survey for immature male crab show little change 
from B0.2016 to B2b (Figures F61 and F69), although there is a small improvement fitting proportions 
for crab larger than 100 mm CW for 2013-2015—but with a corresponding worsening for small crab < 30 
mm CW. The fits to mature male proportions-at-size (Figures F72 and F80) indicate virtually no change 
between the two model scenarios. Similar results hold for fits to both immature and mature female 
proportions-at-size (Figures F83 and F91, F94 and F102 respectively). 

v. Marginal distributions for the fits to the compositional data. 
Marginal plots of the composition data from the NMFS survey indicate almost no differences between 
scenarios B0.2016 and B2b (Figure F52). Both scenarios exhibit a small tendency to under-predict the 
proportions of larger immature crab and over-predict the proportions of larger mature crab—and slightly 
more so for males than females. 

The marginal plot of the retained catch composition data (Figure 53) indicates B2b fits the marginal 
retained catch composition data much better (almost exactly) than B0.2016 does, which over-predicts 
proportions at small crab sizes (< 140 mm CW) and under-predicts proportions of larger crab. 

The marginal plots of the total catch composition data in the directed fishery (Figure F57) indicate B2b 
and B0.2016 fit the marginal female composition data equally well. For males, B2b provides a better fit to 
the peak of the distribution than B0.2016 does, but both scenarios under-predict the proportions in the 
125-135 mm CW range and over-predict them for larger crab. 

The marginal plots for bycatch size compositions in the snow crab fishery (Figure 56) are essentially 
identical for scenarios B2b and B0.2016 for both males and females, and both fit the distributions well, 
except at the peak of the female distribution (85 mm CW), where both under-estimate the proportions. For 
bycatch in the BBRKC fishery (Figure 55), B2b and B0.2016 both fit the female marginal size 
composition data equally well, but both similarly under-predict proportions of small males (< 125 mm 
CW) caught in the fishery while over-predicting proportions of medium-sized males (130-155 mm CW) 
and under-predicting proportions for large crabs (> 155 mm CW). For the groundfish fishery (Figure 
F54), both scenarios tended to slightly under-predict male proportions at small sizes (< 75 mm CW) but 
over predict proportions at medium sizes (75-110 mm CW). For females, the opposite was true as both 
under-predicted proportions for small females (< 60 mm CW) but over-predicted proportions for medium-
sized females (60-80 mm CW). 
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vi. Plots of implied versus input effective sample sizes and time-series of implied effective 
sample sizes. 

Time series of implied effective sample sizes using the McAllister-Ianelli method are shown for retained 
catch (Figure F116), total catch size compositions in the directed fishery (Figure F163), bycatch size 
compositions in the snow crab, BBRKC and groundfish fisheries (Figures 164-166), and the NMFS EBS 
bottom trawl survey (Figure F104). For the most part, the implied effective sample sizes tend to be 
substantially larger than the input values. 

vii. Tables of the RMSEs for the indices (and a comparison with the assumed values for the 
coefficients of variation assumed for the indices). 

Tables of the RMSEs for the indices were not completed for the assessment, but will be provided at the 
May 2018 CPT meeting. 

viii. Quantile-quantile (q-q) plots and histograms of residuals (to the indices and 
compositional data) to justify the choices of sampling distributions for the data. 

Quantile-quantile (q-q) plots and histograms of residuals were not completed for the assessment, but will 
be provided at the May 2018 CPT meeting. 

f. Retrospective and historic analyses (retrospective analyses involve taking the “best” model and 
truncating the time-series of data on which the assessment is based; a historic analysis involves 
plotting the results from previous assessments). 

i. Retrospective analysis (retrospective bias in base model or models). 
Retrospective analyses were not completed for the assessment, but will be provided at the May 2018 CPT 
meeting. 

ii. Historical analysis (plot of actual estimates from current and previous assessments). 
An historical analysis was not completed for the assessment due to incompatibilities between TCSAM02 
and formats of previous assessment results. One will be provided at the May 2018 CPT meeting. 

g. Uncertainty and sensitivity analyses 
MCMC runs were completed for scenarios B0, B2b and B3 to explore model uncertainty. Each model 
was run for a single chain, which was set to run 10 million iterations, keeping results for every 1,000th to 
reduce serial autocorrelation, with a burn-in period of 2,000 iterations. After ~48 hours, the runs were 
stopped at about 4.5 million iterations. Mixing appeared to be sufficient, but this can be difficult to 
evaluate with only single chains. These runs provide empirical posterior distributions for model 
parameters and selected derived quantities, including OFL-related quantities.  

Time constraints did not allow a full exploration of the MCMC results. Summary results for the objective 
function and parameters related to survey catchability and selectivity are shown in Figure 23. As noted 
above, based on the trace for the objective function, mixing seems to have been sufficient. The posterior 
distributions for the survey parameters show the impact of the bounds placed on several of the parameters 
and support continued investigation and further model development to improve their characteristics: their 
distributions are skewed, with multiple maxima and minima. However, a similar plot for OFL-related 
quantities (Figure 24) indicates that they are much closer to normally-distributed and do not exhibit 
unexpected correlation structures (e.g., FOFL and FMSY are expected to be highly correlated).  

F. Calculation of the OFL and ABC 

1. Status determination and OFL calculation 
EBS Tanner crab was elevated to Tier 3 status following acceptance of the TCSAM by the CPT and SSC 
in 2012. Based upon results from the model, the stock was subsequently declared rebuilt and not 
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overfished. Consequently, EBS Tanner crab is assessed as a Tier 3 stock for status determination and OFL 
setting.  

The (total catch) OFL for 2016/17 was 25.61 thousand t while the total catch mortality was 1.14 thousand 
t, based on applying discard mortality rates of 1.000 for retained catch, 0.321 to bycatch in the crab 
fisheries, and 0.800 to bycatch in the groundfish fisheries to the reported catch by fleet for 2016/17 
(Tables 1 and 4). Therefore overfishing did not occur. 

Amendment 24 to the NPFMC fishery management plan (NPFMC 2007) revised the definitions for 
overfishing for EBS crab stocks. The information provided in this assessment is sufficient to estimate 
overfishing limits for Tanner crab under Tier 3. The OFL control rule for Tier 3 is (Figure 25):  

 

and is based on an estimate of “current” spawning biomass at mating (B above, taken as MMB at mating 
in the assessment year) and spawning biomass per recruit (SBPR)-based proxies for FMSY and BMSY. In the 
above equations, α=0.1 and β=0.25. For Tanner crab, the proxy for FMSY is F35%, the fishing mortality that 
reduces the SBPR to 35% of its value for an unfished stock. Thus, if 𝜙𝜙(𝐹𝐹) is the SBPR at fishing 
mortality F, then F35% is the value of fishing mortality that yields 𝜙𝜙(𝐹𝐹) = 0.35 ∙ 𝜙𝜙(0). The Tier 3 proxy 
for BMSY is B35%, the equilibrium biomass achieved when fishing at F35%, where B35% is simply 35% of the 
unfished stock biomass. Given an estimate of average recruitment, 𝑅𝑅�, then 𝐵𝐵35% = 0.35 ∙ 𝑅𝑅� ∙ 𝜙𝜙(0).  

Thus Tier 3 status determination and OFL setting for 2017/18 require estimates of B = MMB2017/18 (the 
projected MMB at mating time for the coming year), F35%, spawning biomass per recruit in an unfished 
stock (𝜙𝜙(0)), and 𝑅𝑅�. Current stock status is determined by the ratio B/B35% for Tier 3 stocks. If the ratio is 
greater than 1, then the stock falls into Tier 3a and FOFL  = FMSY= F35%. If the ratio is less than one but 
greater than β, then the stock falls into Tier 3b and FOFL is reduced from F35% following the descending 
limb of the control rule (Figure 25). If the ratio is less than β, then the stock falls into Tier 3c and directed 
fishing must cease. In addition, if B is less than ½ B35% (the minimum stock size threshold, MSST), the 
stock must be declared overfished and a rebuilding plan subsequently developed.  

In 2015, the SOA’s Board of Fish, under petition from the commercial Tanner crab fishing industry, 
changed the minimum preferred size for crab in the area east of 166oW longitude in calculations used for 
setting TACs from 138 mm CW (not including lateral spines) to 125 mm CW. The minimum preferred 
size in the area west of 166oW remained the same (125 mm CW). In previous assessments, an attempt 
was made to account for retention of slightly (10 mm CW) smaller crab in the directed fishery in the 
western area. Because the preferred size is now the same in both areas, the OFL is calculated assuming 
both selectivity (as previously) and retention (new) curves are the same in both areas.  

In previous years, a separate “projection model” has been used to determine OFL based on results from 
the assessment model. The estimated coefficient of variation for the estimate of final MMB was used to 
characterize model uncertainty and provided a calculational basis for determining an empirical probability 
density function (pdf) for OFL based on sampling final MMB from its assumed pdf. With the transition to 
TCSAM02, OFL is calculated within the assessment model based on equilibrium calculations for FOFL 
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and projecting the state of the population at the end of the modeled time period one year forward 
assuming fishing mortality at FOFL. Using MCMC, one can thus estimate the pdf of OFL (and related 
quantities of interest) incorporating full model uncertainty. 

To calculate the FOFL, the fishery capture rate for males in the directed fishery is adjusted until the 
longterm (equilibrium) MMB-at-mating is 35% of its unfished value. This calculation also depends on the 
assumed bycatch F’s on Tanner crab in the snow crab, BBRKC and groundfish fisheries. This year, the 
average F over the last 5 years for each of the bycatch fisheries is used in the calculations. In previous 
years, a different approach was used to determine the F to use for the snow crab fishery. For that fishery, 
the ratio of the FOFL from the snow crab assessment author’s preferred model to the average F over the 
last 5 years was used to scale the 5-year average bycatch F on Tanner crab. For last year’s assessment, the 
snow crab FOFL was 1.24 yr-1 (Szuwalski, 2016) and the 5-year average F is 0.979 yr-1, resulting in a 
scaling factor of 1.27. For this assessment, the snow crab assessment author’s preferred FOFL was 0.89 yr-

1T and the five-year average was1.05 (Cody Szuwalski, UCSB, pers. comm.), resulting in a scaling factor 
of 1.18. However, this scaling was not operational for TCSAM02 models at the time of this assessment, 
so the unscaled 5-year average bycatch F in the snow crab fishery was used instead. 

Selectivity curves in the bycatch fisheries were set using the average curves over the last 5 years for each 
fishery, the same approach as in previous assessments (Rugolo and Turnock, 2012b; Stockhausen 2015).  

Results from OFL calculations from the converged model run for each scenario (i.e., based on the MLE 
solution, not MCMC) are compared for illustrative purposes in Table 39. Scenario B1c stands out 
particularly from the others because estimated average recruitment and FOFL are quite a bit larger than for 
the other scenarios. The other scenarios appear to fall into two general groupings: 1) B0.2016, B0, B0a, 
B1, B1a, and B1b and 2) B2, B2a, B2b, and B3. The former group exhibits somewhat lower estimated 
average recruitments and higher FMSY’s than the latter. Primarily because estimated average recruitments 
are higher, the second group yields higher B0’s, BMSY’s, MSY’s, and OFLs. 

The determination of BMSY=B35% for Tanner crab depends on the selection of an appropriate time period 
over which to calculate average recruitment (𝑅𝑅�). After much discussion in 2012 and 2013, the SSC 
endorsed an averaging period of 1982+. Starting the average recruitment period in 1982 is consistent with 
a 5-6 year recruitment lag from 1976/77, when a well-known climate regime shift occurred in the EBS 
(Rodionov and Overland, 2005) that may have affected stock productivity. The value of 𝑅𝑅� for this period 
from the author’s preferred model is 213.95 million. The estimates of average recruitment are reasonably 
similar between the 2016 assessment model and the author’s preferred model (Table 37). The value of 
BMSY=B35% for 𝑅𝑅� is 25.42 thousand t, which is almost identical to that from the 2016 assessment (25.65 
thousand t). 

Once FOFL is determined using the control rule (Figure 25), the (total catch) OFL can be calculated based 
on projecting the population forward one year assuming that F = FOFL. In the absence of uncertainty, the 
OFL would then be the predicted total catch taken when fishing at F = FOFL. When uncertainty (e.g. 
assessment uncertainty, variability in future recruitment) is taken into account, the OFL is taken as the 
median total catch when fishing at F = FOFL. 

The total catch (biomass), including all bycatch of both sexes from all fisheries, was estimated using 

𝐶𝐶 = ���
𝐹𝐹𝑓𝑓,𝑚𝑚,𝑧𝑧

𝐹𝐹.,𝑚𝑚,𝑧𝑧
∙ (1 − 𝑒𝑒−𝐹𝐹.,𝑚𝑚,𝑧𝑧) ∙ 𝑤𝑤𝑚𝑚,𝑧𝑧 ∙ [𝑒𝑒−𝑀𝑀𝑚𝑚∙𝛿𝛿𝑝𝑝 ∙ 𝑁𝑁𝑚𝑚,𝑧𝑧]

𝑧𝑧𝑚𝑚𝑓𝑓

 

where C is total catch (biomass), Ff,x,z is the fishing mortality in fishery f on crab in size bin z by sex (x), 
𝐹𝐹.,𝑚𝑚,𝑧𝑧 = ∑ 𝐹𝐹𝑓𝑓,𝑚𝑚,𝑧𝑧𝑓𝑓  is the total fishing mortality by sex on crab in size bin z, wx,z is the mean weight of crab 
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in size bin z by sex, Mx is the sex-specific rate of natural mortality, 𝛿𝛿𝛿𝛿 is the time from July 1 to the time 
of the fishery (0.625 yr), and Nx,z is the numbers by sex in size bin z on July 1, 2016 as estimated by the 
assessment model. 

Assessment model uncertainty was included in the calculation of OFL using MCMC. Conceptually, a 
random draw from the assessment model’s joint posterior distribution for the estimated parameters was 
taken, and the B0, FMSY, BMSY, FOFL, OFL, and “current” MMB for 2017/18 were calculated based on 
resulting model parameter values. This would be repeated a large number of times to approximate the 
distribution of OFL given the full model uncertainty. In practice, a single (due to time constraints) chain 
of over 4 million MCMC steps was generated, with the OFL and associated quantities calculated at each 
step. The chain was initialized from the converged model state using a “burn in” of 2,000 steps and 
subsequently thinned by a factor of 1,000 to reduce serial autocorrelation in the MCMC sampling. This 
resulted in about 4,500 MCMC samples with which to characterize the distribution of the OFL. The 
median value of this distribution was taken as the OFL for 2017/18. Thus, the OFL for 2017/18 
from the author’s preferred model (Model B2b) is 25.42 thousand t (Figure 26). This value for the 
OFL is identical (to two decimal places) to the value calculated using the converged model parameters 
(i.e., the “MLE” estimate of OFL). 

The BMSY proxy, B35%, from the author’s preferred model is 29.17 thousand t, so MSST = 0.5 BMSY = 
14.58 thousand t. Because current B = 43.31 thousand t > MSST, the stock is not overfished. The 
population state (directed F vs. MMB) is plotted for each year from 1965/66-2016/17 in Figure 27 against 
the Tier 3 harvest control rule. 

2. ABC calculation 
Amendments 38 and 39 to the Fishery Management Plan (NPFMC 2010) established methods for the 
Council to set Annual Catch Limits (ACLs). The Magnuson-Stevens Act requires that ACLs be 
established based upon an acceptable biological catch (ABC) control rule that accounts for scientific 
uncertainty in the OFL such that ACL=ABC and the total allowable catch (TAC) and guideline harvest 
levels (GHLs) be set below the ABC so as not to exceed the ACL. ABCs must be recommended annually 
by the Council’s SSC. 

Two methods for establishing the ABC control rule are: 1) a constant buffer where the ABC is set by 
applying a multiplier to the OFL to meet a specified buffer below the OFL; and 2) a variable buffer where 
the ABC is set based on a specified percentile (P*) of the distribution of the OFL that accounts for 
uncertainty in the OFL. P* is the probability that ABC would exceed the OFL and overfishing occur. In 
2010, the NPFMC prescribed that ABCs for BSAI crab stocks be established at P*=0.49 (following 
Method 2). Thus, annual ACL=ABC levels should be established such that the risk of ovefishing, 
P[ABC>OFL], is 49%. In 2014, however, the SSC adopted a buffer of 20% on OFL for the Tanner crab 
stock for calculating ABC. Here, ABCs are provided based on both methods.  

For the author’s preferred model, Model C, the P* ABC (ABCmax) is 25.37 thousand t while the 20% 
Buffer ABC is 20.33 thousand t. The author remains concerned that the OFL calculation, based on F35% as 
a proxy for FMSY, is overly optimistic regarding the actual productivity of the stock. Fishery-related 
mortality similar to the P* ABC level has occurred only in the latter half of the 1970s and in 1992/93, 
coincident with collapses in stock biomass to low levels. This suggests that F35% may not be a realistic 
proxy for FMSY and/or that MMB may not be a good proxy for reproductive success, as are currently 
assumed for this stock. Given this uncertainty concerning the stock, the author recommends using the 
20% buffer previously adopted by the SSC for this stock to calculate ABC. Consequently, the 
author’s recommended ABC is 20.33 thousand t. 
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G. Rebuilding Analyses 
Tanner crab is not currently under a rebuilding plan. Consequently no rebuilding analyses were 
conducted. 

H. Data Gaps and Research Priorities 
Information on growth-per-molt has been collected in the EBS on Tanner crab and incorporated into the 
assessment. More data regarding temperature-dependent effects on molting frequency would be helpful to 
assess potential impacts of the EBS cold pool on the stock. Information on temperature-dependent 
changes in crab movement and survey catchability would also be of value. In addition, it would be 
extremely worthwhile to develop a “better” index of reproductive potential than MMB that can be 
calculated in the assessment model and to revisit the issue of MSY proxies for this stock.  

The characterization of fisheries in the assessment model needs to be carefully reconsidered. How, and 
whether or not, the East 166oW and West 166oW directed fisheries should be explicitly represented in the 
assessment model should be addressed. In addition, the question of whether or not bycatch in the 
groundfish fisheries should be split into pot- and trawl-related components should be resolved.  

With the implementation of TCSAM02, several research avenues can be explored much more efficiently: 
1) time-varying growth; 2) incorporating chela height data for male maturity classification, 3) 
decomposing the currently “lumped” directed fishery into its eastern and western components, and 4) 
incorporating the BSFRF surveys into the assessment. Development of a fully-Gmacs version of the 
Tanner crab model will also begin. 

I. Ecosystem Considerations 
Mature male biomass is currently used as the “currency” of Tanner crab spawning biomass for assessment 
purposes. However, its relationship to stock-level rates of egg production, perhaps an ideal measure of 
stock-level reproductive capacity, is unclear. Thus, use of MMB to reflect Tanner crab reproductive 
potential may be misleading as to stock health. Nor is it likely that mature female biomass has a clear 
relationship to annual egg production. For Tanner crab, the fraction of barren mature females by shell 
condition appears to vary on a decadal time scale (Rugolo and Turnock, 2012), suggesting a potential 
climatic driver. 

1. Ecosystem Effects on Stock 
Time series trends in prey availability or abundance are generally unknown for Tanner crab because 
typical survey gear is not quantitative for Tanner crab prey. On the other hand, Pacific cod (Gadus 
macrocephalus) is thought to account for a substantial fraction of annual mortality on Tanner crab (Aydin 
et al., 2007). Total P. cod biomass is estimated to have been slowly declining from 1990 to 2008, during 
the time frame of a collapse in the Tanner crab stock, but has been increasing rather rapidly since 2008 
(Thompson and Lauth, 2012). This suggests that the rates of “natural mortality” used in the stock 
assessment for the period post-1980 may be underestimates (and increasingly biased low if the trend in P. 
cod abundance continues). This trend is definitely one of potential concern. 

2. Effects of Tanner crab fishery on ecosystem  
Potential effects of the Tanner crab fishery on the ecosystem are considered in the following table: 

Effects of Tanner crab fishery on ecosystem 
Indicator Observation Interpretation Evaluation 
Fishery contribution to bycatch 

Prohibited species salmon are unlikely to be 
trapped inside a pot when 

unlikely to have 
substantial effects at the 
stock level 

minimal to none 
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it is pulled, although 
halibut can be 

Forage (including 
herring, Atka mackerel, 
cod and pollock) 

Forage fish are unlikely to 
be trapped inside a pot 
when it is pulled 

unlikely to have 
substantial effects minimal to none 

HAPC biota 
crab pots have a very 
small footprint on the 
bottom 

unlikely to be having 
substantial effects post-
rationalization 

minimal to none 

Marine mammals and 
birds 

crab pots are unlikely to 
attract birds given the 
depths at which they are 
fished 

unlikely to have 
substantial effects minimal to none 

Sensitive non-target 
species 

Non-targets are unlikely 
to be trapped in crab pot 
gear in substantial 
numbers 

unlikely to have 
substantial effects minimal to none 

Fishery concentration in 
space and time 

substantially reduced in 
time following 
rationalization of the 
fishery 

unlikely to be having 
substantial effects probably of little concern 

Fishery effects on amount 
of large size target fish 

Fishery selectively 
removes large males 

May impact stock 
reproductive potential as 
large males can mate with 
a wider range of females 

possible concern 

Fishery contribution to 
discards and offal 
production 

discarded crab suffer 
some mortality 

May impact female 
spawning biomass and 
numbers recruiting to the 
fishery 

possible concern 

Fishery effects on age-at-
maturity and fecundity none unknown possible concern 
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Tables 
Table 1. Retained catch (males) in directed Tanner crab fisheries. 

  

Year US Pot Japan Russia Total
1965/66 -- 1.17 0.75 1.92
1966/67 -- 1.69 0.75 2.44
1967/68 -- 9.75 3.84 13.60
1968/69 0.46 13.59 3.96 18.00
1969/70 0.46 19.95 7.08 27.49
1970/71 0.08 18.93 6.49 25.49
1971/72 0.05 15.90 4.77 20.71
1972/73 0.10 16.80 -- 16.90
1973/74 2.29 10.74 -- 13.03
1974/75 3.30 12.06 -- 15.24
1975/76 10.12 7.54 -- 17.65
1976/77 23.36 6.66 -- 30.02
1977/78 30.21 5.32 -- 35.52
1978/79 19.28 1.81 -- 21.09
1979/80 16.60 2.40 -- 19.01
1980/81 13.47 -- -- 13.43
1981/82 4.99 -- -- 4.99
1982/83 2.39 -- -- 2.39
1983/84 0.55 -- -- 0.55
1984/85 1.43 -- -- 1.43
1985/86 0.00 -- -- 0.00
1986/87 0.00 -- -- 0.00
1987/88 1.00 -- -- 1.00
1988/89 3.15 -- -- 3.18
1989/90 11.11 -- -- 11.11
1990/91 18.19 -- -- 18.19
1991/92 14.42 -- -- 14.42
1992/93 15.92 -- -- 15.92
1993/94 7.67 -- -- 7.67
1994/95 3.54 -- -- 3.54
1995/96 1.92 -- -- 1.92
1996/97 0.82 -- -- 0.82
1997/98 0.00 -- -- 0.00
1998/99 0.00 -- -- 0.00
1999/00 0.00 -- -- 0.00
2000/01 0.00 -- -- 0.00
2001/02 0.00 -- -- 0.00
2002/03 0.00 -- -- 0.00
2003/04 0.00 -- -- 0.00
2004/05 0.00 -- -- 0.00
2005/06 0.43 -- -- 0.43
2006/07 0.96 -- -- 0.96
2007/08 0.96 -- -- 0.96
2008/09 0.88 -- -- 0.88
2009/10 0.60 -- -- 0.60
2010/11 0.00 -- -- 0.00
2011/12 0.00 -- -- 0.00
2012/13 0.00 -- -- 0.00
2013/14 1.25 -- -- 1.25
2014/15 6.16 -- -- 6.16
2015/16 8.91 -- -- 8.91
2016/17 0.00 -- -- 0.00

Eastern Bering Sea Chionoecetes bairdi  Retained Catch (1,000's t)
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Table 2. Retained catch (males) in the US domestic pot fishery. Information from the Community 
Development Quota (CDQ) fisheries is included in the table for fishery years 2005/06 to the present. 
Number of crabs caught and harvest includes deadloss. The “Fishery Year” YYYY/YY+1 runs from July 
1, YYYY to June 30, YYYY+1. The ADFG year (in parentheses, if different from the “Fishery Year”) 
indicates the year ADFG assigned to the fishery season in compiled reports. 

  

year Total Total
(ADFG year) Crab Harvest GHL/TAC Vessels Season

(no.) (lbs) (millions lbs) (no.)
1968/69 (1969) 353,300 1,008,900
1969/70 (1970) 482,300 1,014,700
1970/71 (1971) 61,300 166,100
1971/72 (1972) 42,061 107,761
1972/73 (1973) 93,595 231,668
1973/74 (1974) 2,531,825 5,044,197

1974/75 2,773,770 7,028,378 28
1975/76 8,956,036 22,358,107 66
1976/77 20,251,508 51,455,221 83
1977/78 26,350,688 66,648,954 120
1978/79 16,726,518 42,547,174 144
1979/80 14,685,611 36,614,315 28-36 152 11/01-05/11

1980/81 (1981) 11,845,958 29,630,492 28-36 165 01/15-04/15
1981/82 (1982) 4,830,980 11,008,779 12-16 125 02/15-06/15
1982/83 (1983) 2,286,756 5,273,881 5.6 108 02/15-06/15
1983/84 (1984) 516,877 1,208,223 7.1 41 02/15-06/15
1984/85 (1985) 1,272,501 3,036,935 3 44 01/15-06/15
1985/86 (1986)
1986/87 (1987)
1987/88 (1988) 957,318 2,294,997 5.6 98 01/15-04/20
1988/89 (1989) 2,894,480 6,982,865 13.5 109 01/15-05/07
1989/90 (1990) 9,800,763 22,417,047 29.5 179 01/15-04/24

2015/16 16,608,625 40,081,555 42.8 255 11/20-03/25
1991/92 12,924,102 31,794,382 32.8 285 11/15-03/31
1992/93 15,265,865 35,130,831 39.2 294 11/15-03/31
1993/94 7,235,898 16,892,320 9.1 296 11/01-11/10, 11/20-01/01

1994/95 (1994) 3,351,639 7,766,886 7.5 183 11/01-11/21
1995/96 (1995) 1,877,303 4,233,061 5.5 196 11/01-11/16
1996/97 (1996) 734,296 1,806,077 6.2 196 11/01-11/05, 11/15-11/27

1997/98-2004/05
2005/06 443,978 952,887 1.7 49 10/15-03/31
2006/07 927,086 2,122,589 3.0 64 10/15-03/31
2007/08 927,164 2,106,655 5.7 50 10/15-03/31
2008/09 830,363 1,939,571 4.3 53 10/15-03/31
2009/10 485,676 1,327,952 1.3 45 10/15-03/31
2010/11
2011/12
2012/13
2013/14 1,426,670 2,751,124 3.108 32 10/15-03/31
2014/15 7,442,931 13,576,105 15.105 100 10/15-03/31
2015/16 10,856,418 19,642,462 19.668 112 10/15-03/31
2016/17 ------------------------------------------------closed-------------------------------------------

------------------------------------------------closed-------------------------------------------
------------------------------------------------closed-------------------------------------------

------------------------------------------------closed-------------------------------------------

------------------------------------------------closed-------------------------------------------
------------------------------------------------closed-------------------------------------------
------------------------------------------------closed-------------------------------------------
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Table 3. Total bycatch (discards, 1000’s t) of Tanner crab in various fisheries.  
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Table 4. Bycatch (discard) mortality (1000’s t) of Tanner crab in various fisheries. Discard mortality was 
calculated assuming mortality rates of 0.321 in the crab fisheries and 0.80 in the groundfish fisheries. 
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Table 5. Sample sizes for retained catch-at-size in the directed fishery. N = number of individuals. N` = 
scaled sample size used in assessment. The directed fishery was closed in 2016/17. 
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Table 6. Sample sizes for total catch-at-size in the directed fishery, from crab observer sampling. N = 
number of individuals. N` = scaled sample size used in assessment. 
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Table 7. Sample sizes for total bycatch-at-size in the snow crab fishery, from crab observer sampling. N = 
number of individuals. N` = scaled sample size used in assessment. 
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Table 8. Sample sizes for total bycatch-at-size in the BBRKC fishery, from crab observer sampling. N = 
number of individuals. N` = scaled sample size used in assessment. 
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Table 9. Sample sizes for total catch-at-size in the groundfish fisheries, from groundfish observer 
sampling. N = number of individuals. N` = scaled sample size used in the assessment. 
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Table 10. Trends in mature and total Tanner crab biomass (1000’s t) in the NMFS summer bottom trawl 
survey. 
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Table 11. Sample sizes for NMFS survey size composition data. In the assessment model, an effective 
sample size of 200 is used for all survey-related compositional data.  

 

  

number of 
nonzero 

hauls
number of 

crab

number of 
nonzero 

hauls
number of 

crab

number of 
nonzero 

hauls
number of 

crab

number of 
nonzero 

hauls
number of 

crab

number of 
nonzero 

hauls
number of 

crab

number of 
nonzero 

hauls
number of 

crab
1975 136 73 1,040 91 1,861 39 706 127 2,895 127 3,993 80 399
1976 214 87 1,095 91 1,304 39 311 130 2,023 130 2,469 47 242
1977 155 66 765 76 1,183 60 738 114 1,778 114 1,971 79 485
1978 230 87 1,932 82 638 65 1,307 147 2,957 147 1,570 104 700
1979 307 71 725 62 735 42 341 138 1,805 138 808 68 306
1980 320 101 1,476 95 1,471 49 570 164 4,602 164 2,359 71 569
1981 305 71 579 79 1,319 94 1,206 158 3,809 158 2,293 116 886
1982 342 85 814 72 457 103 2,384 181 1,751 181 1,371 147 2,082
1983 353 102 2,108 56 201 102 2,154 166 2,484 166 983 132 1,181
1984 355 135 1,867 53 284 94 1,531 171 1,965 171 490 126 1,399
1985 353 140 846 52 228 65 601 179 1,060 179 381 86 459
1986 353 162 1,581 64 191 68 331 213 2,141 213 528 115 468
1987 355 189 4,230 105 445 73 392 226 4,659 226 1,306 103 498
1988 370 206 3,733 149 1,753 100 530 252 5,627 252 2,210 101 475
1989 373 204 3,264 144 1,241 108 882 237 4,977 237 3,201 135 1,067
1990 370 197 3,105 155 1,502 126 1,511 247 5,107 247 3,149 151 1,342
1991 371 159 2,227 138 1,283 141 2,568 227 4,361 227 2,692 181 2,893
1992 355 107 1,494 119 820 123 2,205 215 2,958 215 2,047 177 1,924
1993 374 99 865 96 545 122 1,337 207 2,051 207 1,677 180 1,865
1994 374 97 909 52 148 104 1,293 175 1,281 175 724 174 1,827
1995 375 113 830 35 140 107 1,057 153 958 153 220 137 1,611
1996 374 114 869 57 109 98 963 148 1,069 148 222 134 1,414
1997 375 116 1,325 62 168 83 504 161 1,336 161 289 125 582
1998 374 146 1,704 53 160 73 344 176 2,032 176 396 128 624
1999 372 137 2,608 52 255 85 510 170 2,816 170 550 124 567
2000 371 142 2,249 61 242 55 345 188 2,836 188 628 133 653
2001 374 164 3,675 83 364 72 644 211 4,036 211 629 145 817
2002 374 154 3,583 81 350 70 500 186 3,912 186 458 154 1,089
2003 375 153 2,830 111 923 83 752 203 4,754 203 900 153 1,349
2004 374 173 3,563 90 427 80 656 236 4,568 236 1,027 179 1,873
2005 372 201 3,349 103 634 74 928 254 4,496 254 1,280 185 1,753
2006 375 210 4,355 143 1,332 125 1,327 254 6,224 254 1,757 211 4,054
2007 375 185 2,420 138 1,311 136 1,396 261 4,697 261 1,982 201 2,907
2008 374 153 1,747 104 580 120 1,783 240 3,127 240 2,116 196 2,146
2009 375 171 2,408 75 363 115 1,317 216 2,879 216 1,144 187 1,954
2010 375 186 3,171 67 245 104 941 223 3,654 223 1,268 166 1,702
2011 375 193 5,044 90 471 102 705 210 6,095 210 1,115 167 1,941
2012 375 195 3,577 100 942 97 720 215 5,526 215 1,564 139 1,296
2013 375 163 2,900 116 1,417 101 1,002 207 5,592 207 2,675 137 1,344
2014 375 165 2,207 98 482 121 1,584 222 4,746 222 3,286 167 2,829
2015 375 118 1,455 60 445 94 1,363 225 2,737 225 1,859 200 2,817
2016 375 110 1,372 56 370 82 1,248 222 2,235 222 1,170 218 3,668
2017 375 129 2,027 50 213 99 1,125 185 2,233 185 423 204 3,529

females males
immature mature immature mature

new shell old shell

year
number of 

hauls

new shell new shell old shell new shell
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Table 12. Effort data (1000’s potlifts) in the snow crab and BBRKC fisheries. 
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Table 13.Non-selectivity parameters estimated within 1% of bounds. 

 

  

category name case test bound description
B2a at upper bound 15
B2b at upper bound 15
B3 at upper bound 15

pGrA[1] B1 at lower bound 0.3 a coefficient, males
B0 at upper bound 0.7
B0.2016 at upper bound 0.7
B1 at upper bound 0.7
B1c at lower bound 0.5
B3 at lower bound 0.5
B0 at upper bound 15
B0.2016 at upper bound 15
B0a at upper bound 15
B1 at upper bound 15
B1a at upper bound 15
B1b at upper bound 15
B1c at upper bound 15
B2 at upper bound 15
B2a at upper bound 15
B2b at upper bound 15
B3 at upper bound 15
B0 at lower bound -15
B0.2016 at lower bound -15
B0a at lower bound -15
B1 at lower bound -15
B1a at lower bound -15
B1b at lower bound -15
B1c at lower bound -15
B2 at lower bound -15
B2a at lower bound -15
B2b at lower bound -15
B3 at lower bound -15
B0 at lower bound -0.693
B0.2016 at lower bound -0.693
B0a at lower bound -0.693
B1 at lower bound -0.693
B1a at lower bound -0.693
B1b at lower bound -0.693
B1c at lower bound -0.693
B2 at lower bound -0.693
B2a at lower bound -0.693
B2b at lower bound -0.693
B3 at lower bound -0.693
B0 at lower bound -0.693
B0.2016 at lower bound -0.693
B0a at lower bound -0.693
B1 at lower bound -0.693
B1a at lower bound -0.693
B1b at lower bound -0.693
B1c at lower bound -0.693
B2 at lower bound -0.693
B2a at lower bound -0.693
B2b at lower bound -0.693
B3 at lower bound -0.693

a coefficient, females

TCF: logit-scale max retention (pre-1997)

NMFS survey Q: females, pre-1982

NMFS survey Q: males, pre-1982

pr(terminal molt, females)

pr(terminal molt, males)pLgtPrM2M[1]

pGrBeta[1]

pLgtPrM2M[2]

growth scale parameter

population 
processes

fisheries pLgtRet[1]

pGrA[2]

surveys

pLnQ[1]

pLnQ[3]
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Table 14.Selectivity-related parameters estimated within 1% of bounds. 

 

name case test bound label
pS1[1] B1c at upper bound 90 z50 for NMFS survey selectivity (males, pre-1982)
pS1[19] B0a at lower bound 40 z50 for GTF.AllGear selectivity (males, pre-1987)

B0 at lower bound 40
B0.2016 at lower bound 40
B0a at lower bound 40
B1 at lower bound 40
B1a at lower bound 40
B1b at lower bound 40
B1c at lower bound 40
B2 at lower bound 40
B2a at lower bound 40
B2b at lower bound 40

pS1[22] B3 at upper bound 180 z95 for RKF selectivity (males, 1997-2004)
B0 at upper bound 150
B0.2016 at upper bound 150
B0a at upper bound 150
B1 at upper bound 150
B1a at upper bound 150
B1b at upper bound 180
B1c at upper bound 180
B2 at upper bound 180
B2a at upper bound 180
B2b at upper bound 180
B3 at upper bound 180 z95 for RKF selectivity (males, 2005+)
B0 at upper bound 150
B0.2016 at upper bound 150
B0a at upper bound 150
B1 at upper bound 150
B1a at upper bound 150
B1b at upper bound 180
B1c at upper bound 180
B2 at upper bound 180
B2a at upper bound 180
B2b at upper bound 180

pS1[25] B0a at upper bound 150 z50 for RKF selectivity (females, pre-1997)
pS1[26] B3 at upper bound 140 z95 for RKF selectivity (females, 2005+)

B0 at upper bound 170
B1 at upper bound 170
B1a at upper bound 170
B1b at upper bound 140
B1c at upper bound 140
B2 at upper bound 140
B2a at upper bound 140
B2b at upper bound 140

pS1[29] B3 at lower bound 40 z50 for GTF.AllGear selectivity (females, pre-1987)
pS1[30] B3 at lower bound 40 z50 for GTF.AllGear selectivity (females, 1987-1990)
pS1[33] B3 at upper bound 120 z50 for GTF.FixedGear selectivity (females, 1991-1996)
pS1[4] B3 at lower bound -50 z50 for NMFS survey selectivity (females, 1982+)
pS2[1] B3 at upper bound 100 z95-z50 for NMFS survey selectivity (males, pre-1982)
pS2[2] B1c at upper bound 100 z95-z50 for NMFS survey selectivity (males, 1982+)

B0 at upper bound 100
B0.2016 at upper bound 100
B1 at upper bound 100
B1a at upper bound 100
B1b at upper bound 100
B1c at upper bound 100
B2 at upper bound 100
B2a at upper bound 100
B2b at upper bound 100
B3 at upper bound 100

pS3[4] B3 at upper bound 4.5 ln(dz50-az50) for GTF.FixedGear selectivity (males, 1991-1996)
B0 at upper bound 0.5
B0.2016 at upper bound 0.5
B0a at upper bound 0.5
B1 at upper bound 0.5
B1a at upper bound 0.5
B1b at upper bound 0.5
B1c at upper bound 0.5
B2b at upper bound 0.5
B3 at upper bound 0.5

pS4[4] B3 at upper bound 0.5 descending slope for GTF.FixedGear selectivity (males, 1991-1996)
pS4[5] B3 at lower bound 0.1 descending slope for GTF.FixedGear selectivity (males, 1997+)

z50 for GTF.AllGear selectivity (males, 1987-1996)

descending slope for SCF selectivity (males, pre-1997)

z95-z50 for NMFS survey selectivity (females, 1982+)

z50 for RKF selectivity (females, 2005+)

z50 for RKF selectivity (males, 2005+)

z50 for RKF selectivity (males, 1997-2004)

z95 for RKF selectivity (males, 1997-2004)

pS1[20]

pS1[23]

pS1[24]

pS1[27]

pS2[4]

pS4[1]
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Table 15. Comparison of estimated growth and natural mortality parameters for all model scenarios.  
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Table 16. Comparison of recruitment parameter estimates from all model scenarios. 
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Table 17. Comparison of logit-scale parameters for the probability of terminal molt.  
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Table 18. Comparison of NMFS survey catchability parameters for all model scenarios. 
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Table 19. Comparison of NMFS survey selectivity parameters for all model scenarios. 
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Table 20. Comparison of fishery capture rate and max retention parameter estimates for all fisheries for 
all model scenarios. 
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Table 21. Comparison of selectivity and retention function parameter estimates for the directed Tanner 
crab fishery (TCF) for all model scenarios. 
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Table 22. Comparison of selectivity parameter estimates for the snow crab fishery (SCF) for all model 
scenarios. 
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Table 23. Comparison of selectivity parameter estimates for the BBRKC fishery (RKF) for all model 
scenarios. 
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Table 24. Comparison of selectivity parameter estimates for the groundfish fisheries (GTF) for all model 
scenarios. 
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Table 25. Objective function data components from the model scenarios. TCF: directed Tanner crab 
fishery; SCF: snow crab fishery; RKF: BBRKC fishery; GTF: groundfish fisheries. 
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Table 26. Differences between objective function data components from the model scenarios. TCF: 
directed Tanner crab fishery; SCF: snow crab fishery; RKF: BBRKC fishery; GTF: groundfish fisheries. 
Green highlights indicate differences smaller than -5 likelihood units. Red highlights indicate differences 
greater than 5 likelihood units. 
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Table 27. Effective sample sizes used for NMFS EBS trawl survey size composition data for the 2016 
assessment model (2016AM) and the author’s preferred model (Model B2b). Effective sample sizes were 
estimated using the McAllister-Ianelli approach. 

UNAVAILABLE for 2017 
 
 
 
 
 
 
 
 

Table 28. Effective sample sizes used for retained catch size composition data from the directed fishery 
for the 2016 assessment model (2016AM) and the author’s preferred model (Model B2b). Effective 

sample sizes were estimated using the McAllister-Ianelli approach. 

 

input effective input effective
1980 97.8 20.2 97.8 26.0
1981 83.1 805.1 83.1 1690.2
1982 99.3 1622.3 99.3 1469.8
1983 12.3 50.3 12.3 48.9
1984 18.7 342.1 18.7 476.3
1988 91.0 141.1 91.0 134.8
1989 30.3 1042.2 30.3 1665.1
1990 200.0 263.6 200.0 267.8
1991 200.0 20.7 200.0 154.8
1992 200.0 17.8 200.0 96.0
1993 200.0 23.2 200.0 138.2
1994 200.0 47.8 200.0 149.2
1995 11.2 15.5 11.2 186.9
1996 32.6 12.6 32.6 185.5
2005 5.2 6.6 5.2 14.2
2006 21.6 15.0 21.6 303.6
2007 51.0 17.0 51.0 1927.1
2008 25.6 19.3 25.6 967.2
2009 17.8 70.6 17.8 128.0
2013 35.0 141.1 35.0 705.1
2014 103.3 34.5 103.3 209.2
2015 200.0 39.3 200.0 157.8

year 2016AM Model B2b
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Table 29. Effective sample sizes used for total catch size composition data from the directed fishery for 
the 2016 assessment model (2016AM) and the author’s preferred model (Model B2b). Effective sample 
sizes were estimated using the McAllister-Ianelli approach. 

 
  

input effective input effective input effective input effective
1991 41.2 322.9 200.0 12.0 41.2 512.9 200.0 1325.1
1992 64.3 940.8 200.0 13.3 64.3 459.3 200.0 120.2
1993 76.9 296.2 200.0 12.9 76.9 346.3 200.0 266.9
1994 15.7 78.7 42.6 10.9 15.7 58.5 42.6 592.5
1995 22.9 152.1 41.1 80.8 22.9 90.4 41.1 298.0
1996 2.5 149.0 5.0 37.2 2.5 261.0 5.0 30.9
2005 8.1 34.3 144.9 7.8 8.1 39.4 144.9 97.5
2006 32.6 279.0 178.0 65.0 32.6 422.5 178.0 287.6
2007 24.4 310.7 200.0 10.2 24.4 317.5 200.0 374.4
2008 4.7 41.7 200.0 13.8 4.7 45.8 200.0 1150.1
2009 1.1 28.2 127.0 10.9 1.1 24.4 127.0 164.7
2013 5.2 82.1 127.0 15.7 5.2 64.7 127.0 1339.7
2014 8.8 208.1 200.0 7.6 8.8 188.6 200.0 199.5
2015 11.9 69.6 200.0 6.1 11.9 73.0 200.0 127.6

year
2016AM Model B2b

female malemalefemale
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Table 30. Effective sample sizes used for bycatch size composition data from the snow crab fishery for 
the 2016 assessment model (2016AM) and the author’s preferred model (Model B2b). Effective sample 
sizes were estimated using the McAllister-Ianelli approach. 

 

input effective input effective input effective input effective
1992 6.3 16.5 46.1 185.3 6.3 18.3 46.1 191.7
1993 11.3 27.4 51.2 170.8 11.3 30.7 51.2 118.1
1994 11.2 49.6 21.9 42.6 11.2 40.7 21.9 38.1
1995 3.1 38.1 13.9 122.2 3.1 41.8 13.9 87.3
1996 4.9 36.2 24.0 290.7 4.9 46.1 24.0 281.4
1997 4.8 134.6 29.2 345.9 4.8 111.2 29.2 446.9
1998 2.4 19.5 14.0 617.1 2.4 21.4 14.0 1013.9
1999 0.6 27.6 7.2 134.1 0.6 30.2 7.2 131.6
2000 0.5 29.9 9.1 224.8 0.5 30.5 9.1 273.2
2001 1.2 139.0 22.9 1123.1 1.2 121.1 22.9 558.4
2002 0.9 45.2 7.2 61.9 0.9 45.4 7.2 59.5
2003 1.1 43.8 5.1 102.8 1.1 44.8 5.1 109.2
2004 5.2 30.1 6.2 24.5 5.2 30.6 6.2 23.0
2005 2.7 95.1 72.0 127.4 2.7 158.0 72.0 122.6
2006 9.2 33.6 76.4 86.8 9.2 51.8 76.4 77.1
2007 5.3 28.8 101.4 455.6 5.3 45.6 101.4 380.5
2008 5.3 18.4 62.1 92.9 5.3 14.7 62.1 95.9
2009 3.5 31.0 81.2 430.0 3.5 20.6 81.2 456.1
2010 1.8 87.0 88.7 339.6 1.8 74.0 88.7 370.0
2011 1.4 53.7 69.5 186.9 1.4 61.7 69.5 231.5
2012 1.4 49.1 53.9 139.7 1.4 46.5 53.9 205.9
2013 2.6 128.8 95.0 222.5 2.6 210.5 95.0 248.2
2014 5.9 118.9 182.8 525.0 5.9 65.1 182.8 537.6
2015 1.7 61.8 145.8 475.2 1.7 111.3 146.5 519.1
2016 1.7 115.7 142.8 448.6

year female malemalefemale
2016AM Model B2b
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Table 31. Effective sample sizes used for bycatch size composition data from the BBRKC fishery for the 
2016 assessment model (2016AM) and the author’s preferred model (Model B2b). Effective sample sizes 
were estimated using the McAllister-Ianelli approach. 

 
 
 
 
 

Table 32. Effective sample sizes used for bycatch size composition data from the groundfish fisheries for 
the 2016 assessment model (2016AM) and the author’s preferred model (Model B2b). Effective sample 
sizes were estimated using the McAllister-Ianelli approach. 

UNAVAILABLE FOR 2017 
  

input effective input effective input effective input effective
1992 0.8 47.2 15.1 154.7 0.8 83.0 15.1 34.6
1993 8.8 326.2 54.1 432.7 8.8 279.5 54.1 34.7
1996 0.0 3.8 0.8 60.8 0.0 3.4 0.8 13.2
1997 0.3 17.3 7.6 24.7 0.3 24.3 7.6 20.3
1998 0.1 19.3 3.4 67.2 0.1 20.9 3.4 58.3
1999 0.1 16.6 1.5 63.0 0.1 17.4 1.5 50.3
2000 0.3 37.0 6.2 190.0 0.3 40.4 6.2 130.2
2001 0.3 46.9 3.4 131.0 0.3 50.5 3.4 112.0
2002 0.4 45.9 5.5 110.4 0.4 36.4 5.5 85.5
2003 0.3 49.0 4.1 76.5 0.3 53.5 4.1 57.0
2004 0.3 22.2 3.6 41.5 0.3 20.6 3.6 31.1
2005 0.5 8.2 7.2 38.4 0.5 12.7 7.2 37.8
2006 0.6 19.7 5.9 20.1 0.6 23.9 5.9 20.3
2007 0.7 64.9 10.3 79.0 0.7 102.1 10.3 73.0
2008 0.9 55.9 27.9 79.8 0.9 92.4 27.9 76.0
2009 0.5 119.6 24.9 21.6 0.5 108.0 24.9 20.5
2010 0.2 29.0 4.4 49.8 0.2 36.0 4.4 46.3
2011 0.0 6.4 2.5 63.8 0.0 6.0 2.5 59.8
2012 0.4 9.3 4.5 65.1 0.4 6.8 4.5 55.2
2013 0.4 14.3 15.5 83.7 0.4 9.7 15.5 94.4
2014 0.2 23.2 22.9 139.6 0.2 19.2 22.9 156.6
2015 0.2 66.4 22.9 163.2 1.3 86.7 16.1 140.0
2016 1.8 19.2 22.5 22.0

year
2016AM Model B2b

female male female male
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Table 33. Comparison of fits to mature survey biomass by sex (in 1000’s t) from the 2016 assessment 
model (2016AM) and the author’s preferred model (B2b). 

 

observed 2016AM Model B2b observed 2016AM Model B2b
1975 31.4 47.8 47.6 246.0 148.1 151.1
1976 31.2 42.0 42.2 126.2 133.6 135.4
1977 38.6 35.8 36.8 111.3 105.5 108.1
1978 25.8 32.7 34.1 77.9 75.1 79.4
1979 19.3 34.7 35.8 32.6 67.0 71.2
1980 63.8 36.5 38.8 86.8 63.0 74.2
1981 42.6 31.5 35.7 50.3 53.8 65.6
1982 64.1 25.7 26.1 51.7 68.1 71.8
1983 20.4 19.2 19.9 29.9 49.1 53.0
1984 14.9 14.5 15.1 25.8 32.6 36.0
1985 5.6 11.7 12.1 11.9 23.0 24.9
1986 3.4 12.3 12.3 13.3 28.8 30.2
1987 5.1 14.3 14.0 24.6 40.7 40.8
1988 25.4 17.0 16.2 61.0 55.2 55.2
1989 19.4 19.8 18.4 93.3 70.2 68.3
1990 37.7 21.4 19.8 97.8 74.4 73.2
1991 44.8 21.2 19.7 112.6 64.8 67.4
1992 26.2 19.1 17.8 105.5 60.1 60.5
1993 11.6 15.3 14.6 62.0 45.1 46.5
1994 9.8 11.6 11.3 43.8 32.9 34.9
1995 12.4 8.6 8.6 32.7 23.9 25.7
1996 9.6 6.5 6.7 27.5 17.3 19.1
1997 3.4 5.1 5.3 11.3 13.9 15.8
1998 2.3 4.3 4.5 10.9 12.5 13.9
1999 3.8 4.0 4.1 13.0 12.4 13.3
2000 4.1 4.3 4.2 16.9 14.1 14.3
2001 4.6 4.7 4.6 18.7 17.4 17.2
2002 4.5 5.2 5.2 19.0 20.0 20.8
2003 8.4 6.0 6.1 24.6 23.7 25.1
2004 4.7 7.2 7.4 27.0 29.0 31.2
2005 11.6 8.3 8.7 45.2 36.3 38.6
2006 14.9 9.3 9.9 67.9 41.0 45.7
2007 13.4 10.6 11.1 69.5 45.4 51.3
2008 11.7 10.8 11.3 65.1 51.3 57.4
2009 8.5 9.6 10.1 38.2 50.7 57.6
2010 5.5 8.1 8.6 39.1 44.3 51.0
2011 5.4 7.7 8.0 43.3 38.8 44.4
2012 12.4 9.8 9.5 42.2 39.4 42.9
2013 17.8 13.5 12.4 67.0 53.4 53.5
2014 14.9 15.6 13.9 82.4 71.1 68.9
2015 11.2 14.6 12.9 62.9 72.2 70.0
2016 7.6 12.4 10.9 61.6 59.1 58.4
2017 7.1 9.1 50.2 50.4

year mature female biomass (Kt) mature male biomass (Kt)
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Table 34. Comparison of estimates of mature biomass-at-mating by sex (in 1000’s t) from the 2016 
assessment model (2016AM) and the author’s preferred model (B2b). 

 

2016AM Model B2b 2016AM Model B2b 2016AM Model B2b 2016AM Model B2b
1949 0.0 0.0 0.0 0.0 1986 32.6 39.3 20.6 25.7
1950 0.0 0.0 0.0 0.0 1987 44.4 51.5 23.8 29.3
1951 0.1 0.1 0.3 0.2 1988 58.5 68.3 28.5 33.9
1952 1.2 0.8 1.1 0.8 1989 63.3 74.4 32.6 38.2
1953 4.1 3.1 2.2 1.8 1990 54.3 68.6 34.3 40.6
1954 7.8 6.6 3.2 2.9 1991 52.5 65.9 34.0 40.2
1955 10.6 9.7 4.0 3.7 1992 45.2 56.6 30.6 36.0
1956 12.7 12.1 4.5 4.3 1993 39.5 48.8 25.0 29.7
1957 14.4 14.0 5.0 4.8 1994 31.4 39.4 19.0 23.2
1958 15.8 15.6 5.3 5.2 1995 23.1 29.7 14.2 17.7
1959 17.0 17.0 5.7 5.7 1996 18.1 23.9 10.8 13.7
1960 18.2 18.4 6.2 6.2 1997 15.2 20.1 8.5 11.0
1961 19.7 20.1 6.7 6.8 1998 13.9 17.7 7.3 9.3
1962 21.8 22.4 7.7 7.9 1999 14.3 17.5 6.9 8.6
1963 25.4 26.3 9.5 10.1 2000 16.3 19.1 7.3 8.9
1964 32.5 34.2 13.9 15.1 2001 19.8 22.8 7.9 9.7
1965 47.5 50.6 24.3 25.9 2002 23.1 27.8 8.8 11.0
1966 84.2 87.8 43.7 45.1 2003 27.7 33.8 10.2 12.9
1967 136.5 139.7 68.6 69.3 2004 33.8 41.9 12.4 15.6
1968 200.1 203.2 89.0 89.9 2005 41.6 51.2 14.4 18.3
1969 235.6 242.7 98.4 101.0 2006 46.3 59.8 16.0 20.8
1970 244.9 258.2 98.9 103.7 2007 51.3 67.0 18.2 23.3
1971 240.8 259.6 96.4 102.5 2008 58.9 75.9 18.5 23.7
1972 236.2 257.6 93.9 101.2 2009 58.5 76.5 16.4 21.2
1973 235.9 254.3 92.7 99.1 2010 51.7 68.3 13.9 18.0
1974 229.8 242.0 89.4 94.6 2011 45.2 59.1 13.3 16.8
1975 219.6 227.0 83.0 87.7 2012 46.2 57.8 17.0 20.1
1976 179.3 186.3 71.8 77.6 2013 61.2 70.6 23.4 26.1
1977 119.0 129.8 60.0 67.5 2014 75.4 84.8 26.7 29.2
1978 81.1 95.7 55.3 62.8 2015 73.9 83.8 24.9 27.1
1979 54.7 74.5 57.4 65.3 2016 -- 78.0 -- 22.9
1980 44.9 70.2 56.0 67.0
1981 56.6 75.0 49.7 61.9
1982 54.9 70.1 40.5 51.2
1983 41.0 53.4 30.8 39.2
1984 25.7 34.6 23.1 29.5
1985 26.2 32.6 20.0 25.3

MFB (1000's t)year MMB (1000's t) MFB (1000's t) year MMB (1000's t)
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Table 35. Estimated population size (millions) for females on July 1 of year. from the author’s preferred model, Model B2b. 

 

  

Size bin
27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5 102.5 107.5 112.5 117.5 122.5 127.5 132.5 137.5 142.5 147.5 152.5 157.5 162.5 167.5 172.5 177.5 182.5

1949 4.34E+00 9.75E+00 7.28E+00 3.92E+00 1.80E+00 7.51E-01 2.94E-01 1.10E-01 3.99E-02 1.41E-02 4.87E-03 1.66E-03 5.55E-04 1.84E-04 6.01E-05 1.95E-05 6.29E-06 2.01E-06 6.40E-07 2.02E-07 6.37E-08 1.99E-08 6.22E-09 1.93E-09 5.99E-10 1.85E-10 5.70E-11 1.75E-11 5.36E-12 1.64E-12 5.00E-13 1.52E-13
1950 4.35E+00 1.05E+01 1.05E+01 9.73E+00 7.14E+00 4.34E+00 2.31E+00 1.12E+00 5.06E-01 2.15E-01 8.72E-02 3.42E-02 1.30E-02 4.77E-03 1.72E-03 6.05E-04 2.09E-04 7.07E-05 2.35E-05 7.70E-06 2.48E-06 7.88E-07 2.47E-07 7.65E-08 2.34E-08 7.07E-09 2.11E-09 6.26E-10 1.83E-10 5.32E-11 1.53E-11 5.95E-12
1951 4.39E+00 1.06E+01 1.06E+01 1.03E+01 9.01E+00 7.71E+00 6.16E+00 4.36E+00 2.75E+00 1.57E+00 7.95E-01 3.51E-01 1.33E-01 4.53E-02 1.50E-02 4.60E-03 1.16E-03 2.52E-04 5.62E-05 1.47E-05 4.34E-06 1.35E-06 4.22E-07 1.31E-07 3.99E-08 1.21E-08 3.61E-09 1.07E-09 3.13E-10 9.06E-11 2.60E-11 1.02E-11
1952 4.45E+00 1.07E+01 1.07E+01 1.05E+01 9.14E+00 8.08E+00 7.13E+00 6.26E+00 5.50E+00 4.51E+00 3.12E+00 1.78E+00 8.30E-01 3.36E-01 1.26E-01 3.95E-02 9.05E-03 1.50E-03 2.08E-04 3.11E-05 6.44E-06 1.80E-06 5.52E-07 1.70E-07 5.21E-08 1.57E-08 4.70E-09 1.39E-09 4.07E-10 1.18E-10 3.39E-11 1.32E-11
1953 4.55E+00 1.10E+01 1.10E+01 1.06E+01 9.28E+00 8.18E+00 7.24E+00 6.54E+00 6.38E+00 6.39E+00 5.48E+00 3.86E+00 2.30E+00 1.20E+00 5.61E-01 2.08E-01 5.32E-02 9.34E-03 1.22E-03 1.32E-04 1.41E-05 2.41E-06 6.57E-07 2.00E-07 6.12E-08 1.85E-08 5.53E-09 1.63E-09 4.78E-10 1.39E-10 3.98E-11 1.55E-11
1954 4.71E+00 1.14E+01 1.13E+01 1.09E+01 9.49E+00 8.34E+00 7.37E+00 6.70E+00 6.83E+00 7.47E+00 6.96E+00 5.30E+00 3.58E+00 2.19E+00 1.21E+00 5.17E-01 1.52E-01 3.04E-02 4.49E-03 5.02E-04 4.26E-05 4.00E-06 7.78E-07 2.25E-07 6.84E-08 2.07E-08 6.18E-09 1.83E-09 5.35E-10 1.55E-10 4.45E-11 1.74E-11
1955 4.95E+00 1.19E+01 1.18E+01 1.14E+01 9.83E+00 8.59E+00 7.57E+00 6.89E+00 7.21E+00 8.28E+00 8.04E+00 6.32E+00 4.50E+00 2.95E+00 1.74E+00 7.98E-01 2.51E-01 5.46E-02 8.81E-03 1.06E-03 8.88E-05 6.51E-06 9.19E-07 2.47E-07 7.46E-08 2.25E-08 6.73E-09 1.99E-09 5.83E-10 1.69E-10 4.85E-11 1.89E-11
1956 5.33E+00 1.28E+01 1.26E+01 1.21E+01 1.04E+01 8.99E+00 7.87E+00 7.16E+00 7.59E+00 8.97E+00 8.90E+00 7.11E+00 5.19E+00 3.52E+00 2.14E+00 1.01E+00 3.27E-01 7.35E-02 1.23E-02 1.53E-03 1.29E-04 8.73E-06 1.05E-06 2.67E-07 8.03E-08 2.43E-08 7.25E-09 2.14E-09 6.27E-10 1.82E-10 5.22E-11 2.04E-11
1957 5.94E+00 1.43E+01 1.40E+01 1.31E+01 1.12E+01 9.61E+00 8.34E+00 7.55E+00 8.03E+00 9.61E+00 9.64E+00 7.76E+00 5.75E+00 3.96E+00 2.45E+00 1.17E+00 3.84E-01 8.78E-02 1.50E-02 1.89E-03 1.59E-04 1.05E-05 1.16E-06 2.88E-07 8.65E-08 2.61E-08 7.80E-09 2.31E-09 6.76E-10 1.96E-10 5.62E-11 2.20E-11
1958 6.98E+00 1.67E+01 1.62E+01 1.50E+01 1.25E+01 1.06E+01 9.09E+00 8.14E+00 8.60E+00 1.03E+01 1.04E+01 8.37E+00 6.24E+00 4.34E+00 2.70E+00 1.30E+00 4.30E-01 9.90E-02 1.71E-02 2.16E-03 1.83E-04 1.19E-05 1.29E-06 3.15E-07 9.43E-08 2.85E-08 8.51E-09 2.52E-09 7.37E-10 2.14E-10 6.13E-11 2.39E-11
1959 8.93E+00 2.13E+01 2.02E+01 1.82E+01 1.49E+01 1.23E+01 1.03E+01 9.08E+00 9.43E+00 1.12E+01 1.12E+01 9.02E+00 6.72E+00 4.69E+00 2.93E+00 1.41E+00 4.69E-01 1.08E-01 1.88E-02 2.39E-03 2.03E-04 1.32E-05 1.44E-06 3.53E-07 1.06E-07 3.19E-08 9.53E-09 2.82E-09 8.25E-10 2.39E-10 6.87E-11 2.68E-11
1960 1.32E+01 3.12E+01 2.88E+01 2.48E+01 1.95E+01 1.55E+01 1.26E+01 1.07E+01 1.08E+01 1.24E+01 1.23E+01 9.84E+00 7.29E+00 5.07E+00 3.16E+00 1.53E+00 5.06E-01 1.17E-01 2.03E-02 2.60E-03 2.21E-04 1.47E-05 1.66E-06 4.15E-07 1.24E-07 3.76E-08 1.12E-08 3.32E-09 9.73E-10 2.82E-10 8.10E-11 3.16E-11
1961 2.44E+01 5.72E+01 5.08E+01 4.09E+01 3.03E+01 2.26E+01 1.73E+01 1.40E+01 1.32E+01 1.45E+01 1.40E+01 1.10E+01 8.07E+00 5.56E+00 3.44E+00 1.66E+00 5.49E-01 1.27E-01 2.20E-02 2.81E-03 2.42E-04 1.68E-05 2.08E-06 5.37E-07 1.62E-07 4.88E-08 1.46E-08 4.32E-09 1.27E-09 3.67E-10 1.05E-10 4.11E-11
1962 5.51E+01 1.28E+02 1.11E+02 8.42E+01 5.86E+01 4.06E+01 2.88E+01 2.15E+01 1.85E+01 1.86E+01 1.70E+01 1.30E+01 9.30E+00 6.29E+00 3.85E+00 1.84E+00 6.05E-01 1.39E-01 2.41E-02 3.08E-03 2.71E-04 2.08E-05 3.05E-06 8.29E-07 2.51E-07 7.57E-08 2.26E-08 6.70E-09 1.96E-09 5.70E-10 1.64E-10 6.37E-11
1963 1.07E+02 2.51E+02 2.21E+02 1.74E+02 1.23E+02 8.40E+01 5.75E+01 4.03E+01 3.13E+01 2.79E+01 2.35E+01 1.71E+01 1.17E+01 7.58E+00 4.53E+00 2.13E+00 6.93E-01 1.58E-01 2.72E-02 3.51E-03 3.22E-04 2.98E-05 5.52E-06 1.58E-06 4.80E-07 1.45E-07 4.33E-08 1.28E-08 3.76E-09 1.09E-09 3.14E-10 1.22E-10
1964 1.28E+02 3.05E+02 2.94E+02 2.66E+02 2.09E+02 1.55E+02 1.13E+02 8.10E+01 6.12E+01 5.01E+01 3.90E+01 2.66E+01 1.69E+01 1.03E+01 5.90E+00 2.69E+00 8.58E-01 1.92E-01 3.27E-02 4.23E-03 4.13E-04 4.67E-05 1.02E-05 3.00E-06 9.14E-07 2.76E-07 8.26E-08 2.44E-08 7.16E-09 2.08E-09 5.96E-10 2.32E-10
1965 1.07E+02 2.62E+02 2.75E+02 2.81E+02 2.48E+02 2.11E+02 1.74E+02 1.38E+02 1.12E+02 9.44E+01 7.26E+01 4.81E+01 2.91E+01 1.67E+01 9.03E+00 3.95E+00 1.22E+00 2.64E-01 4.36E-02 5.55E-03 5.48E-04 6.51E-05 1.47E-05 4.36E-06 1.33E-06 4.02E-07 1.20E-07 3.55E-08 1.04E-08 3.01E-09 8.65E-10 3.38E-10
1966 8.38E+01 2.07E+02 2.21E+02 2.36E+02 2.22E+02 2.10E+02 1.92E+02 1.72E+02 1.61E+02 1.52E+02 1.25E+02 8.65E+01 5.30E+01 3.02E+01 1.60E+01 6.80E+00 2.03E+00 4.27E-01 6.79E-02 8.31E-03 7.71E-04 8.13E-05 1.70E-05 4.98E-06 1.52E-06 4.58E-07 1.37E-07 4.05E-08 1.19E-08 3.43E-09 9.86E-10 3.85E-10
1967 7.22E+01 1.77E+02 1.84E+02 1.91E+02 1.80E+02 1.74E+02 1.67E+02 1.64E+02 1.74E+02 1.90E+02 1.75E+02 1.30E+02 8.56E+01 5.14E+01 2.81E+01 1.22E+01 3.66E+00 7.64E-01 1.20E-01 1.43E-02 1.23E-03 1.04E-04 1.79E-05 5.05E-06 1.53E-06 4.63E-07 1.38E-07 4.09E-08 1.20E-08 3.47E-09 9.96E-10 3.89E-10
1968 7.18E+01 1.74E+02 1.75E+02 1.72E+02 1.56E+02 1.45E+02 1.37E+02 1.37E+02 1.59E+02 1.97E+02 1.98E+02 1.58E+02 1.12E+02 7.28E+01 4.23E+01 1.91E+01 5.94E+00 1.28E+00 2.05E-01 2.45E-02 2.03E-03 1.42E-04 1.86E-05 4.88E-06 1.47E-06 4.44E-07 1.33E-07 3.92E-08 1.15E-08 3.33E-09 9.55E-10 3.74E-10
1969 7.78E+01 1.87E+02 1.84E+02 1.76E+02 1.52E+02 1.35E+02 1.22E+02 1.19E+02 1.41E+02 1.87E+02 1.98E+02 1.64E+02 1.24E+02 8.58E+01 5.26E+01 2.48E+01 8.01E+00 1.79E+00 2.98E-01 3.66E-02 3.03E-03 1.91E-04 1.98E-05 4.77E-06 1.43E-06 4.31E-07 1.29E-07 3.80E-08 1.11E-08 3.23E-09 9.26E-10 3.62E-10
1970 7.54E+01 1.83E+02 1.85E+02 1.82E+02 1.58E+02 1.38E+02 1.22E+02 1.14E+02 1.33E+02 1.78E+02 1.91E+02 1.61E+02 1.24E+02 8.93E+01 5.65E+01 2.74E+01 9.10E+00 2.10E+00 3.60E-01 4.54E-02 3.79E-03 2.31E-04 2.11E-05 4.79E-06 1.42E-06 4.29E-07 1.28E-07 3.79E-08 1.11E-08 3.22E-09 9.23E-10 3.61E-10
1971 6.40E+01 1.57E+02 1.64E+02 1.69E+02 1.53E+02 1.39E+02 1.25E+02 1.17E+02 1.33E+02 1.75E+02 1.86E+02 1.56E+02 1.21E+02 8.81E+01 5.64E+01 2.77E+01 9.32E+00 2.18E+00 3.82E-01 4.89E-02 4.11E-03 2.48E-04 2.15E-05 4.76E-06 1.41E-06 4.25E-07 1.27E-07 3.75E-08 1.10E-08 3.18E-09 9.14E-10 3.57E-10
1972 4.24E+01 1.06E+02 1.19E+02 1.34E+02 1.29E+02 1.24E+02 1.17E+02 1.14E+02 1.34E+02 1.76E+02 1.86E+02 1.55E+02 1.20E+02 8.64E+01 5.53E+01 2.72E+01 9.17E+00 2.16E+00 3.80E-01 4.90E-02 4.12E-03 2.47E-04 2.09E-05 4.54E-06 1.34E-06 4.05E-07 1.21E-07 3.58E-08 1.05E-08 3.03E-09 8.70E-10 3.41E-10
1973 2.76E+01 6.92E+01 7.83E+01 9.00E+01 9.18E+01 9.50E+01 9.58E+01 9.95E+01 1.24E+02 1.71E+02 1.83E+02 1.54E+02 1.19E+02 8.58E+01 5.47E+01 2.68E+01 9.01E+00 2.11E+00 3.72E-01 4.79E-02 4.02E-03 2.37E-04 1.90E-05 4.01E-06 1.18E-06 3.56E-07 1.06E-07 3.15E-08 9.20E-09 2.67E-09 7.65E-10 2.99E-10
1974 2.43E+01 5.93E+01 6.16E+01 6.43E+01 6.27E+01 6.43E+01 6.66E+01 7.42E+01 1.03E+02 1.53E+02 1.71E+02 1.46E+02 1.15E+02 8.38E+01 5.37E+01 2.64E+01 8.86E+00 2.08E+00 3.64E-01 4.68E-02 3.91E-03 2.26E-04 1.68E-05 3.36E-06 9.82E-07 2.96E-07 8.84E-08 2.61E-08 7.65E-09 2.22E-09 6.36E-10 2.49E-10
1975 4.79E+01 1.12E+02 9.86E+01 7.93E+01 6.18E+01 5.25E+01 4.87E+01 5.27E+01 7.84E+01 1.27E+02 1.48E+02 1.30E+02 1.05E+02 7.83E+01 5.09E+01 2.52E+01 8.52E+00 2.01E+00 3.53E-01 4.55E-02 3.79E-03 2.15E-04 1.49E-05 2.82E-06 8.20E-07 2.47E-07 7.38E-08 2.18E-08 6.39E-09 1.85E-09 5.31E-10 2.08E-10
1976 9.53E+01 2.22E+02 1.95E+02 1.53E+02 1.09E+02 7.68E+01 5.68E+01 4.95E+01 6.55E+01 1.05E+02 1.25E+02 1.11E+02 9.18E+01 7.01E+01 4.64E+01 2.33E+01 7.95E+00 1.89E+00 3.36E-01 4.35E-02 3.65E-03 2.09E-04 1.49E-05 2.88E-06 8.40E-07 2.53E-07 7.57E-08 2.24E-08 6.55E-09 1.90E-09 5.46E-10 2.13E-10
1977 7.33E+01 1.81E+02 1.93E+02 2.00E+02 1.68E+02 1.30E+02 9.75E+01 7.52E+01 7.54E+01 9.98E+01 1.10E+02 9.56E+01 7.86E+01 6.03E+01 4.02E+01 2.03E+01 6.99E+00 1.68E+00 3.01E-01 3.94E-02 3.35E-03 2.01E-04 1.69E-05 3.66E-06 1.08E-06 3.26E-07 9.73E-08 2.88E-08 8.42E-09 2.44E-09 7.01E-10 2.74E-10
1978 3.23E+01 8.50E+01 1.09E+02 1.40E+02 1.45E+02 1.43E+02 1.31E+02 1.14E+02 1.09E+02 1.20E+02 1.17E+02 9.40E+01 7.23E+01 5.31E+01 3.45E+01 1.72E+01 5.86E+00 1.40E+00 2.53E-01 3.32E-02 2.84E-03 1.76E-04 1.63E-05 3.71E-06 1.10E-06 3.33E-07 9.94E-08 2.94E-08 8.60E-09 2.49E-09 7.15E-10 2.80E-10
1979 1.36E+01 3.61E+01 4.77E+01 6.52E+01 7.78E+01 9.28E+01 1.02E+02 1.09E+02 1.25E+02 1.47E+02 1.42E+02 1.10E+02 7.88E+01 5.35E+01 3.27E+01 1.56E+01 5.15E+00 1.20E+00 2.13E-01 2.76E-02 2.35E-03 1.45E-04 1.33E-05 3.03E-06 9.01E-07 2.72E-07 8.12E-08 2.40E-08 7.02E-09 2.03E-09 5.83E-10 2.28E-10
1980 8.34E+00 2.11E+01 2.45E+01 3.00E+01 3.49E+01 4.31E+01 5.25E+01 6.69E+01 9.71E+01 1.39E+02 1.49E+02 1.23E+02 9.02E+01 6.02E+01 3.54E+01 1.62E+01 5.12E+00 1.14E+00 1.93E-01 2.43E-02 2.01E-03 1.19E-04 9.89E-06 2.13E-06 6.28E-07 1.89E-07 5.65E-08 1.67E-08 4.89E-09 1.42E-09 4.06E-10 1.59E-10
1981 1.36E+01 3.21E+01 2.92E+01 2.53E+01 2.21E+01 2.22E+01 2.49E+01 3.31E+01 5.82E+01 1.00E+02 1.19E+02 1.05E+02 8.31E+01 5.90E+01 3.63E+01 1.70E+01 5.47E+00 1.23E+00 2.05E-01 2.53E-02 2.06E-03 1.15E-04 7.78E-06 1.45E-06 4.20E-07 1.26E-07 3.78E-08 1.12E-08 3.27E-09 9.47E-10 2.72E-10 1.06E-10
1982 7.71E+00 1.97E+01 2.30E+01 2.63E+01 2.37E+01 2.01E+01 1.78E+01 2.00E+01 3.59E+01 6.79E+01 8.53E+01 7.84E+01 6.60E+01 5.03E+01 3.29E+01 1.63E+01 5.46E+00 1.27E+00 2.22E-01 2.81E-02 2.31E-03 1.26E-04 7.33E-06 1.18E-06 3.34E-07 1.00E-07 3.00E-08 8.87E-09 2.59E-09 7.52E-10 2.16E-10 8.44E-11
1983 3.75E+01 8.55E+01 6.87E+01 4.60E+01 3.09E+01 2.41E+01 2.04E+01 1.95E+01 2.83E+01 4.95E+01 6.14E+01 5.64E+01 4.86E+01 3.85E+01 2.62E+01 1.34E+01 4.65E+00 1.13E+00 2.04E-01 2.67E-02 2.23E-03 1.21E-04 6.49E-06 9.36E-07 2.61E-07 7.83E-08 2.34E-08 6.92E-09 2.03E-09 5.88E-10 1.69E-10 6.58E-11
1984 3.09E+01 7.57E+01 7.93E+01 7.90E+01 6.23E+01 4.33E+01 2.96E+01 2.32E+01 2.73E+01 4.11E+01 4.80E+01 4.28E+01 3.62E+01 2.86E+01 1.96E+01 1.01E+01 3.58E+00 8.84E-01 1.63E-01 2.18E-02 1.85E-03 1.05E-04 6.92E-06 1.25E-06 3.62E-07 1.09E-07 3.25E-08 9.62E-09 2.82E-09 8.17E-10 2.34E-10 9.15E-11
1985 4.15E+01 9.86E+01 9.29E+01 8.37E+01 7.12E+01 6.23E+01 5.22E+01 4.13E+01 3.66E+01 4.11E+01 4.23E+01 3.57E+01 2.89E+01 2.22E+01 1.49E+01 7.65E+00 2.69E+00 6.62E-01 1.22E-01 1.64E-02 1.41E-03 8.32E-05 6.49E-06 1.34E-06 3.92E-07 1.18E-07 3.54E-08 1.05E-08 3.06E-09 8.88E-10 2.55E-10 9.95E-11
1986 4.01E+01 9.72E+01 9.82E+01 9.58E+01 8.13E+01 6.79E+01 5.77E+01 5.14E+01 5.15E+01 5.56E+01 5.19E+01 4.00E+01 2.93E+01 2.09E+01 1.35E+01 6.78E+00 2.34E+00 5.69E-01 1.04E-01 1.39E-02 1.20E-03 7.54E-05 7.25E-06 1.68E-06 5.01E-07 1.51E-07 4.52E-08 1.34E-08 3.91E-09 1.13E-09 3.26E-10 1.27E-10
1987 3.98E+01 9.63E+01 9.68E+01 9.51E+01 8.39E+01 7.45E+01 6.53E+01 5.76E+01 5.77E+01 6.47E+01 6.25E+01 4.91E+01 3.52E+01 2.37E+01 1.44E+01 6.87E+00 2.28E+00 5.34E-01 9.49E-02 1.24E-02 1.07E-03 7.06E-05 7.74E-06 1.90E-06 5.70E-07 1.72E-07 5.14E-08 1.52E-08 4.45E-09 1.29E-09 3.70E-10 1.45E-10
1988 2.72E+01 6.80E+01 7.54E+01 8.31E+01 7.79E+01 7.18E+01 6.54E+01 6.08E+01 6.42E+01 7.38E+01 7.16E+01 5.64E+01 4.08E+01 2.77E+01 1.69E+01 7.99E+00 2.60E+00 5.93E-01 1.02E-01 1.29E-02 1.10E-03 7.26E-05 8.20E-06 2.04E-06 6.13E-07 1.85E-07 5.53E-08 1.63E-08 4.78E-09 1.39E-09 3.98E-10 1.56E-10
1989 1.31E+01 3.40E+01 4.25E+01 5.35E+01 5.64E+01 5.86E+01 5.81E+01 5.74E+01 6.46E+01 7.88E+01 7.91E+01 6.35E+01 4.65E+01 3.17E+01 1.94E+01 9.21E+00 3.01E+00 6.87E-01 1.18E-01 1.49E-02 1.25E-03 7.94E-05 8.10E-06 1.94E-06 5.79E-07 1.75E-07 5.22E-08 1.54E-08 4.51E-09 1.31E-09 3.75E-10 1.47E-10
1990 4.01E+00 1.12E+01 1.68E+01 2.48E+01 2.99E+01 3.56E+01 3.97E+01 4.46E+01 5.75E+01 7.73E+01 8.13E+01 6.69E+01 5.03E+01 3.49E+01 2.16E+01 1.03E+01 3.39E+00 7.74E-01 1.33E-01 1.67E-02 1.39E-03 8.34E-05 7.24E-06 1.60E-06 4.73E-07 1.43E-07 4.26E-08 1.26E-08 3.69E-09 1.07E-09 3.06E-10 1.20E-10
1991 3.20E+00 7.88E+00 8.54E+00 1.00E+01 1.22E+01 1.61E+01 2.02E+01 2.66E+01 4.20E+01 6.61E+01 7.49E+01 6.43E+01 5.02E+01 3.59E+01 2.26E+01 1.09E+01 3.60E+00 8.30E-01 1.43E-01 1.81E-02 1.49E-03 8.51E-05 6.08E-06 1.18E-06 3.45E-07 1.04E-07 3.11E-08 9.18E-09 2.69E-09 7.78E-10 2.23E-10 8.75E-11
1992 2.84E+00 6.92E+00 7.17E+00 7.38E+00 7.00E+00 7.24E+00 8.53E+00 1.28E+01 2.63E+01 4.96E+01 6.09E+01 5.47E+01 4.49E+01 3.36E+01 2.18E+01 1.07E+01 3.60E+00 8.40E-01 1.46E-01 1.86E-02 1.54E-03 8.51E-05 5.21E-06 8.84E-07 2.53E-07 7.61E-08 2.27E-08 6.72E-09 1.97E-09 5.69E-10 1.63E-10 6.40E-11
1993 2.84E+00 6.87E+00 6.89E+00 6.78E+00 6.08E+00 5.63E+00 5.52E+00 7.32E+00 1.67E+01 3.52E+01 4.53E+01 4.19E+01 3.59E+01 2.79E+01 1.86E+01 9.31E+00 3.18E+00 7.56E-01 1.34E-01 1.73E-02 1.44E-03 7.82E-05 4.31E-06 6.47E-07 1.81E-07 5.45E-08 1.63E-08 4.81E-09 1.41E-09 4.08E-10 1.17E-10 4.58E-11
1994 3.74E+00 8.90E+00 8.40E+00 7.55E+00 6.29E+00 5.44E+00 4.98E+00 5.95E+00 1.26E+01 2.62E+01 3.37E+01 3.12E+01 2.72E+01 2.17E+01 1.47E+01 7.48E+00 2.59E+00 6.26E-01 1.13E-01 1.49E-02 1.24E-03 6.73E-05 3.53E-06 4.94E-07 1.37E-07 4.10E-08 1.23E-08 3.62E-09 1.06E-09 3.07E-10 8.82E-11 3.45E-11
1995 4.79E+00 1.14E+01 1.08E+01 9.70E+00 7.82E+00 6.32E+00 5.33E+00 5.61E+00 1.03E+01 2.04E+01 2.59E+01 2.37E+01 2.06E+01 1.64E+01 1.12E+01 5.72E+00 2.00E+00 4.90E-01 9.00E-02 1.20E-02 1.01E-03 5.49E-05 2.92E-06 4.15E-07 1.15E-07 3.45E-08 1.03E-08 3.05E-09 8.93E-10 2.59E-10 7.42E-11 2.90E-11
1996 4.41E+00 1.07E+01 1.10E+01 1.09E+01 9.33E+00 7.80E+00 6.53E+00 6.21E+00 9.37E+00 1.67E+01 2.05E+01 1.85E+01 1.58E+01 1.26E+01 8.51E+00 4.35E+00 1.52E+00 3.73E-01 6.87E-02 9.16E-03 7.76E-04 4.27E-05 2.43E-06 3.76E-07 1.06E-07 3.18E-08 9.50E-09 2.81E-09 8.22E-10 2.38E-10 6.84E-11 2.67E-11
1997 1.28E+01 2.96E+01 2.48E+01 1.81E+01 1.28E+01 9.80E+00 8.00E+00 7.28E+00 9.41E+00 1.48E+01 1.72E+01 1.51E+01 1.27E+01 9.90E+00 6.64E+00 3.37E+00 1.17E+00 2.87E-01 5.27E-02 7.02E-03 5.95E-04 3.33E-05 2.05E-06 3.46E-07 9.90E-08 2.98E-08 8.91E-09 2.63E-09 7.71E-10 2.24E-10 6.43E-11 2.50E-11
1998 5.14E+00 1.37E+01 1.81E+01 2.24E+01 1.98E+01 1.53E+01 1.13E+01 9.18E+00 1.02E+01 1.41E+01 1.56E+01 1.33E+01 1.08E+01 8.18E+00 5.39E+00 2.71E+00 9.34E-01 2.26E-01 4.13E-02 5.49E-03 4.69E-04 2.78E-05 2.21E-06 4.61E-07 1.36E-07 4.09E-08 1.22E-08 3.61E-09 1.06E-09 3.06E-10 8.79E-11 3.44E-11
1999 1.72E+01 3.96E+01 3.29E+01 2.41E+01 1.90E+01 1.75E+01 1.60E+01 1.38E+01 1.34E+01 1.55E+01 1.56E+01 1.27E+01 9.85E+00 7.23E+00 4.67E+00 2.31E+00 7.87E-01 1.88E-01 3.40E-02 4.47E-03 3.81E-04 2.30E-05 1.94E-06 4.21E-07 1.24E-07 3.75E-08 1.12E-08 3.32E-09 9.72E-10 2.82E-10 8.10E-11 3.15E-11
2000 8.96E+00 2.31E+01 2.77E+01 3.18E+01 2.72E+01 2.07E+01 1.61E+01 1.43E+01 1.57E+01 1.86E+01 1.81E+01 1.41E+01 1.03E+01 7.13E+00 4.45E+00 2.16E+00 7.24E-01 1.71E-01 3.03E-02 3.96E-03 3.41E-04 2.24E-05 2.43E-06 5.97E-07 1.79E-07 5.40E-08 1.61E-08 4.77E-09 1.40E-09 4.04E-10 1.16E-10 4.54E-11
2001 2.93E+01 6.73E+01 5.60E+01 4.07E+01 3.06E+01 2.62E+01 2.27E+01 1.90E+01 1.78E+01 2.00E+01 1.97E+01 1.58E+01 1.17E+01 7.95E+00 4.83E+00 2.28E+00 7.46E-01 1.71E-01 2.97E-02 3.81E-03 3.26E-04 2.15E-05 2.40E-06 5.96E-07 1.79E-07 5.40E-08 1.61E-08 4.77E-09 1.40E-09 4.06E-10 1.17E-10 4.54E-11
2002 9.42E+00 2.62E+01 3.74E+01 4.89E+01 4.40E+01 3.41E+01 2.61E+01 2.20E+01 2.23E+01 2.47E+01 2.33E+01 1.79E+01 1.29E+01 8.75E+00 5.38E+00 2.56E+00 8.41E-01 1.92E-01 3.29E-02 4.18E-03 3.61E-04 2.61E-05 3.51E-06 9.28E-07 2.80E-07 8.45E-08 2.53E-08 7.47E-09 2.19E-09 6.33E-10 1.82E-10 7.11E-11
2003 2.83E+01 6.52E+01 5.49E+01 4.20E+01 3.59E+01 3.61E+01 3.44E+01 3.00E+01 2.78E+01 2.92E+01 2.75E+01 2.14E+01 1.54E+01 1.03E+01 6.18E+00 2.90E+00 9.44E-01 2.15E-01 3.70E-02 4.69E-03 4.01E-04 2.74E-05 3.32E-06 8.47E-07 2.55E-07 7.69E-08 2.30E-08 6.80E-09 1.99E-09 5.77E-10 1.66E-10 6.47E-11
2004 2.76E+01 6.68E+01 6.71E+01 6.40E+01 5.07E+01 3.76E+01 2.99E+01 2.82E+01 3.16E+01 3.66E+01 3.45E+01 2.63E+01 1.84E+01 1.22E+01 7.33E+00 3.45E+00 1.12E+00 2.54E-01 4.32E-02 5.43E-03 4.65E-04 3.28E-05 4.25E-06 1.11E-06 3.35E-07 1.01E-07 3.02E-08 8.93E-09 2.61E-09 7.58E-10 2.18E-10 8.49E-11
2005 7.49E+00 2.15E+01 3.32E+01 4.74E+01 4.92E+01 4.68E+01 4.08E+01 3.40E+01 3.25E+01 3.74E+01 3.76E+01 3.05E+01 2.23E+01 1.50E+01 8.97E+00 4.18E+00 1.35E+00 3.03E-01 5.14E-02 6.47E-03 5.53E-04 3.87E-05 4.93E-06 1.28E-06 3.86E-07 1.16E-07 3.48E-08 1.03E-08 3.01E-09 8.72E-10 2.50E-10 9.79E-11
2006 5.74E+00 1.42E+01 1.56E+01 1.89E+01 2.37E+01 3.06E+01 3.47E+01 3.62E+01 3.97E+01 4.52E+01 4.31E+01 3.35E+01 2.44E+01 1.68E+01 1.04E+01 4.98E+00 1.63E+00 3.71E-01 6.29E-02 7.86E-03 6.58E-04 4.20E-05 4.40E-06 1.07E-06 3.19E-07 9.61E-08 2.87E-08 8.49E-09 2.48E-09 7.19E-10 2.06E-10 8.08E-11
2007 4.44E+00 1.10E+01 1.18E+01 1.27E+01 1.25E+01 1.34E+01 1.60E+01 2.14E+01 3.18E+01 4.51E+01 4.76E+01 3.88E+01 2.84E+01 1.92E+01 1.17E+01 5.55E+00 1.82E+00 4.18E-01 7.20E-02 9.11E-03 7.61E-04 4.57E-05 3.98E-06 8.80E-07 2.61E-07 7.86E-08 2.35E-08 6.94E-09 2.03E-09 5.88E-10 1.69E-10 6.61E-11
2008 6.83E+00 1.61E+01 1.48E+01 1.29E+01 1.08E+01 9.90E+00 9.64E+00 1.13E+01 1.93E+01 3.41E+01 4.11E+01 3.66E+01 2.92E+01 2.10E+01 1.32E+01 6.37E+00 2.09E+00 4.77E-01 8.14E-02 1.02E-02 8.43E-04 4.84E-05 3.61E-06 7.24E-07 2.12E-07 6.39E-08 1.91E-08 5.64E-09 1.65E-09 4.78E-10 1.37E-10 5.37E-11
2009 4.45E+01 1.01E+02 7.98E+01 5.00E+01 2.88E+01 1.72E+01 1.16E+01 1.01E+01 1.49E+01 2.63E+01 3.24E+01 2.94E+01 2.49E+01 1.93E+01 1.29E+01 6.49E+00 2.21E+00 5.19E-01 9.08E-02 1.16E-02 9.57E-04 5.38E-05 3.63E-06 6.73E-07 1.95E-07 5.88E-08 1.76E-08 5.20E-09 1.52E-09 4.42E-10 1.27E-10 4.94E-11
2010 3.94E+01 9.62E+01 9.88E+01 9.60E+01 7.41E+01 4.93E+01 3.06E+01 1.97E+01 1.79E+01 2.41E+01 2.75E+01 2.43E+01 2.05E+01 1.61E+01 1.10E+01 5.64E+00 1.97E+00 4.79E-01 8.67E-02 1.14E-02 9.72E-04 6.01E-05 5.56E-06 1.27E-06 3.77E-07 1.14E-07 3.40E-08 1.00E-08 2.94E-09 8.52E-10 2.45E-10 9.55E-11
2011 1.61E+01 4.29E+01 5.66E+01 7.31E+01 7.42E+01 7.05E+01 6.06E+01 4.69E+01 3.71E+01 3.41E+01 3.05E+01 2.37E+01 1.83E+01 1.37E+01 9.18E+00 4.71E+00 1.65E+00 4.02E-01 7.36E-02 9.79E-03 8.54E-04 5.71E-05 6.43E-06 1.60E-06 4.79E-07 1.45E-07 4.32E-08 1.28E-08 3.74E-09 1.08E-09 3.11E-10 1.22E-10
2012 3.14E+00 9.80E+00 1.77E+01 2.96E+01 3.85E+01 4.77E+01 5.25E+01 5.38E+01 5.54E+01 5.59E+01 4.79E+01 3.39E+01 2.23E+01 1.45E+01 8.81E+00 4.27E+00 1.45E+00 3.46E-01 6.22E-02 8.21E-03 7.16E-04 4.87E-05 5.68E-06 1.43E-06 4.30E-07 1.30E-07 3.88E-08 1.15E-08 3.35E-09 9.71E-10 2.79E-10 1.09E-10
2013 8.61E+00 1.99E+01 1.70E+01 1.42E+01 1.49E+01 1.95E+01 2.54E+01 3.32E+01 4.58E+01 5.99E+01 6.03E+01 4.73E+01 3.25E+01 2.04E+01 1.16E+01 5.25E+00 1.66E+00 3.69E-01 6.24E-02 7.86E-03 6.63E-04 4.28E-05 4.53E-06 1.10E-06 3.29E-07 9.93E-08 2.97E-08 8.77E-09 2.57E-09 7.43E-10 2.13E-10 8.35E-11
2014 6.45E+00 1.60E+01 1.72E+01 1.78E+01 1.48E+01 1.19E+01 1.13E+01 1.48E+01 2.68E+01 4.63E+01 5.45E+01 4.77E+01 3.69E+01 2.56E+01 1.56E+01 7.28E+00 2.32E+00 5.10E-01 8.37E-02 1.02E-02 8.29E-04 4.94E-05 4.31E-06 9.57E-07 2.84E-07 8.55E-08 2.56E-08 7.55E-09 2.21E-09 6.40E-10 1.84E-10 7.19E-11
2015 4.23E+00 1.06E+01 1.20E+01 1.36E+01 1.34E+01 1.30E+01 1.19E+01 1.17E+01 1.82E+01 3.35E+01 4.20E+01 3.86E+01 3.26E+01 2.49E+01 1.63E+01 8.11E+00 2.72E+00 6.28E-01 1.08E-01 1.35E-02 1.11E-03 6.22E-05 4.31E-06 8.19E-07 2.38E-07 7.17E-08 2.14E-08 6.33E-09 1.85E-09 5.36E-10 1.54E-10 6.03E-11
2016 5.94E+00 1.41E+01 1.32E+01 1.19E+01 1.05E+01 1.02E+01 1.02E+01 1.12E+01 1.70E+01 2.87E+01 3.43E+01 3.07E+01 2.61E+01 2.07E+01 1.41E+01 7.26E+00 2.53E+00 6.11E-01 1.10E-01 1.42E-02 1.19E-03 6.57E-05 4.02E-06 6.79E-07 1.94E-07 5.84E-08 1.74E-08 5.15E-09 1.51E-09 4.37E-10 1.25E-10 4.91E-11
2017 3.51E+01 7.99E+01 6.33E+01 4.02E+01 2.38E+01 1.48E+01 1.05E+01 9.72E+00 1.43E+01 2.45E+01 2.94E+01 2.63E+01 2.20E+01 1.71E+01 1.16E+01 5.98E+00 2.10E+00 5.14E-01 9.41E-02 1.24E-02 1.05E-03 5.86E-05 3.62E-06 6.15E-07 1.76E-07 5.30E-08 1.58E-08 4.69E-09 1.37E-09 3.98E-10 1.15E-10 4.45E-11

year
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Table 36. Estimated population size (millions) for males on July 1 of year. from the author’s preferred mode, Model B2b. 

 

 

Size bin
27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5 102.5 107.5 112.5 117.5 122.5 127.5 132.5 137.5 142.5 147.5 152.5 157.5 162.5 167.5 172.5 177.5 182.5

1949 4.34E+00 9.75E+00 7.28E+00 3.92E+00 1.80E+00 7.51E-01 2.94E-01 1.10E-01 3.99E-02 1.41E-02 4.87E-03 1.66E-03 5.55E-04 1.84E-04 6.01E-05 1.95E-05 6.29E-06 2.01E-06 6.40E-07 2.02E-07 6.37E-08 1.99E-08 6.22E-09 1.93E-09 5.99E-10 1.85E-10 5.70E-11 1.75E-11 5.36E-12 1.64E-12 5.00E-13 1.52E-13
1950 4.35E+00 1.10E+01 1.04E+01 9.35E+00 6.54E+00 4.11E+00 2.41E+00 1.32E+00 6.92E-01 3.52E-01 1.75E-01 8.48E-02 4.05E-02 1.90E-02 8.84E-03 4.06E-03 1.85E-03 8.36E-04 3.75E-04 1.67E-04 7.38E-05 3.25E-05 1.43E-05 6.25E-06 2.72E-06 1.17E-06 5.01E-07 2.11E-07 8.70E-08 3.47E-08 1.32E-08 9.55E-09
1951 4.39E+00 1.10E+01 1.06E+01 1.01E+01 8.13E+00 6.61E+00 5.42E+00 4.11E+00 2.92E+00 2.01E+00 1.34E+00 8.58E-01 5.36E-01 3.28E-01 1.97E-01 1.16E-01 6.73E-02 3.84E-02 2.15E-02 1.17E-02 6.25E-03 3.30E-03 1.75E-03 9.24E-04 4.77E-04 2.34E-04 1.06E-04 4.27E-05 1.46E-05 3.80E-06 6.12E-07 7.25E-08
1952 4.45E+00 1.12E+01 1.08E+01 1.02E+01 8.27E+00 6.92E+00 6.01E+00 5.07E+00 4.27E+00 3.64E+00 3.07E+00 2.49E+00 1.96E+00 1.50E+00 1.12E+00 8.17E-01 5.80E-01 4.04E-01 2.74E-01 1.81E-01 1.16E-01 7.32E-02 4.63E-02 2.91E-02 1.77E-02 1.01E-02 5.27E-03 2.44E-03 9.51E-04 2.81E-04 5.10E-05 5.87E-06
1953 4.55E+00 1.14E+01 1.10E+01 1.04E+01 8.40E+00 7.01E+00 6.10E+00 5.19E+00 4.47E+00 3.96E+00 3.55E+00 3.16E+00 2.81E+00 2.52E+00 2.23E+00 1.92E+00 1.60E+00 1.32E+00 1.06E+00 8.27E-01 6.20E-01 4.54E-01 3.31E-01 2.39E-01 1.65E-01 1.06E-01 6.25E-02 3.24E-02 1.41E-02 4.67E-03 9.68E-04 1.34E-04
1954 4.71E+00 1.18E+01 1.13E+01 1.07E+01 8.59E+00 7.16E+00 6.22E+00 5.30E+00 4.56E+00 4.07E+00 3.69E+00 3.35E+00 3.07E+00 2.90E+00 2.75E+00 2.51E+00 2.22E+00 2.02E+00 1.83E+00 1.60E+00 1.35E+00 1.10E+00 8.83E-01 7.00E-01 5.31E-01 3.75E-01 2.41E-01 1.36E-01 6.41E-02 2.31E-02 5.31E-03 8.58E-04
1955 4.95E+00 1.24E+01 1.18E+01 1.11E+01 8.91E+00 7.39E+00 6.41E+00 5.45E+00 4.69E+00 4.20E+00 3.83E+00 3.49E+00 3.25E+00 3.16E+00 3.08E+00 2.88E+00 2.59E+00 2.46E+00 2.34E+00 2.18E+00 1.94E+00 1.65E+00 1.38E+00 1.13E+00 8.90E-01 6.55E-01 4.38E-01 2.58E-01 1.27E-01 4.84E-02 1.18E-02 2.11E-03
1956 5.33E+00 1.33E+01 1.27E+01 1.18E+01 9.39E+00 7.74E+00 6.68E+00 5.66E+00 4.86E+00 4.35E+00 3.98E+00 3.65E+00 3.43E+00 3.38E+00 3.35E+00 3.17E+00 2.89E+00 2.81E+00 2.74E+00 2.63E+00 2.40E+00 2.08E+00 1.75E+00 1.45E+00 1.16E+00 8.67E-01 5.90E-01 3.53E-01 1.77E-01 6.84E-02 1.71E-02 3.18E-03
1957 5.94E+00 1.48E+01 1.40E+01 1.29E+01 1.02E+01 8.29E+00 7.11E+00 5.99E+00 5.12E+00 4.57E+00 4.18E+00 3.84E+00 3.61E+00 3.60E+00 3.61E+00 3.44E+00 3.14E+00 3.09E+00 3.07E+00 2.98E+00 2.76E+00 2.41E+00 2.05E+00 1.70E+00 1.37E+00 1.03E+00 7.03E-01 4.24E-01 2.14E-01 8.33E-02 2.10E-02 3.97E-03
1958 6.99E+00 1.73E+01 1.62E+01 1.46E+01 1.14E+01 9.18E+00 7.78E+00 6.49E+00 5.51E+00 4.89E+00 4.45E+00 4.08E+00 3.84E+00 3.84E+00 3.86E+00 3.69E+00 3.39E+00 3.35E+00 3.35E+00 3.29E+00 3.07E+00 2.69E+00 2.28E+00 1.89E+00 1.53E+00 1.15E+00 7.91E-01 4.79E-01 2.43E-01 9.48E-02 2.40E-02 4.57E-03
1959 8.94E+00 2.20E+01 2.02E+01 1.78E+01 1.36E+01 1.07E+01 8.90E+00 7.32E+00 6.14E+00 5.39E+00 4.87E+00 4.43E+00 4.16E+00 4.14E+00 4.17E+00 3.98E+00 3.65E+00 3.62E+00 3.63E+00 3.57E+00 3.34E+00 2.94E+00 2.49E+00 2.06E+00 1.67E+00 1.26E+00 8.65E-01 5.25E-01 2.66E-01 1.04E-01 2.64E-02 5.05E-03
1960 1.32E+01 3.21E+01 2.88E+01 2.43E+01 1.78E+01 1.36E+01 1.09E+01 8.79E+00 7.22E+00 6.23E+00 5.54E+00 4.99E+00 4.63E+00 4.57E+00 4.56E+00 4.34E+00 3.97E+00 3.93E+00 3.93E+00 3.87E+00 3.62E+00 3.19E+00 2.70E+00 2.23E+00 1.80E+00 1.36E+00 9.35E-01 5.67E-01 2.88E-01 1.13E-01 2.86E-02 5.48E-03
1961 2.44E+01 5.85E+01 5.08E+01 4.01E+01 2.79E+01 2.00E+01 1.53E+01 1.18E+01 9.32E+00 7.79E+00 6.76E+00 5.95E+00 5.41E+00 5.25E+00 5.17E+00 4.87E+00 4.42E+00 4.35E+00 4.33E+00 4.24E+00 3.96E+00 3.47E+00 2.93E+00 2.41E+00 1.95E+00 1.47E+00 1.01E+00 6.12E-01 3.11E-01 1.22E-01 3.08E-02 5.91E-03
1962 5.51E+01 1.31E+02 1.11E+02 8.25E+01 5.45E+01 3.66E+01 2.61E+01 1.89E+01 1.41E+01 1.12E+01 9.30E+00 7.88E+00 6.93E+00 6.49E+00 6.22E+00 5.76E+00 5.16E+00 5.00E+00 4.91E+00 4.76E+00 4.41E+00 3.85E+00 3.24E+00 2.66E+00 2.13E+00 1.61E+00 1.10E+00 6.67E-01 3.38E-01 1.32E-01 3.34E-02 6.39E-03
1963 1.07E+02 2.56E+02 2.21E+02 1.70E+02 1.14E+02 7.61E+01 5.29E+01 3.69E+01 2.64E+01 1.98E+01 1.55E+01 1.25E+01 1.04E+01 9.21E+00 8.41E+00 7.53E+00 6.58E+00 6.19E+00 5.94E+00 5.64E+00 5.15E+00 4.45E+00 3.72E+00 3.03E+00 2.42E+00 1.81E+00 1.24E+00 7.46E-01 3.77E-01 1.47E-01 3.70E-02 7.05E-03
1964 1.28E+02 3.16E+02 2.93E+02 2.59E+02 1.90E+02 1.38E+02 1.02E+02 7.42E+01 5.39E+01 4.02E+01 3.08E+01 2.39E+01 1.91E+01 1.59E+01 1.37E+01 1.17E+01 9.86E+00 8.85E+00 8.12E+00 7.43E+00 6.59E+00 5.58E+00 4.61E+00 3.71E+00 2.94E+00 2.18E+00 1.48E+00 8.84E-01 4.43E-01 1.72E-01 4.30E-02 8.11E-03
1965 1.07E+02 2.75E+02 2.75E+02 2.74E+02 2.23E+02 1.82E+02 1.51E+02 1.20E+02 9.35E+01 7.40E+01 5.91E+01 4.71E+01 3.78E+01 3.12E+01 2.62E+01 2.17E+01 1.78E+01 1.53E+01 1.34E+01 1.17E+01 9.95E+00 8.18E+00 6.61E+00 5.25E+00 4.08E+00 2.98E+00 1.99E+00 1.18E+00 5.83E-01 2.23E-01 5.51E-02 1.02E-02
1966 8.38E+01 2.17E+02 2.22E+02 2.31E+02 1.99E+02 1.77E+02 1.61E+02 1.38E+02 1.18E+02 1.02E+02 8.82E+01 7.52E+01 6.38E+01 5.51E+01 4.78E+01 4.05E+01 3.36E+01 2.88E+01 2.48E+01 2.12E+01 1.76E+01 1.41E+01 1.12E+01 8.62E+00 6.57E+00 4.70E+00 3.08E+00 1.79E+00 8.71E-01 3.27E-01 7.93E-02 1.42E-02
1967 7.22E+01 1.85E+02 1.85E+02 1.88E+02 1.62E+02 1.47E+02 1.37E+02 1.24E+02 1.12E+02 1.04E+02 9.65E+01 8.80E+01 8.03E+01 7.47E+01 6.92E+01 6.18E+01 5.36E+01 4.79E+01 4.26E+01 3.72E+01 3.14E+01 2.55E+01 2.03E+01 1.58E+01 1.21E+01 8.65E+00 5.66E+00 3.27E+00 1.59E+00 5.92E-01 1.42E-01 2.49E-02
1968 7.18E+01 1.81E+02 1.75E+02 1.69E+02 1.41E+02 1.23E+02 1.13E+02 1.02E+02 9.38E+01 8.92E+01 8.58E+01 8.18E+01 7.89E+01 7.87E+01 7.79E+01 7.33E+01 6.63E+01 6.25E+01 5.86E+01 5.34E+01 4.67E+01 3.88E+01 3.09E+01 2.36E+01 1.82E+01 1.32E+01 8.74E+00 5.10E+00 2.49E+00 9.37E-01 2.26E-01 3.94E-02
1969 7.78E+01 1.94E+02 1.84E+02 1.72E+02 1.38E+02 1.16E+02 1.03E+02 9.00E+01 8.05E+01 7.59E+01 7.31E+01 7.06E+01 6.99E+01 7.27E+01 7.53E+01 7.33E+01 6.81E+01 6.73E+01 6.62E+01 6.33E+01 5.74E+01 4.90E+01 3.93E+01 3.00E+01 2.35E+01 1.74E+01 1.18E+01 7.01E+00 3.49E+00 1.34E+00 3.30E-01 5.93E-02
1970 7.54E+01 1.91E+02 1.85E+02 1.77E+02 1.43E+02 1.19E+02 1.04E+02 8.86E+01 7.71E+01 7.08E+01 6.70E+01 6.39E+01 6.32E+01 6.67E+01 7.03E+01 6.94E+01 6.50E+01 6.58E+01 6.67E+01 6.56E+01 6.07E+01 5.24E+01 4.16E+01 3.07E+01 2.42E+01 1.82E+01 1.24E+01 7.51E+00 3.80E+00 1.48E+00 3.71E-01 6.86E-02
1971 6.41E+01 1.64E+02 1.64E+02 1.65E+02 1.38E+02 1.19E+02 1.06E+02 9.13E+01 7.92E+01 7.20E+01 6.72E+01 6.32E+01 6.16E+01 6.45E+01 6.78E+01 6.67E+01 6.23E+01 6.35E+01 6.50E+01 6.45E+01 6.02E+01 5.21E+01 4.07E+01 2.93E+01 2.31E+01 1.74E+01 1.20E+01 7.29E+00 3.72E+00 1.46E+00 3.70E-01 6.98E-02
1972 4.24E+01 1.13E+02 1.20E+02 1.31E+02 1.16E+02 1.05E+02 9.78E+01 8.73E+01 7.79E+01 7.23E+01 6.84E+01 6.46E+01 6.28E+01 6.53E+01 6.82E+01 6.67E+01 6.19E+01 6.28E+01 6.41E+01 6.36E+01 5.92E+01 5.12E+01 3.96E+01 2.81E+01 2.21E+01 1.66E+01 1.15E+01 6.97E+00 3.56E+00 1.40E+00 3.56E-01 6.77E-02
1973 2.76E+01 7.35E+01 7.88E+01 8.85E+01 8.22E+01 7.93E+01 7.81E+01 7.32E+01 6.81E+01 6.57E+01 6.41E+01 6.20E+01 6.15E+01 6.49E+01 6.83E+01 6.71E+01 6.24E+01 6.33E+01 6.44E+01 6.36E+01 5.91E+01 5.09E+01 3.93E+01 2.79E+01 2.19E+01 1.64E+01 1.13E+01 6.84E+00 3.48E+00 1.37E+00 3.47E-01 6.60E-02
1974 2.43E+01 6.21E+01 6.20E+01 6.34E+01 5.65E+01 5.39E+01 5.39E+01 5.21E+01 5.06E+01 5.12E+01 5.21E+01 5.24E+01 5.38E+01 5.86E+01 6.32E+01 6.30E+01 5.93E+01 6.07E+01 6.23E+01 6.19E+01 5.78E+01 4.99E+01 3.89E+01 2.81E+01 2.21E+01 1.66E+01 1.14E+01 6.90E+00 3.50E+00 1.37E+00 3.49E-01 6.61E-02
1975 4.79E+01 1.14E+02 9.88E+01 7.82E+01 5.70E+01 4.56E+01 4.07E+01 3.72E+01 3.53E+01 3.61E+01 3.76E+01 3.90E+01 4.17E+01 4.76E+01 5.33E+01 5.43E+01 5.19E+01 5.42E+01 5.66E+01 5.70E+01 5.36E+01 4.66E+01 3.64E+01 2.63E+01 2.08E+01 1.56E+01 1.07E+01 6.53E+00 3.32E+00 1.30E+00 3.31E-01 6.30E-02
1976 9.53E+01 2.27E+02 1.95E+02 1.50E+02 1.01E+02 6.94E+01 5.12E+01 3.95E+01 3.25E+01 3.01E+01 2.98E+01 3.03E+01 3.25E+01 3.80E+01 4.37E+01 4.53E+01 4.37E+01 4.67E+01 4.98E+01 5.10E+01 4.85E+01 4.23E+01 3.28E+01 2.33E+01 1.84E+01 1.39E+01 9.61E+00 5.86E+00 3.00E+00 1.18E+00 3.02E-01 5.77E-02
1977 7.33E+01 1.91E+02 1.93E+02 1.93E+02 1.52E+02 1.16E+02 8.87E+01 6.63E+01 5.00E+01 4.03E+01 3.46E+01 3.13E+01 3.06E+01 3.38E+01 3.77E+01 3.85E+01 3.68E+01 3.94E+01 4.21E+01 4.30E+01 4.06E+01 3.49E+01 2.54E+01 1.62E+01 1.26E+01 9.46E+00 6.54E+00 4.00E+00 2.05E+00 8.11E-01 2.08E-01 3.96E-02
1978 3.23E+01 9.24E+01 1.10E+02 1.36E+02 1.29E+02 1.20E+02 1.11E+02 9.45E+01 7.77E+01 6.48E+01 5.48E+01 4.67E+01 4.15E+01 4.03E+01 4.06E+01 3.87E+01 3.52E+01 3.56E+01 3.62E+01 3.52E+01 3.15E+01 2.57E+01 1.59E+01 8.25E+00 6.15E+00 4.53E+00 3.09E+00 1.87E+00 9.48E-01 3.71E-01 9.39E-02 1.72E-02
1979 1.36E+01 3.93E+01 4.84E+01 6.48E+01 6.90E+01 7.53E+01 8.07E+01 7.91E+01 7.54E+01 7.23E+01 6.82E+01 6.27E+01 5.75E+01 5.49E+01 5.28E+01 4.83E+01 4.23E+01 3.96E+01 3.70E+01 3.30E+01 2.73E+01 2.07E+01 1.16E+01 6.17E+00 4.53E+00 3.22E+00 2.10E+00 1.22E+00 5.91E-01 2.21E-01 5.29E-02 8.73E-03
1980 8.35E+00 2.24E+01 2.48E+01 3.00E+01 3.13E+01 3.52E+01 4.03E+01 4.35E+01 4.64E+01 5.00E+01 5.28E+01 5.38E+01 5.46E+01 5.69E+01 5.81E+01 5.52E+01 4.94E+01 4.56E+01 4.06E+01 3.39E+01 2.62E+01 1.90E+01 1.14E+01 7.89E+00 5.87E+00 4.05E+00 2.52E+00 1.37E+00 6.15E-01 2.09E-01 4.42E-02 5.66E-03
1981 1.36E+01 3.29E+01 2.93E+01 2.50E+01 2.03E+01 1.88E+01 1.94E+01 2.04E+01 2.19E+01 2.46E+01 2.75E+01 2.99E+01 3.26E+01 3.63E+01 3.92E+01 3.91E+01 3.67E+01 3.53E+01 3.26E+01 2.84E+01 2.32E+01 1.83E+01 1.30E+01 9.72E+00 7.63E+00 5.57E+00 3.67E+00 2.12E+00 1.02E+00 3.71E-01 8.54E-02 1.30E-02
1982 7.72E+00 2.10E+01 2.30E+01 2.54E+01 2.13E+01 1.76E+01 1.52E+01 1.33E+01 1.25E+01 1.28E+01 1.38E+01 1.49E+01 1.66E+01 1.92E+01 2.18E+01 2.28E+01 2.23E+01 2.28E+01 2.28E+01 2.16E+01 1.93E+01 1.65E+01 1.33E+01 1.08E+01 8.88E+00 6.80E+00 4.72E+00 2.87E+00 1.46E+00 5.67E-01 1.42E-01 2.58E-02
1983 3.75E+01 8.63E+01 6.89E+01 4.58E+01 2.90E+01 2.08E+01 1.71E+01 1.42E+01 1.20E+01 1.08E+01 1.01E+01 9.75E+00 9.95E+00 1.10E+01 1.24E+01 1.29E+01 1.27E+01 1.34E+01 1.41E+01 1.42E+01 1.35E+01 1.21E+01 1.03E+01 8.69E+00 7.37E+00 5.81E+00 4.15E+00 2.60E+00 1.36E+00 5.45E-01 1.42E-01 2.80E-02
1984 3.09E+01 7.95E+01 7.90E+01 7.60E+01 5.67E+01 3.96E+01 2.76E+01 1.94E+01 1.46E+01 1.20E+01 1.06E+01 9.52E+00 8.88E+00 8.84E+00 9.05E+00 8.89E+00 8.41E+00 8.65E+00 8.98E+00 9.12E+00 8.82E+00 8.06E+00 6.99E+00 6.03E+00 5.17E+00 4.12E+00 2.98E+00 1.89E+00 9.99E-01 4.07E-01 1.08E-01 2.21E-02
1985 4.15E+01 1.02E+02 9.31E+01 8.22E+01 6.46E+01 5.30E+01 4.49E+01 3.56E+01 2.72E+01 2.07E+01 1.60E+01 1.26E+01 1.04E+01 9.22E+00 8.59E+00 7.95E+00 7.22E+00 6.99E+00 6.84E+00 6.63E+00 6.21E+00 5.56E+00 4.76E+00 4.02E+00 3.39E+00 2.67E+00 1.91E+00 1.20E+00 6.32E-01 2.57E-01 6.80E-02 1.39E-02
1986 4.01E+01 1.01E+02 9.82E+01 9.33E+01 7.37E+01 5.90E+01 4.92E+01 4.08E+01 3.45E+01 3.00E+01 2.62E+01 2.24E+01 1.89E+01 1.62E+01 1.41E+01 1.21E+01 1.02E+01 9.24E+00 8.59E+00 8.02E+00 7.32E+00 6.42E+00 5.49E+00 4.70E+00 3.92E+00 3.04E+00 2.14E+00 1.33E+00 6.91E-01 2.77E-01 7.24E-02 1.46E-02
1987 3.98E+01 1.00E+02 9.70E+01 9.30E+01 7.58E+01 6.37E+01 5.53E+01 4.64E+01 3.89E+01 3.36E+01 2.97E+01 2.63E+01 2.37E+01 2.20E+01 2.06E+01 1.86E+01 1.63E+01 1.47E+01 1.33E+01 1.19E+01 1.03E+01 8.68E+00 7.22E+00 6.07E+00 4.92E+00 3.69E+00 2.53E+00 1.54E+00 7.82E-01 3.08E-01 7.89E-02 1.55E-02
1988 2.72E+01 7.20E+01 7.56E+01 8.10E+01 6.99E+01 6.11E+01 5.48E+01 4.75E+01 4.13E+01 3.71E+01 3.36E+01 3.03E+01 2.75E+01 2.58E+01 2.44E+01 2.24E+01 2.00E+01 1.87E+01 1.74E+01 1.60E+01 1.42E+01 1.21E+01 1.01E+01 8.51E+00 6.84E+00 5.08E+00 3.43E+00 2.04E+00 1.02E+00 3.92E-01 9.76E-02 1.83E-02
1989 1.31E+01 3.68E+01 4.28E+01 5.25E+01 5.02E+01 4.87E+01 4.74E+01 4.34E+01 3.93E+01 3.64E+01 3.40E+01 3.16E+01 2.96E+01 2.87E+01 2.80E+01 2.62E+01 2.36E+01 2.24E+01 2.12E+01 1.97E+01 1.77E+01 1.51E+01 1.27E+01 1.05E+01 8.45E+00 6.28E+00 4.25E+00 2.54E+00 1.27E+00 4.90E-01 1.22E-01 2.30E-02
1990 4.01E+00 1.26E+01 1.70E+01 2.45E+01 2.65E+01 2.90E+01 3.12E+01 3.12E+01 3.06E+01 3.06E+01 3.04E+01 2.95E+01 2.87E+01 2.88E+01 2.89E+01 2.76E+01 2.53E+01 2.44E+01 2.35E+01 2.21E+01 1.98E+01 1.69E+01 1.37E+01 1.06E+01 8.41E+00 6.21E+00 4.18E+00 2.49E+00 1.24E+00 4.76E-01 1.18E-01 2.18E-02
1991 3.20E+00 8.29E+00 8.69E+00 1.01E+01 1.09E+01 1.30E+01 1.54E+01 1.69E+01 1.82E+01 1.99E+01 2.15E+01 2.24E+01 2.32E+01 2.47E+01 2.60E+01 2.57E+01 2.40E+01 2.36E+01 2.30E+01 2.16E+01 1.93E+01 1.63E+01 1.24E+01 8.72E+00 6.80E+00 4.99E+00 3.35E+00 1.98E+00 9.85E-01 3.77E-01 9.29E-02 1.66E-02
1992 2.84E+00 7.24E+00 7.19E+00 7.25E+00 6.37E+00 6.22E+00 6.79E+00 7.57E+00 8.59E+00 1.03E+01 1.22E+01 1.37E+01 1.53E+01 1.75E+01 1.97E+01 2.04E+01 1.96E+01 2.02E+01 2.04E+01 1.97E+01 1.78E+01 1.51E+01 1.11E+01 7.58E+00 5.94E+00 4.36E+00 2.94E+00 1.75E+00 8.70E-01 3.34E-01 8.26E-02 1.48E-02
1993 2.84E+00 7.15E+00 6.91E+00 6.64E+00 5.52E+00 4.90E+00 4.77E+00 4.69E+00 4.75E+00 5.52E+00 6.65E+00 7.78E+00 8.97E+00 1.08E+01 1.29E+01 1.38E+01 1.37E+01 1.48E+01 1.56E+01 1.56E+01 1.45E+01 1.24E+01 8.73E+00 5.49E+00 4.06E+00 2.85E+00 1.88E+00 1.11E+00 5.59E-01 2.18E-01 5.51E-02 1.01E-02
1994 3.74E+00 9.18E+00 8.41E+00 7.40E+00 5.75E+00 4.77E+00 4.37E+00 4.05E+00 3.86E+00 4.22E+00 4.86E+00 5.46E+00 6.06E+00 7.19E+00 8.66E+00 9.38E+00 9.33E+00 1.04E+01 1.13E+01 1.17E+01 1.10E+01 9.44E+00 6.49E+00 3.94E+00 2.90E+00 2.04E+00 1.36E+00 8.21E-01 4.19E-01 1.66E-01 4.31E-02 8.26E-03
1995 4.79E+00 1.18E+01 1.08E+01 9.46E+00 7.14E+00 5.59E+00 4.74E+00 4.10E+00 3.67E+00 3.78E+00 4.14E+00 4.49E+00 4.80E+00 5.52E+00 6.52E+00 6.96E+00 6.85E+00 7.61E+00 8.35E+00 8.66E+00 8.21E+00 7.01E+00 4.69E+00 2.73E+00 2.01E+00 1.42E+00 9.57E-01 5.82E-01 3.01E-01 1.21E-01 3.20E-02 6.37E-03
1996 4.41E+00 1.12E+01 1.10E+01 1.06E+01 8.44E+00 6.82E+00 5.77E+00 4.84E+00 4.13E+00 3.92E+00 3.99E+00 4.08E+00 4.16E+00 4.57E+00 5.22E+00 5.48E+00 5.32E+00 5.82E+00 6.29E+00 6.45E+00 6.05E+00 5.13E+00 3.35E+00 1.93E+00 1.45E+00 1.04E+00 7.04E-01 4.30E-01 2.22E-01 8.94E-02 2.35E-02 4.72E-03
1997 1.28E+01 3.00E+01 2.48E+01 1.79E+01 1.19E+01 8.60E+00 6.93E+00 5.71E+00 4.83E+00 4.44E+00 4.29E+00 4.17E+00 4.07E+00 4.27E+00 4.67E+00 4.76E+00 4.55E+00 4.88E+00 5.20E+00 5.29E+00 4.95E+00 4.19E+00 2.79E+00 1.67E+00 1.25E+00 8.85E-01 5.90E-01 3.55E-01 1.81E-01 7.19E-02 1.87E-02 3.72E-03
1998 5.15E+00 1.50E+01 1.80E+01 2.14E+01 1.78E+01 1.37E+01 1.04E+01 7.85E+00 6.14E+00 5.27E+00 4.83E+00 4.51E+00 4.29E+00 4.33E+00 4.53E+00 4.46E+00 4.16E+00 4.31E+00 4.49E+00 4.49E+00 4.18E+00 3.56E+00 2.48E+00 1.61E+00 1.23E+00 8.86E-01 5.96E-01 3.59E-01 1.83E-01 7.23E-02 1.87E-02 3.68E-03
1999 1.72E+01 4.01E+01 3.30E+01 2.41E+01 1.75E+01 1.46E+01 1.33E+01 1.13E+01 9.32E+00 7.79E+00 6.64E+00 5.73E+00 5.08E+00 4.81E+00 4.75E+00 4.50E+00 4.10E+00 4.12E+00 4.17E+00 4.11E+00 3.80E+00 3.25E+00 2.38E+00 1.66E+00 1.29E+00 9.43E-01 6.37E-01 3.82E-01 1.94E-01 7.60E-02 1.95E-02 3.78E-03
2000 8.97E+00 2.48E+01 2.76E+01 3.05E+01 2.46E+01 1.86E+01 1.44E+01 1.14E+01 9.69E+00 8.89E+00 8.32E+00 7.65E+00 6.95E+00 6.48E+00 6.11E+00 5.55E+00 4.87E+00 4.65E+00 4.52E+00 4.33E+00 3.94E+00 3.35E+00 2.56E+00 1.89E+00 1.48E+00 1.09E+00 7.38E-01 4.43E-01 2.23E-01 8.71E-02 2.21E-02 4.24E-03
2001 2.93E+01 6.83E+01 5.62E+01 4.05E+01 2.82E+01 2.22E+01 1.91E+01 1.58E+01 1.28E+01 1.06E+01 9.05E+00 7.95E+00 7.30E+00 7.13E+00 7.06E+00 6.67E+00 6.05E+00 5.81E+00 5.59E+00 5.25E+00 4.71E+00 3.98E+00 3.13E+00 2.40E+00 1.88E+00 1.38E+00 9.24E-01 5.50E-01 2.75E-01 1.06E-01 2.66E-02 5.03E-03
2002 9.43E+00 2.91E+01 3.72E+01 4.66E+01 3.94E+01 3.05E+01 2.35E+01 1.82E+01 1.49E+01 1.30E+01 1.18E+01 1.05E+01 9.41E+00 8.76E+00 8.26E+00 7.52E+00 6.67E+00 6.40E+00 6.24E+00 5.99E+00 5.48E+00 4.72E+00 3.86E+00 3.10E+00 2.47E+00 1.83E+00 1.24E+00 7.39E-01 3.70E-01 1.43E-01 3.55E-02 6.62E-03
2003 2.83E+01 6.61E+01 5.52E+01 4.22E+01 3.28E+01 2.96E+01 2.82E+01 2.46E+01 2.05E+01 1.70E+01 1.44E+01 1.24E+01 1.10E+01 1.05E+01 1.01E+01 9.41E+00 8.44E+00 8.04E+00 7.71E+00 7.27E+00 6.58E+00 5.63E+00 4.64E+00 3.77E+00 3.01E+00 2.24E+00 1.52E+00 9.14E-01 4.60E-01 1.79E-01 4.50E-02 8.54E-03
2004 2.76E+01 6.96E+01 6.69E+01 6.19E+01 4.62E+01 3.39E+01 2.62E+01 2.15E+01 1.91E+01 1.82E+01 1.73E+01 1.60E+01 1.47E+01 1.37E+01 1.29E+01 1.17E+01 1.02E+01 9.68E+00 9.29E+00 8.82E+00 8.03E+00 6.93E+00 5.80E+00 4.79E+00 3.84E+00 2.86E+00 1.95E+00 1.17E+00 5.85E-01 2.26E-01 5.65E-02 1.06E-02
2005 7.50E+00 2.43E+01 3.33E+01 4.59E+01 4.36E+01 3.96E+01 3.52E+01 2.89E+01 2.32E+01 1.92E+01 1.66E+01 1.49E+01 1.41E+01 1.43E+01 1.45E+01 1.39E+01 1.27E+01 1.23E+01 1.18E+01 1.12E+01 1.01E+01 8.67E+00 7.25E+00 5.99E+00 4.78E+00 3.55E+00 2.42E+00 1.45E+00 7.27E-01 2.82E-01 7.07E-02 1.34E-02
2006 5.74E+00 1.49E+01 1.59E+01 1.91E+01 2.10E+01 2.44E+01 2.71E+01 2.67E+01 2.50E+01 2.34E+01 2.15E+01 1.93E+01 1.74E+01 1.64E+01 1.58E+01 1.46E+01 1.32E+01 1.29E+01 1.29E+01 1.26E+01 1.17E+01 1.03E+01 8.77E+00 7.33E+00 5.92E+00 4.44E+00 3.03E+00 1.82E+00 9.15E-01 3.54E-01 8.86E-02 1.66E-02
2007 4.44E+00 1.15E+01 1.18E+01 1.25E+01 1.13E+01 1.13E+01 1.23E+01 1.34E+01 1.48E+01 1.65E+01 1.76E+01 1.80E+01 1.81E+01 1.86E+01 1.88E+01 1.78E+01 1.61E+01 1.55E+01 1.50E+01 1.44E+01 1.32E+01 1.15E+01 9.73E+00 8.02E+00 6.47E+00 4.87E+00 3.35E+00 2.03E+00 1.03E+00 4.01E-01 1.02E-01 1.95E-02
2008 6.83E+00 1.66E+01 1.48E+01 1.27E+01 9.92E+00 8.50E+00 8.02E+00 7.66E+00 7.63E+00 8.32E+00 9.36E+00 1.05E+01 1.20E+01 1.42E+01 1.60E+01 1.64E+01 1.58E+01 1.61E+01 1.64E+01 1.61E+01 1.51E+01 1.33E+01 1.13E+01 9.29E+00 7.49E+00 5.62E+00 3.84E+00 2.31E+00 1.16E+00 4.52E-01 1.14E-01 2.16E-02
2009 4.45E+01 1.02E+02 7.98E+01 4.95E+01 2.77E+01 1.60E+01 1.05E+01 7.76E+00 6.45E+00 6.23E+00 6.50E+00 6.93E+00 7.81E+00 9.64E+00 1.15E+01 1.22E+01 1.20E+01 1.31E+01 1.43E+01 1.51E+01 1.48E+01 1.34E+01 1.17E+01 9.81E+00 8.06E+00 6.15E+00 4.27E+00 2.60E+00 1.33E+00 5.20E-01 1.32E-01 2.53E-02
2010 3.94E+01 1.01E+02 9.84E+01 9.24E+01 6.75E+01 4.56E+01 3.00E+01 1.93E+01 1.28E+01 9.29E+00 7.60E+00 6.84E+00 6.92E+00 8.06E+00 9.39E+00 9.82E+00 9.54E+00 1.05E+01 1.17E+01 1.27E+01 1.27E+01 1.17E+01 1.04E+01 8.84E+00 7.33E+00 5.64E+00 3.93E+00 2.41E+00 1.24E+00 4.93E-01 1.27E-01 2.52E-02
2011 1.61E+01 4.69E+01 5.69E+01 7.12E+01 6.60E+01 5.94E+01 5.24E+01 4.20E+01 3.18E+01 2.39E+01 1.81E+01 1.39E+01 1.13E+01 1.04E+01 1.02E+01 9.68E+00 8.87E+00 9.34E+00 1.01E+01 1.08E+01 1.08E+01 9.98E+00 8.86E+00 7.58E+00 6.30E+00 4.87E+00 3.41E+00 2.10E+00 1.08E+00 4.33E-01 1.12E-01 2.25E-02
2012 3.14E+00 1.14E+01 1.82E+01 2.95E+01 3.39E+01 3.84E+01 4.14E+01 4.01E+01 3.73E+01 3.44E+01 3.10E+01 2.69E+01 2.30E+01 2.01E+01 1.78E+01 1.53E+01 1.28E+01 1.17E+01 1.13E+01 1.09E+01 1.03E+01 9.21E+00 8.01E+00 6.78E+00 5.58E+00 4.27E+00 2.97E+00 1.82E+00 9.38E-01 3.73E-01 9.67E-02 1.93E-02
2013 8.61E+00 2.02E+01 1.72E+01 1.44E+01 1.35E+01 1.57E+01 1.89E+01 2.12E+01 2.32E+01 2.51E+01 2.62E+01 2.61E+01 2.57E+01 2.56E+01 2.50E+01 2.31E+01 2.04E+01 1.87E+01 1.72E+01 1.57E+01 1.38E+01 1.17E+01 9.75E+00 7.98E+00 6.33E+00 4.69E+00 3.17E+00 1.89E+00 9.51E-01 3.70E-01 9.35E-02 1.81E-02
2014 6.45E+00 1.68E+01 1.71E+01 1.71E+01 1.35E+01 1.07E+01 9.46E+00 9.31E+00 1.01E+01 1.19E+01 1.38E+01 1.56E+01 1.75E+01 2.02E+01 2.22E+01 2.24E+01 2.13E+01 2.12E+01 2.10E+01 2.01E+01 1.83E+01 1.57E+01 1.33E+01 1.11E+01 8.81E+00 6.51E+00 4.38E+00 2.59E+00 1.28E+00 4.89E-01 1.20E-01 2.22E-02
2015 4.23E+00 1.13E+01 1.20E+01 1.33E+01 1.20E+01 1.10E+01 1.03E+01 9.01E+00 7.84E+00 7.56E+00 7.91E+00 8.64E+00 1.01E+01 1.28E+01 1.54E+01 1.64E+01 1.62E+01 1.74E+01 1.86E+01 1.90E+01 1.78E+01 1.57E+01 1.38E+01 1.18E+01 9.69E+00 7.35E+00 5.05E+00 3.04E+00 1.53E+00 5.91E-01 1.47E-01 2.75E-02
2016 5.94E+00 1.45E+01 1.32E+01 1.17E+01 9.59E+00 8.64E+00 8.39E+00 7.96E+00 7.55E+00 7.60E+00 7.79E+00 7.94E+00 8.49E+00 1.01E+01 1.18E+01 1.23E+01 1.19E+01 1.30E+01 1.43E+01 1.51E+01 1.40E+01 1.25E+01 1.12E+01 9.83E+00 8.23E+00 6.38E+00 4.48E+00 2.75E+00 1.41E+00 5.53E-01 1.40E-01 2.71E-02
2017 3.51E+01 8.05E+01 6.33E+01 3.99E+01 2.27E+01 1.36E+01 9.36E+00 7.27E+00 6.32E+00 6.27E+00 6.58E+00 6.94E+00 7.64E+00 9.17E+00 1.06E+01 1.10E+01 1.04E+01 1.12E+01 1.21E+01 1.27E+01 1.19E+01 1.07E+01 9.59E+00 8.49E+00 7.15E+00 5.57E+00 3.94E+00 2.44E+00 1.26E+00 5.01E-01 1.29E-01 2.55E-02

year
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Table 37. Comparison of estimates of recruitment (in millions) from the 2016 assessment model 
(2016AM) and the author’s preferred model (Model B2b). 

 

  

year 2016AM Model B2b year 2016AM Model B2b
1949 55.50 56.60 1986 466.24 523.40
1950 55.65 56.79 1987 451.01 519.32
1951 55.99 57.23 1988 439.75 355.11
1952 56.62 58.03 1989 190.87 170.73
1953 57.66 59.34 1990 73.68 52.28
1954 59.30 61.40 1991 42.90 41.79
1955 61.84 64.58 1992 32.61 36.99
1956 65.80 69.55 1993 30.27 37.07
1957 72.11 77.55 1994 37.96 48.83
1958 82.65 91.14 1995 50.53 62.54
1959 101.70 116.57 1996 51.67 57.52
1960 141.25 172.28 1997 127.63 167.47
1961 242.89 318.97 1998 52.35 67.08
1962 537.86 719.36 1999 152.69 224.53
1963 1,177.44 1,400.31 2000 90.77 116.91
1964 1,614.85 1,665.88 2001 276.55 382.14
1965 1,449.54 1,395.71 2002 104.95 122.96
1966 1,119.12 1,093.24 2003 209.31 369.15
1967 914.80 942.01 2004 322.05 359.58
1968 862.81 936.54 2005 93.97 97.75
1969 946.34 1,014.71 2006 72.47 74.91
1970 1,044.72 983.84 2007 48.53 57.91
1971 887.85 835.57 2008 60.51 89.15
1972 653.80 552.87 2009 395.16 580.95
1973 402.42 359.73 2010 492.06 514.24
1974 303.08 317.05 2011 286.78 210.28
1975 606.32 625.56 2012 49.61 40.96
1976 1,093.57 1,243.35 2013 124.11 112.30
1977 863.94 956.12 2014 99.47 84.14
1978 441.60 421.01 2015 69.67 55.16
1979 175.21 177.45 2016 120.01 77.52
1980 93.15 108.83 2017 457.94
1981 134.32 177.86
1982 90.73 100.63
1983 345.19 488.86
1984 321.76 402.59
1985 505.73 541.69
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Table 38. Comparison of exploitation rates (i.e., catch divided by biomass) from the 2016 assessment 
model (2016AM) and the author’s preferred model (Model B2b). 

 

  

year 2016AM Model B2b year 2016AM Model B2b
1949 0.003 0.002 1986 0.027 0.019
1950 0.005 0.003 1987 0.042 0.032
1951 0.009 0.004 1988 0.052 0.041
1952 0.013 0.007 1989 0.117 0.092
1953 0.016 0.010 1990 0.197 0.152
1954 0.020 0.013 1991 0.171 0.147
1955 0.022 0.015 1992 0.208 0.175
1956 0.023 0.016 1993 0.153 0.130
1957 0.023 0.017 1994 0.118 0.098
1958 0.023 0.017 1995 0.110 0.087
1959 0.023 0.017 1996 0.073 0.048
1960 0.022 0.016 1997 0.047 0.039
1961 0.022 0.016 1998 0.037 0.038
1962 0.021 0.014 1999 0.019 0.017
1963 0.018 0.012 2000 0.018 0.014
1964 0.016 0.011 2001 0.023 0.016
1965 0.024 0.017 2002 0.016 0.010
1966 0.024 0.017 2003 0.011 0.007
1967 0.059 0.045 2004 0.011 0.007
1968 0.064 0.050 2005 0.018 0.012
1969 0.082 0.066 2006 0.025 0.018
1970 0.077 0.061 2007 0.027 0.022
1971 0.066 0.052 2008 0.020 0.015
1972 0.060 0.046 2009 0.017 0.012
1973 0.065 0.056 2010 0.009 0.006
1974 0.084 0.075 2011 0.010 0.009
1975 0.074 0.065 2012 0.006 0.005
1976 0.118 0.101 2013 0.018 0.015
1977 0.172 0.140 2014 0.060 0.052
1978 0.159 0.118 2015 0.082 0.071
1979 0.227 0.151 2016 -- 0.010
1980 0.160 0.093
1981 0.070 0.047
1982 0.035 0.025
1983 0.017 0.013
1984 0.033 0.026
1985 0.019 0.016
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Table 39. Values required to determine Tier level and OFL for the models considered here. These values 
are presented only to illustrate the effect of incremental changes in the model scenarios. Results from the 
author’s preferred model (Model B2b) are highlighted in green.  

 

  

average 
recruitment

Final 
MMB

B0 Bmsy Fmsy MSY Fofl OFL
projected 

MMB
projected MMB 

/ Bmsy

millions 1000's t 1000's t 1000's t 1000's t 1000's t 1000's t

2016 Model 182.27 73.90 73.29 25.65 0.79 11.13 0.79 25.61 45.34 1.77
B0.2016 175.94 85.19 75.83 26.54 0.93 11.21 0.93 27.38 45.47 1.71
B0 174.64 68.57 76.90 26.91 0.92 11.21 0.92 21.87 36.88 1.37
B0a 172.24 66.92 75.27 26.35 0.93 11.10 0.93 21.40 35.82 1.36
B1 194.58 74.26 79.67 27.89 0.94 11.48 0.94 24.02 39.72 1.42
B1a 194.80 73.82 79.22 27.73 0.94 11.46 0.94 23.90 39.40 1.42
B1b 195.26 73.83 79.14 27.70 0.95 11.47 0.95 23.95 39.35 1.42
B1c 270.31 98.70 91.09 31.88 1.21 13.08 1.21 35.57 49.19 1.54
B2 198.97 74.51 80.14 28.05 0.74 11.58 0.74 23.20 40.59 1.45
B2a 208.35 78.73 82.38 28.83 0.75 12.03 0.75 24.74 42.57 1.48
B2b 213.95 80.57 83.34 29.17 0.75 12.25 0.75 25.42 43.31 1.49
B3 263.90 87.47 88.82 31.09 0.89 13.40 0.89 29.76 44.67 1.44

Model 

Scenario
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Figures 

 

Figure 1. Eastern Bering Sea District of Tanner crab Registration Area J including sub-districts and 
sections (from Bowers et al. 2008). 
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Figure 2. Upper: retained catch (males, 1000’s t) in the directed fisheries (US pot fishery [green bars], 
Russian tangle net fishery [red bars], and Japanese tangle net fisheries [blue bars]) for Tanner crab since 
1965/66. Lower: Retained catch (males, 1000’s t) in directed fishery since 2001/02. The directed fishery 
was closed from 1996/97 to 2004/05, from 2010/11 to 2012/13, and in 2016/17. 
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Figure 3. Upper: Tanner crab discards (males and females, 1000’s t) in the directed Tanner crab, snow 
crab, Bristol Bay red king crab, and groundfish fisheries. Discard reporting began in 1973 for the 
groundfish fisheries and in 1992 for the crab fisheries. Lower: detail since 2001. 
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Figure 4. Upper: Tanner crab discard mortality (males and females, 1000’s t) in the directed Tanner crab, 
snow crab, Bristol Bay red king crab, and groundfish fisheries. Assumed handling mortality rates of 0.321 
for the crab fisheries and 0.80 for the groundfish fisheries were applied to discard biomass to obtain 
discard mortality. Lower: detail since 2001. 
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Figure 5. Retained and discard catch mortality (1000’s t) in the directed, snow crab, BBRKC and 
groundfish fisheries. Handling mortality rates of 0.321 for the crab fisheries and 0.8 for the groundfish 
fisheries were applied to estimated discards. 
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Figure 6. Size compositions, by 5 mm CW bins and expanded to total retained catch, for retained (male) 
crab in the directed Tanner crab pot fisheries since 2006/07, from dockside crab fishery observer 
sampling. Fishing occurred only east of 166oW in 2009/10. The entire fishery was closed in 2010/11-
2012/13 and in 2016/17. Note scale change in 2014/15. 
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Figure 7. Male Tanner crab catch size compositions, expanded to total catch, by 5 mm CW bins in the 
directed Tanner crab pot fishery since 2005/06, from at-sea crab fishery observer sampling. Note that the 
directed fishery was closed in 2010/11-2012/13 and in 2016/17.  
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Figure 8. Female Tanner crab bycatch size compositions, expanded to total catch, by 5 mm CW bins in 
the directed Tanner crab pot fishery since 2005/06, from at-sea crab fishery observer sampling. Note that 
the directed fishery was closed in 2010/11-2012/13 and in 2016/17.  

  

398



 

Figure 9. Tanner crab bycatch size compositions, expanded to total catch, by 5 mm CW bins in the snow 
crab pot fishery, from at-sea crab fishery observer sampling.   
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Figure 10. Tanner crab bycatch size compositions, expanded to total catch, by 5 mm CW bins in the 
BBRKC pot fishery, from at-sea crab fishery observer sampling.  
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Figure 11. Normalized Tanner crab bycatch size compositions in the groundfish fisheries, from 
groundfish observer sampling. Size compositions have been normalized to sum to 1 for each year. 
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Figure 12. Trends in survey biomass for mature male and female Tanner crab, and in abundance for 
industry preferred-size (≥125 mm CW) males, based on the NMFS EBS bottom trawl survey.  

 

 

Figure 13. Percent change in mature male biomass, mature female biomass, total mature biomass and 
abundance of legal crab observed in the NMFS bottom trawl survey during the past five surveys. 
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Figure 14. Trends in survey biomass for male Tanner crab in areas east and west of 166oW longitude, 
based on the NMFS EBS bottom trawl survey.  
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Figure 15. Trends in survey biomass for female Tanner crab in areas east and west of 166oW longitude, 
based on the NMFS EBS bottom trawl survey.  
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Figure 16. Numbers at size (millions) by area and shell condition for male Tanner crab in the NMFS 
summer bottom trawl survey, binned by 5 mm CW.   
 

 
Figure 17. Numbers at size (millions) by area and shell condition for male Tanner crab in the NMFS 
summer bottom trawl survey, binned by 5 mm CW, since 2005.    
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Figure 18. Numbers at size (millions) by area and shell condition for female Tanner crab in the NMFS 
summer bottom trawl survey, binned by 5 mm CW.   
 

 
Figure 19. Numbers at size (millions) by area and shell condition for female Tanner crab in the NMFS 
summer bottom trawl survey, binned by 5 mm CW, since 2005.   
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Figure 20. Average bottom temperatures (oC) in the NMFS EBS summer trawl survey for 1975-2017. 

 

 

 
Figure 21. Size-weight relationships developed from NMFS EBS summer trawl survey data. 
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Figure 22. Assumed size distribution for recruits entering the population. 
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Figure 23. MCMC results from scenario B2b, the author’s preferred model, for survey catchability and 
selectivity parameters. 
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Figure 24. MCMC results from scenario B2b, the author’s preferred model, for OFL-related quantities. 
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Figure 25. The FOFL harvest control rule. 

 
Figure 26. The OFL and ABC from the author’s preferred model, scenario B2b. 
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Figure 27. Quad plot for the author’s preferred model, scenario B2b. 
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Introduction

This appendix documents the calculations for the annual abundance and biomass time series and
the sex-specific size compositions for Tanner crab bycatch in the groundfish fisheries used in the
Tanner crab stock assessment model for 1991-2016. Briefly, total bycatch estimates for 1991-2008
were obtained from the NMFS Alaska Regional Office’s (AKRO) Catch Accounting System/Blend
database (CAS; Cahalan et al., 2009) and for 2009 to the present from the AKRO’s Catch-in-Areas
database (CIA; via AKFIN). Annual sampling data for size frequencies of Tanner crab bycatch in
the EBS groundfish fisheries was extracted from the NORPAC observer database (via AKFIN) by
sex, gear (“trawl” and “fixed”), ADFG stat area and NMFS reporting area. These observed size
frequency data were then scaled to total estimated bycatch size compositions using year/gear/area
expansion factors based on the annual total bycatch estimates from the CAS and CIA database.

Sex-specific size compositions for Tanner crab bycatch in the groundfish fisheries during 1973-1990
are also incorporated in the assessment model. These size compositions are based on data from
the former “joint venture”" and foreign fishing fleets, and remain unchanged from the previous
assessment.
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Estimated total bycatch by gear type

Figure 1. Estimated total bycatch abundance, by gear type, from the CAS/Blend and CIA databases
for 1991-2016.
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Figure 2. Estimated total bycatch biomass, by gear type, from the CAS/Blend and CIA databases
for 1991-2016.

Table 1: Estimated total bycatch of Tanner crab by gear type from the combined CAS/Blend and
CIA databases for 1991-2008.
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all fixed trawl
num wgt num wgt num wgt

year millions 1000’s t millions 1000’s t millions 1000’s t
1991 6.1125 2.5432 0.35636 0.14827 5.7561 2.39491
1992 6.3447 2.7596 0.23614 0.10271 6.1086 2.65693
1993 3.6442 1.7580 0.04869 0.02349 3.5955 1.73451
1994 4.6688 2.0960 0.05320 0.02388 4.6156 2.07211
1995 3.7164 1.5249 0.31161 0.12786 3.4048 1.39702
1996 3.6250 1.5945 0.26818 0.11796 3.3568 1.47653
1997 3.3856 1.1800 0.18346 0.06394 3.2022 1.11602
1998 2.9243 0.9350 0.27512 0.08797 2.6491 0.84707
1999 1.6541 0.6306 0.22233 0.08476 1.4318 0.54585
2000 1.7727 0.7415 0.12702 0.05313 1.6457 0.68840
2001 2.3674 1.1852 0.24904 0.12467 2.1184 1.06052
2002 1.2882 0.7191 0.17112 0.09552 1.1171 0.62355
2003 1.0908 0.4238 0.05255 0.02042 1.0382 0.40339
2004 1.7598 0.6751 0.16907 0.06486 1.5907 0.61020
2005 1.3309 0.6212 0.28508 0.13306 1.0458 0.48812
2006 1.3743 0.7171 0.66295 0.34594 0.7114 0.37120
2007 1.9757 0.6949 1.34861 0.47437 0.6270 0.22056
2008 1.3552 0.5329 0.73133 0.28755 0.6239 0.24531
2009 0.8369 0.3742 0.38142 0.22535 0.4555 0.14884
2010 0.5573 0.2314 0.16702 0.11789 0.3903 0.11347
2011 1.0228 0.2040 0.10496 0.07636 0.9178 0.12762
2012 0.5698 0.1533 0.06867 0.04608 0.5011 0.10718
2013 0.9919 0.3484 0.30248 0.18155 0.6894 0.16682
2014 1.0050 0.4357 0.41362 0.26133 0.5914 0.17440
2015 0.7191 0.3612 0.46973 0.27596 0.2494 0.08526
2016 0.7036 0.3016 0.25266 0.14943 0.4509 0.15222
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Estimated total catch by target type (2009/10-2016/17)
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Figure 3. Bycatch of Tanner crab in the groundfish fisheries, by target type.

Table 2: Bycatch of Tanner crab in the groundfish fisheries, by target type. Biomass is in metric
tons, numbers in 1000’s of crab. Targets with less than 10 kg bycatch have been dropped.

vessel count haul count biomass number
target year (t) (1000’s)
Alaska Plaice - BSAI 2009 0 0 0.0 0.0

2010 113 1563 0.6 3.2
2011 35 563 0.1 0.2
2012 181 2735 1.7 6.2
2013 0 0 0.0 0.0
2014 41 495 2.6 11.2
2015 84 1452 0.6 2.1
2016 16 148 1.1 1.8

Arrowtooth Flounder 2009 246 9548 0.7 1.3
2010 252 3555 2.2 3.5
2011 998 15788 1.0 2.1
2012 599 11571 0.8 3.4
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2013 1042 21590 1.0 5.0
2014 734 15528 2.2 8.9
2015 552 11491 1.7 8.7
2016 372 6938 1.3 7.1

Flathead Sole 2009 1133 23983 15.4 44.6
2010 1191 22108 15.0 51.7
2011 496 8408 6.1 41.8
2012 833 14517 14.6 52.9
2013 845 15216 19.6 64.2
2014 865 16919 27.1 92.7
2015 500 8984 5.9 19.0
2016 871 18483 6.2 19.0

Greenland Turbot - BSAI 2009 0 0 0.0 0.0
2010 0 0 0.0 0.0
2011 0 0 0.0 0.0
2012 0 0 0.0 0.0
2013 0 0 0.0 0.0
2014 0 0 0.0 0.0
2015 0 0 0.0 0.0
2016 654 8410 0.6 3.6

Other Flatfish - BSAI 2009 0 0 0.0 0.0
2010 16 150 0.1 0.4
2011 0 0 0.0 0.0
2012 0 0 0.0 0.0
2013 0 0 0.0 0.0
2014 0 0 0.0 0.0
2015 0 0 0.0 0.0
2016 89 791 0.1 0.5

Pacific Cod 2009 10946 376241 243.8 414.2
2010 11524 261032 129.0 178.8
2011 14283 437602 84.0 117.6
2012 14959 452023 50.9 80.7
2013 19482 388896 186.9 318.9
2014 18590 427599 270.1 431.1
2015 17983 572272 282.8 483.0
2016 16127 351177 153.4 261.1

Pollock - bottom 2009 1132 138860 2.9 5.5
2010 1651 87126 5.9 14.7
2011 1467 62223 0.9 4.8
2012 1222 37912 1.5 7.5
2013 791 16540 4.2 14.3
2014 402 22662 2.9 11.3
2015 364 19261 0.4 1.1
2016 389 15392 1.5 7.5

Pollock - midwater 2009 7520 249359 0.2 0.9
2010 8297 252803 0.2 2.1
2011 11584 306397 0.7 1.8
2012 10130 262878 0.2 1.1
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2013 10399 272557 0.4 1.8
2014 10554 278796 0.4 1.6
2015 10074 276591 0.1 0.5
2016 10818 271640 0.2 0.5

Rock Sole - BSAI 2009 2614 50187 34.8 73.8
2010 3232 56049 32.0 85.8
2011 2931 46400 26.4 91.1
2012 2020 29627 14.7 39.8
2013 3150 61903 36.5 108.1
2014 3237 72179 20.8 55.1
2015 4446 92725 8.9 21.9
2016 2782 52699 24.0 74.8

Rockfish 2009 23 97 0.1 0.2
2010 180 2586 0.1 0.5
2011 0 0 0.0 0.0
2012 0 0 0.0 0.0
2013 197 3040 0.1 0.3
2014 0 0 0.0 0.0
2015 0 0 0.0 0.0
2016 0 0 0.0 0.0

Sablefish 2009 76 128498 0.2 0.4
2010 67 182129 0.4 0.8
2011 0 0 0.0 0.0
2012 0 0 0.0 0.0
2013 58 61907 0.2 0.3
2014 0 0 0.0 0.0
2015 0 0 0.0 0.0
2016 0 0 0.0 0.0

Yellowfin Sole - BSAI 2009 6067 129005 76.0 295.9
2010 6200 119756 45.8 215.8
2011 6445 122233 84.8 762.8
2012 7348 138839 68.9 378.0
2013 7731 150735 99.3 478.8
2014 6906 132814 109.6 392.7
2015 8315 168488 60.5 182.4
2016 9078 175812 113.1 327.6
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Size frequencies from observer sampling

Observers sampled Tanner crab bycatch in the groundfish fisheries to obtain sex and size information
starting in 1985. Observer coverage varied by year across target fisheries and gear types, hence
“raw” size frequencies are not necessarily directly comparable across these categories. Here, I assume
it is valid to aggregate observations across target fisheries and to categorize gear types as “fixed”
(longline and pot gear) and “trawl” (pelagic, non-pelagic, and unspecified trawl gear) to obtain
annual sex- and gear-specific observed size frequencies by NMFS reporting area.
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Figure 4. Sample sizes from observer sampling for Tanner crab (> 24 mm CW) bycatch size
frequencies in the groundfish fisheries.
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Table 3: Sample sizes from observer sampling for Tanner crab (> 24 mm CW) bycatch size
frequencies in the groundfish fisheries

all gear fixed trawl
year female male unidentified female male unidentified female male unidentified
1991 3477 6806 11 288 1106 0 3189 5700 11
1992 1109 3027 904 31 597 0 1078 2430 904
1993 358 1217 0 25 683 0 333 534 0
1994 1820 3628 4 126 1133 0 1694 2495 4
1995 2666 3896 8 44 162 0 2622 3734 8
1996 3375 8264 30 439 2442 13 2936 5822 17
1997 3859 9835 18 217 1650 8 3642 8185 10
1998 4310 11937 14 571 3814 2 3739 8123 12
1999 4411 10687 14 633 3269 7 3778 7418 7
2000 2988 12746 14 193 5074 3 2795 7672 11
2001 2859 15478 9 272 6934 7 2587 8544 2
2002 3099 15208 11 821 8563 0 2278 6645 11
2003 2664 9441 8 921 4589 0 1743 4852 8
2004 4441 13805 6 559 5412 1 3882 8393 5
2005 3654 17682 6 388 8814 0 3266 8868 6
2006 3016 15855 17 821 9263 0 2195 6592 17
2007 3788 16071 24 1173 7233 11 2615 8838 13
2008 4189 26108 17 1769 15828 1 2420 10280 16
2009 2694 19036 19 683 12911 4 2011 6125 15
2010 2260 15122 10 615 10730 2 1645 4392 8
2011 4237 16115 8 362 8474 1 3875 7641 7
2012 3080 12983 7 817 8997 0 2263 3986 7
2013 6064 28781 7 3477 22347 3 2587 6434 4
2014 4212 39119 9 2012 33373 3 2200 5746 6
2015 5734 27427 51 5106 24218 45 628 3209 6
2016 4193 17768 1 1067 13973 0 3126 3795 1
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Raw size frequencies
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Figure 5. Raw (unscaled) size frequencies by 1-mm size bin from observer sampling for Tanner crab
bycatch in the groundfish fisheries.
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Figure 6. Expansion factors from observed size frequencies to total bycatch, by gear type and
reporting area.
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Table 4: Observed bycatch numbers, expanded numbers, ans expansion factors from observed size
frequencies to total bycatch, by gear type and reporting area.

fixed trawl
area year obs N est N expansion obs N est N expansion
508 1996 3 3.996e − 05 1.332e − 05 – – –
509 1992 305 1.489e − 03 4.882e − 06 436 9.628e − 01 2.208e − 03

1993 2 8.905e − 03 4.453e − 03 409 6.637e − 01 1.623e − 03
1994 180 1.409e − 02 7.828e − 05 2656 8.653e − 01 3.258e − 04
1995 89 1.372e − 01 1.541e − 03 3063 8.361e − 01 2.730e − 04
1996 1384 1.701e − 01 1.229e − 04 4759 1.201e + 00 2.523e − 04
1997 504 9.145e − 02 1.815e − 04 2232 7.372e − 01 3.303e − 04
1998 2660 5.640e − 02 2.120e − 05 4107 6.725e − 01 1.637e − 04
1999 1357 1.117e − 01 8.229e − 05 3621 4.522e − 01 1.249e − 04
2000 2536 4.588e − 02 1.809e − 05 2680 3.692e − 01 1.378e − 04
2001 4481 6.582e − 02 1.469e − 05 3791 6.609e − 01 1.743e − 04
2002 6173 8.000e − 02 1.296e − 05 3229 2.826e − 01 8.753e − 05
2003 2483 2.138e − 02 8.612e − 06 1549 1.558e − 01 1.006e − 04
2004 2445 4.683e − 02 1.915e − 05 2714 2.420e − 01 8.918e − 05
2005 4950 8.319e − 02 1.681e − 05 2283 1.994e − 01 8.736e − 05
2006 6097 2.892e − 01 4.743e − 05 1716 1.905e − 01 1.110e − 04
2007 13413 7.055e − 01 1.578e − 04 8118 1.212e − 01 4.478e − 05
2008 16302 2.175e − 01 2.668e − 05 7296 1.746e − 01 4.786e − 05
2009 9320 1.966e − 01 2.109e − 05 3203 1.483e − 01 4.630e − 05
2010 6995 1.120e − 01 1.601e − 05 2417 1.526e − 01 6.314e − 05
2011 5717 7.008e − 02 1.226e − 05 4310 3.421e − 01 7.938e − 05
2012 7647 5.981e − 02 7.822e − 06 1234 8.571e − 02 6.946e − 05
2013 21534 2.660e − 01 1.235e − 05 4175 2.828e − 01 6.773e − 05
2014 22377 3.223e − 01 1.440e − 05 2067 1.360e − 01 6.577e − 05
2015 13162 2.911e − 01 2.211e − 05 509 3.994e − 02 7.847e − 05
2016 8472 2.091e − 01 2.468e − 05 2312 1.565e − 01 6.769e − 05

512 1996 32 6.925e − 04 2.164e − 05 – – –
1998 7 1.642e − 04 2.346e − 05 – – –
2000 2 7.727e − 06 3.863e − 06 – – –
2001 48 4.370e − 04 9.103e − 06 – – –
2002 8 2.090e − 05 2.612e − 06 – – –
2003 5 2.144e − 05 4.288e − 06 – – –
2004 106 6.110e − 04 5.764e − 06 – – –
2005 1 4.933e − 07 4.933e − 07 – – –
2008 8 1.159e − 02 2.898e − 03 – – –
2009 13 3.312e − 05 2.547e − 06 – – –
2010 2 6.836e − 06 3.418e − 06 – – –
2011 2 8.076e − 04 4.038e − 04 – – –
2012 2 8.272e − 06 4.136e − 06 – – –
2013 440 3.071e − 03 6.980e − 06 – – –
2014 279 3.712e − 03 1.331e − 05 – – –
2015 2301 2.952e − 02 1.283e − 05 – – –
2016 917 1.559e − 02 1.701e − 05 – – –
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513 1991 1 3.358e − 02 3.358e − 02 1749 1.556e + 00 8.894e − 04
1992 63 2.162e − 02 3.432e − 04 1694 2.006e + 00 1.184e − 03
1993 161 3.088e − 03 1.918e − 05 494 1.922e + 00 3.892e − 03
1994 314 7.514e − 03 2.393e − 05 321 2.950e + 00 9.191e − 03
1995 – – – 1148 2.067e + 00 1.800e − 03
1996 304 1.658e − 02 5.454e − 05 1353 1.453e + 00 1.074e − 03
1997 147 2.025e − 02 1.377e − 04 6778 1.862e + 00 2.746e − 04
1998 312 1.273e − 01 4.079e − 04 3928 1.289e + 00 3.281e − 04
1999 479 4.272e − 02 8.918e − 05 3744 4.910e − 01 1.312e − 04
2000 412 1.742e − 02 4.228e − 05 4043 7.239e − 01 1.790e − 04
2001 547 7.179e − 02 1.312e − 04 2955 6.902e − 01 2.336e − 04
2002 296 9.489e − 03 3.206e − 05 1779 3.705e − 01 2.082e − 04
2003 2052 1.157e − 02 5.638e − 06 1197 1.962e − 01 1.639e − 04
2004 2155 5.928e − 02 2.751e − 05 1513 1.160e − 01 7.664e − 05
2005 1528 6.638e − 02 4.345e − 05 3277 2.589e − 01 7.900e − 05
2006 1929 8.923e − 02 4.626e − 05 1377 1.616e − 01 1.174e − 04
2007 3828 1.857e − 01 1.455e − 04 5799 1.031e − 01 5.332e − 05
2008 3204 6.333e − 02 3.953e − 05 5452 1.403e − 01 5.145e − 05
2009 1384 9.890e − 02 7.146e − 05 1979 1.303e − 01 6.584e − 05
2010 1103 2.936e − 02 2.662e − 05 1333 6.849e − 02 5.138e − 05
2011 385 2.892e − 03 7.511e − 06 6270 4.828e − 01 7.700e − 05
2012 257 9.284e − 04 3.613e − 06 1900 1.609e − 01 8.466e − 05
2013 809 1.788e − 03 2.211e − 06 2589 2.131e − 01 8.229e − 05
2014 2534 1.830e − 02 7.223e − 06 3198 2.376e − 01 7.431e − 05
2015 5213 1.960e − 02 3.761e − 06 1599 9.455e − 02 5.913e − 05
2016 3135 8.526e − 03 2.720e − 06 2350 1.671e − 01 7.111e − 05

514 1991 – – – 949 1.056e + 00 1.113e − 03
1992 – – – 286 9.474e − 01 3.312e − 03
1993 – – – 4 4.074e − 01 1.018e − 01
1995 – – – 2 1.911e − 01 9.555e − 02
1996 – – – 26 5.182e − 02 1.993e − 03
1997 – – – 29 2.300e − 02 7.932e − 04
1998 – – – 23 3.050e − 02 1.326e − 03
1999 – – – 18 7.260e − 02 4.033e − 03
2000 – – – 32 4.007e − 02 1.252e − 03
2001 – – – 14 4.354e − 03 3.110e − 04
2002 – – – 73 4.995e − 02 6.843e − 04
2003 – – – 549 1.181e − 01 2.152e − 04
2004 – – – 1470 6.136e − 01 4.174e − 04
2005 – – – 321 2.627e − 02 8.184e − 05
2006 – – – 4 1.065e − 03 2.662e − 04
2007 – – – 1842 3.222e − 02 3.499e − 05
2008 – – – 233 1.078e − 02 4.629e − 05
2009 – – – 10 6.687e − 04 6.687e − 05
2010 – – – 2 1.372e − 03 6.860e − 04
2011 – – – 5 7.568e − 05 1.514e − 05
2012 1 1.326e − 04 1.326e − 04 51 5.723e − 03 1.122e − 04
2013 2 2.982e − 05 1.491e − 05 24 4.440e − 03 1.850e − 04
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2014 39 2.308e − 04 5.919e − 06 260 4.463e − 02 1.717e − 04
2015 156 3.885e − 04 2.491e − 06 1105 8.002e − 02 7.241e − 05
2016 13 9.806e − 05 7.543e − 06 541 2.912e − 02 5.383e − 05

516 1992 – – – 54 6.211e − 02 1.150e − 03
1994 – – – 317 1.922e − 02 6.062e − 05
1995 76 1.815e − 02 2.388e − 04 36 2.494e − 02 6.929e − 04
1996 2 1.178e − 03 5.891e − 04 32 9.499e − 03 2.968e − 04
1997 259 3.166e − 03 1.222e − 05 288 5.484e − 02 1.904e − 04
1998 81 9.621e − 04 1.188e − 05 709 8.477e − 02 1.196e − 04
1999 29 1.684e − 04 5.806e − 06 1 6.441e − 05 6.441e − 05
2000 42 4.053e − 04 9.650e − 06 284 1.512e − 02 5.326e − 05
2001 263 1.838e − 03 6.988e − 06 389 4.191e − 02 1.077e − 04
2002 119 1.068e − 03 8.973e − 06 551 4.048e − 02 7.346e − 05
2003 16 1.537e − 04 9.606e − 06 333 3.813e − 02 1.145e − 04
2004 87 1.400e − 03 1.610e − 05 309 3.069e − 02 9.931e − 05
2005 43 2.827e − 04 6.575e − 06 102 7.765e − 03 7.613e − 05
2006 74 8.868e − 03 1.198e − 04 54 1.108e − 02 2.053e − 04
2007 42 2.574e − 03 1.225e − 04 375 1.115e − 02 8.919e − 05
2008 766 1.657e − 03 4.326e − 06 242 5.759e − 03 4.759e − 05
2009 126 5.162e − 04 4.097e − 06 382 2.016e − 02 5.278e − 05
2010 12 4.288e − 04 3.573e − 05 90 1.142e − 02 1.269e − 04
2011 8 2.655e − 03 3.318e − 04 20 1.100e − 02 5.501e − 04
2012 219 1.148e − 03 5.240e − 06 17 2.719e − 03 1.599e − 04
2013 728 3.117e − 03 4.281e − 06 155 5.335e − 02 3.442e − 04
2014 4776 3.205e − 02 6.710e − 06 169 1.679e − 02 9.932e − 05
2015 4330 7.023e − 02 1.622e − 05 133 1.116e − 02 8.395e − 05
2016 74 5.686e − 04 7.683e − 06 78 5.240e − 03 6.718e − 05

517 1991 340 1.148e − 01 3.377e − 04 1990 4.821e − 01 2.422e − 04
1992 149 1.070e − 02 7.185e − 05 789 8.216e − 01 1.041e − 03
1993 170 7.590e − 03 4.465e − 05 5 1.953e − 01 3.907e − 02
1994 405 1.006e − 02 2.485e − 05 860 5.595e − 01 6.506e − 04
1995 – – – 1462 1.925e − 01 1.317e − 04
1996 628 1.495e − 02 2.381e − 05 1533 5.288e − 01 3.450e − 04
1997 464 1.562e − 02 3.365e − 05 2189 4.893e − 01 2.235e − 04
1998 345 1.826e − 02 5.292e − 05 2414 3.699e − 01 1.532e − 04
1999 484 1.618e − 02 3.344e − 05 2802 2.077e − 01 7.414e − 05
2000 1271 1.612e − 02 1.268e − 05 3152 4.065e − 01 1.290e − 04
2001 1364 3.388e − 02 2.484e − 05 1505 1.874e − 01 1.245e − 04
2002 1435 1.857e − 02 1.294e − 05 934 8.655e − 02 9.266e − 05
2003 436 2.495e − 03 5.722e − 06 1087 7.426e − 02 6.832e − 05
2004 673 6.315e − 03 9.383e − 06 2721 2.134e − 01 7.843e − 05
2005 1725 7.835e − 02 4.542e − 05 1142 1.339e − 01 1.173e − 04
2006 1200 8.137e − 02 6.781e − 05 1172 8.750e − 02 7.466e − 05
2007 3291 1.137e − 01 1.037e − 04 7362 1.486e − 01 6.056e − 05
2008 8458 2.357e − 01 5.573e − 05 6232 1.524e − 01 4.892e − 05
2009 1467 5.084e − 02 3.466e − 05 890 6.612e − 02 7.429e − 05
2010 1970 2.030e − 02 1.030e − 05 803 4.123e − 02 5.135e − 05
2011 2105 1.592e − 02 7.562e − 06 351 1.968e − 02 5.606e − 05

425



2012 966 3.620e − 03 3.748e − 06 642 4.645e − 02 7.236e − 05
2013 1287 2.410e − 02 1.872e − 05 412 1.897e − 02 4.605e − 05
2014 1973 1.483e − 02 7.518e − 06 674 4.635e − 02 6.877e − 05
2015 2836 5.141e − 02 1.813e − 05 170 1.072e − 02 6.309e − 05
2016 1032 1.372e − 02 1.330e − 05 673 3.511e − 02 5.216e − 05

518 1991 – – – 7 3.656e − 04 5.223e − 05
1992 14 2.840e − 03 2.029e − 04 – – –
1993 1 3.340e − 04 3.340e − 04 – – –
1994 11 1.600e − 03 1.455e − 04 11 8.027e − 03 7.297e − 04
1995 1 7.681e − 03 7.681e − 03 – – –
1996 189 1.069e − 03 5.655e − 06 – – –
1997 80 7.847e − 04 9.809e − 06 – – –
1998 257 1.950e − 03 7.588e − 06 7 9.926e − 04 1.418e − 04
1999 295 3.556e − 03 1.205e − 05 1 1.181e − 04 1.181e − 04
2000 2 1.092e − 04 5.461e − 05 1 6.297e − 04 6.297e − 04
2001 7 6.132e − 05 8.760e − 06 – – –
2002 3 5.681e − 05 1.894e − 05 – – –
2003 1 3.199e − 05 3.199e − 05 – – –
2013 3 4.346e − 04 1.449e − 04 – – –

519 1991 – – – 1 3.230e − 03 3.230e − 03
1992 1 5.590e − 03 5.590e − 03 – – –
1993 11 3.215e − 04 2.922e − 05 1 1.380e − 02 1.380e − 02
1994 – – – 11 5.127e − 03 4.661e − 04
1996 7 1.278e − 03 1.826e − 04 4 2.740e − 03 6.849e − 04
1997 157 2.234e − 02 1.423e − 04 3 2.141e − 03 7.136e − 04
1998 457 1.387e − 02 3.035e − 05 112 1.892e − 02 1.690e − 04
1999 314 4.562e − 03 1.453e − 05 516 2.911e − 02 5.641e − 05
2000 150 1.247e − 03 8.313e − 06 15 2.364e − 03 1.576e − 04
2001 130 6.725e − 03 5.173e − 05 45 1.161e − 02 2.580e − 04
2002 44 1.688e − 02 3.837e − 04 20 9.996e − 03 4.998e − 04
2003 37 1.136e − 02 3.070e − 04 81 1.491e − 02 1.840e − 04
2004 99 3.950e − 02 3.990e − 04 175 1.991e − 02 1.138e − 04
2005 47 3.286e − 02 6.991e − 04 21 7.500e − 03 3.571e − 04
2006 41 1.294e − 01 3.157e − 03 20 1.444e − 03 7.221e − 05
2007 78 2.714e − 01 6.959e − 03 117 3.238e − 03 8.304e − 05
2008 16 1.431e − 01 1.789e − 02 27 4.543e − 04 1.682e − 05
2009 5 1.863e − 03 3.727e − 04 4 3.281e − 04 8.202e − 05
2010 201 6.605e − 04 3.286e − 06 10 5.612e − 04 5.612e − 05
2011 – – – 10 3.908e − 04 3.908e − 05
2012 18 4.140e − 04 2.300e − 05 5 1.882e − 04 3.764e − 05
2013 11 1.120e − 04 1.018e − 05 3 3.814e − 04 1.271e − 04
2014 83 7.485e − 04 9.018e − 06 2 8.963e − 05 4.481e − 05
2015 17 2.520e − 03 1.482e − 04 3 3.649e − 04 1.216e − 04
2016 – – – 1 2.919e − 04 2.919e − 04

521 1991 102 2.080e − 01 2.039e − 03 2985 2.659e + 00 8.908e − 04
1992 96 1.939e − 01 2.020e − 03 263 1.309e + 00 4.977e − 03
1993 361 2.768e − 02 7.669e − 05 5 3.007e − 01 6.014e − 02
1994 348 1.912e − 02 5.493e − 05 96 2.081e − 01 2.167e − 03
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1995 34 1.443e − 01 4.243e − 03 86 4.436e − 02 5.158e − 04
1996 323 6.127e − 02 1.897e − 04 942 7.368e − 02 7.821e − 05
1997 257 2.813e − 02 1.095e − 04 306 3.165e − 02 1.034e − 04
1998 219 4.606e − 02 2.103e − 04 574 1.715e − 01 2.987e − 04
1999 896 3.074e − 02 3.431e − 05 489 4.875e − 02 9.970e − 05
2000 844 4.531e − 02 5.369e − 05 267 6.346e − 02 2.377e − 04
2001 357 5.854e − 02 1.640e − 04 2335 4.777e − 01 2.046e − 04
2002 1267 3.078e − 02 2.429e − 05 2222 2.383e − 01 1.072e − 04
2003 401 4.276e − 03 1.066e − 05 1583 3.265e − 01 2.063e − 04
2004 259 6.907e − 03 2.667e − 05 1990 1.169e − 01 5.873e − 05
2005 840 2.026e − 02 2.412e − 05 4804 3.888e − 01 8.093e − 05
2006 697 6.412e − 02 9.199e − 05 4410 2.529e − 01 5.734e − 05
2007 4329 6.466e − 02 4.481e − 05 9558 1.967e − 01 6.173e − 05
2008 6072 5.612e − 02 1.848e − 05 5800 1.381e − 01 4.761e − 05
2009 1081 2.863e − 02 2.648e − 05 1770 8.889e − 02 5.022e − 05
2010 1013 4.063e − 03 4.010e − 06 1510 1.142e − 01 7.564e − 05
2011 558 1.238e − 02 2.218e − 05 603 6.132e − 02 1.017e − 04
2012 671 2.441e − 03 3.638e − 06 2450 1.987e − 01 8.112e − 05
2013 980 3.562e − 03 3.635e − 06 1741 1.154e − 01 6.628e − 05
2014 3269 2.126e − 02 6.504e − 06 1599 1.099e − 01 6.875e − 05
2015 1212 4.567e − 03 3.769e − 06 293 1.016e − 02 3.469e − 05
2016 1302 4.313e − 03 3.313e − 06 968 5.478e − 02 5.660e − 05

523 1993 2 7.714e − 04 3.857e − 04 – – –
1994 2 8.122e − 04 4.061e − 04 – – –
1995 2 3.853e − 03 1.927e − 03 – – –
1996 9 6.724e − 04 7.471e − 05 6 2.669e − 04 4.448e − 05
1997 2 1.235e − 03 6.177e − 04 25 1.191e − 04 4.762e − 06
1998 4 1.611e − 03 4.027e − 04 16 5.484e − 04 3.428e − 05
1999 9 1.883e − 03 2.092e − 04 2 1.180e − 05 5.900e − 06
2000 7 4.027e − 04 5.752e − 05 1 2.196e − 06 2.196e − 06
2001 6 4.038e − 04 6.731e − 05 6 3.388e − 04 5.646e − 05
2002 2 9.754e − 05 4.877e − 05 1 7.334e − 04 7.334e − 04
2003 4 4.313e − 05 1.078e − 05 1 3.156e − 06 3.156e − 06
2004 7 8.512e − 05 1.216e − 05 – – –
2005 17 2.907e − 04 1.710e − 05 1 4.054e − 05 4.054e − 05
2006 12 1.877e − 04 1.564e − 05 – – –
2007 12 1.079e − 04 2.699e − 05 – – –
2008 12 1.047e − 04 1.745e − 05 – – –
2009 7 9.055e − 05 1.294e − 05 – – –
2010 29 4.350e − 05 1.500e − 06 – – –
2011 21 1.275e − 04 6.072e − 06 – – –
2012 18 9.006e − 05 5.003e − 06 – – –
2013 10 1.651e − 04 1.651e − 05 – – –
2014 12 6.043e − 05 5.036e − 06 – – –
2015 4 6.020e − 05 1.505e − 05 – – –
2016 1 2.100e − 05 2.100e − 05 – – –

524 1993 – – – 1 9.212e − 02 9.212e − 02
1995 6 4.832e − 04 8.053e − 05 605 4.892e − 02 8.086e − 05
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1996 15 3.624e − 04 2.416e − 05 162 3.617e − 02 2.233e − 04
1997 3 4.883e − 04 1.628e − 04 5 2.465e − 03 4.930e − 04
1998 43 8.597e − 03 1.999e − 04 25 1.061e − 02 4.243e − 04
1999 39 1.085e − 02 2.783e − 04 21 1.301e − 01 6.194e − 03
2000 1 1.130e − 04 1.130e − 04 38 2.441e − 02 6.422e − 04
2001 3 9.535e − 03 3.178e − 03 142 4.404e − 02 3.102e − 04
2002 38 1.415e − 02 3.725e − 04 132 3.800e − 02 2.879e − 04
2003 76 1.216e − 03 1.600e − 05 285 1.142e − 01 4.008e − 04
2004 140 8.145e − 03 5.818e − 05 1433 2.383e − 01 1.663e − 04
2005 51 3.459e − 03 6.783e − 05 196 2.320e − 02 1.184e − 04
2006 34 5.597e − 04 1.646e − 05 50 5.302e − 03 1.060e − 04
2007 171 4.982e − 03 8.741e − 05 232 1.089e − 02 9.391e − 05
2008 356 2.213e − 03 1.243e − 05 126 1.563e − 03 2.481e − 05
2009 196 3.977e − 03 2.029e − 05 19 6.764e − 04 3.560e − 05
2010 20 1.420e − 04 7.098e − 06 36 3.655e − 04 1.015e − 05
2011 36 1.072e − 04 2.977e − 06 7 4.352e − 04 6.217e − 05
2012 15 7.533e − 05 5.022e − 06 19 6.833e − 04 3.596e − 05
2013 20 9.159e − 05 4.580e − 06 19 1.031e − 03 5.428e − 05
2014 44 1.371e − 04 3.115e − 06 – – –
2015 93 3.482e − 04 3.745e − 06 44 2.470e − 03 5.613e − 05
2016 94 7.162e − 04 7.619e − 06 28 2.758e − 03 9.851e − 05
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Total bycatch size compositions
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Figure 7. Total bycatch size frequencies, by year, gear type and sex.
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Size compositions aggregated over gear type
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Figure 9. Total bycatch size frequencies, by year and sex, aggregated over gear type.
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Spatial patterns of bycatch

Spatial patterns of Tanner crab bycatch in the groundfish fisheries, by ADFG stat area for 2009-2016,
are illustrated by gear type in Figures 11-12 below. Bycatch less than 0.1 t in a stat area is not
shown.

Figure 10. Basemap for subsequent maps, with EBS bathymetry (blue lines), ADFG stat areas
(black rectangles), and the Pribilof Islands Habitat Conservation Area (orange outline).
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Figure 11 (1of 1). Bycatch of Tanner crab, by ADFG stat area, in the fixed gear groundfish fisheries.
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Figure 12 (1of 1). Bycatch of Tanner crab, by ADFG stat area, in the trawl gear groundfish
fisheries.
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Introduction

This report calculates NMFS survey data time series (aggregate abundance, mature biomass and size
compositions) for Tanner crab based on CRABHAUL files and a haul/station strata file downloaded
from AKFIN.

The survey data were processed using the following parameters:

Table 1: Parameters used to process crab haul data.

Quantity Value
1 min size (mm CW) 25
2 max size (mm CW) 185
3 bin size (mm CW) 5
4 strata type 2015
5 haul types all

Annual survey abundance and biomass

Annual survey abundance and biomass for Tanner crab for the EBS and the areas east and west
of 166W longitude were calculated from the survey haul data as if the survey were conducted
using a random-stratified sampling design (it uses a fixed grid), with survey strata defined for the
Pribilof Islands high density sampling area, the St. Matthew Island high density sampling area, the
standard-density sampling area west of 166oW longitude, and the standard-density area east of
166oW longitude. Abundance and biomass estimates from the four strata were then aggregated
appropriately to the areas east and west of 166oW and to the entire EBS.
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By sex

The following plots illustrate time series trends in Tanner crab survey abundance and biomass by
sex and area.
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Figure 1: Tanner crab biomass in the NMFS EBS trawl survey, by sex and area.
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Figure 2: Tanner crab biomass in the NMFS EBS trawl survey, by sex and area, since 2001.
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Figure 3: Tanner crab abundance in the NMFS EBS trawl survey, by sex and area.
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Figure 4: Tanner crab abundance in the NMFS EBS trawl survey, by sex and area, since 2001.
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By sex and maturity state

The following plots illustrate the time series trends for Tanner crab survey abundance and biomass
by sex, maturity state, and area.
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Figure 5: Tanner crab biomass in the NMFS EBS trawl survey, by sex, maturity state and area.
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Figure 6: Tanner crab biomass in the NMFS EBS trawl survey, by sex, maturity state and area,
since 2001.
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Figure 7: Tanner crab abundance in the NMFS EBS trawl survey, by sex, maturity state and area.
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Figure 8: Tanner crab abundance in the NMFS EBS trawl survey, by sex, maturity state and area,
since 2001.
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Time series survey trends in industry preferred-sized males

The Tanner crab fishery is managed separately east and west of 166oW longitude, and separate
TACs are set for each area. Abundance and biomass trends from the NMFS EBS bottom trawl
survey are shown in subsequent figures for the current industry-preferred size of legal crab (i.e., ≥
125 mm CW).
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Figure 9: Legal male Tanner crab biomass in the NMFS EBS trawl survey, by area.

446



0

10

20

30

40

50

2000 2005 2010 2015

year

B
io

m
as

s 
(1

00
0'

s 
t)

all EBS

East 166

West 166

Figure 10: Industry-preferred male Tanner crab biomass in the NMFS EBS trawl survey, by area,
since 2001.
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Figure 11: Legal male Tanner crab abundance in the NMFS EBS trawl survey, by area.
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Figure 12: Industry-preferred male Tanner crab abundance in the NMFS EBS trawl survey, by area,
since 2001.
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Size compositions

Annual size compositions for Tanner crab in the NMFS EBS trawl survey were calculated by sex,
maturity state, shell condition, and 5mm size (carapace width) bin, excluding individuals with sizes
< 25mm CW and accumulating individuals in the last size bin (180-185 mm CW) for sizes > 185
mm CW. Individuals classified in the survey as “immature, old shell” crab were assumed to really
be “immature, new shell”" crab and were re-classified as such.

By sex
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Figure 13: Annual size compositions for Tanner crab in the NMFS EBS trawl survey, by sex and
area.
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By shell condition for males
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Figure 14: Annual size compositions for male Tanner crab in the NMFS EBS trawl survey, by shell
condition and area.
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By maturity state for females
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Figure 15: Annual size compositions for female Tanner crab in the NMFS EBS trawl survey, by
shell condition and area.
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Sample sizes

The following tables summarize sample sizes for Tanner crab in the NMFS EBS bottom trawl survey.

Table 2: Observed numbers of Tanner crab in the annual NMFS EBS bottom trawl survey, by sex,
maturity state, and shell condition.

female male
immature mature unknown

year new_shell old_shell new_shell old_shell new_shell old_shell
1975 1, 040 7 1, 861 706 6, 888 399
1976 1, 095 2 1, 304 311 4, 492 242
1977 765 11 1, 183 738 3, 749 485
1978 1, 932 17 638 1, 307 4, 527 700
1979 725 8 735 341 2, 613 306
1980 1, 476 15 1, 471 570 6, 961 569
1981 579 0 1, 319 1, 206 6, 102 886
1982 814 9 457 2, 384 3, 122 2, 082
1983 2, 108 5 201 2, 154 3, 467 1, 181
1984 1, 867 12 284 1, 531 2, 455 1, 399
1985 846 1 228 601 1, 441 459
1986 1, 581 7 191 331 2, 669 468
1987 4, 230 0 445 392 5, 965 498
1988 3, 733 2 1, 753 530 7, 837 475
1989 3, 264 7 1, 241 882 8, 178 1, 067
1990 3, 105 9 1, 502 1, 511 8, 256 1, 342
1991 2, 227 32 1, 283 2, 568 7, 053 2, 893
1992 1, 494 0 820 2, 205 5, 005 1, 924
1993 865 4 545 1, 337 3, 728 1, 865
1994 909 12 148 1, 293 2, 005 1, 827
1995 830 4 140 1, 057 1, 178 1, 611
1996 869 14 109 963 1, 291 1, 414
1997 1, 325 4 168 504 1, 625 582
1998 1, 704 6 160 344 2, 428 624
1999 2, 608 20 255 510 3, 366 567
2000 2, 249 0 242 345 3, 464 653
2001 3, 675 3 364 644 4, 665 817
2002 3, 583 2 350 500 4, 370 1, 089
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Table 2: Observed numbers of Tanner crab in the annual NMFS EBS bottom trawl survey, by sex,
maturity state, and shell condition.

female male
immature mature unknown

year new_shell old_shell new_shell old_shell new_shell old_shell2003 2, 830 4 923 752 5, 654 1, 349
2004 3, 563 359 427 656 5, 595 1, 873
2005 3, 349 3 634 928 5, 776 1, 753
2006 4, 355 9 1, 332 1, 327 7, 981 4, 054
2007 2, 420 10 1, 311 1, 396 6, 679 2, 907
2008 1, 747 0 580 1, 783 5, 243 2, 146
2009 2, 408 0 363 1, 317 4, 023 1, 954
2010 3, 171 9 245 941 4, 922 1, 702
2011 5, 044 0 471 705 7, 210 1, 941
2012 3, 577 34 942 720 7, 090 1, 296
2013 2, 900 17 1, 417 1, 002 8, 267 1, 344
2014 2, 207 4 482 1, 584 8, 032 2, 829
2015 1, 455 0 445 1, 363 4, 596 2, 817
2016 1, 372 1 370 1, 248 3, 405 3, 668
2017 2, 027 1 213 1, 125 2, 656 3, 529
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Table 3: Number of hauls, numbers of hauls with Tanner crab, and number of observed Tanner
crab in the annual NMFS EBS bottom trawl survey, by sex, maturity state, and shell condition.

female male
immature mature immature mature

new shell old shell new shell old shell new shell old shell new shell old shell
year Hauls non-0 hauls crab non-0 hauls crab non-0 hauls crab non-0 hauls crab non-0 hauls crab non-0 hauls crab non-0 hauls crab non-0 hauls crab
1975 136 73 1, 040 6 7 91 1, 861 39 706 127 2, 895 0 0 127 3, 993 80 399
1976 214 87 1, 095 2 2 91 1, 304 39 311 130 2, 023 0 0 130 2, 469 47 242
1977 155 66 765 9 11 76 1, 183 60 738 114 1, 778 0 0 114 1, 971 79 485
1978 230 87 1, 932 8 17 82 638 65 1, 307 147 2, 957 0 0 147 1, 570 104 700
1979 307 71 725 8 8 62 735 42 341 138 1, 805 0 0 138 808 68 306
1980 320 101 1, 476 10 15 95 1, 471 49 570 164 4, 602 0 0 164 2, 359 71 569
1981 305 71 579 0 0 79 1, 319 94 1, 206 158 3, 809 0 0 158 2, 293 116 886
1982 342 85 814 9 9 72 457 103 2, 384 181 1, 751 0 0 181 1, 371 147 2, 082
1983 353 102 2, 108 4 5 56 201 102 2, 154 166 2, 484 0 0 166 983 132 1, 181
1984 355 135 1, 867 9 12 53 284 94 1, 531 171 1, 965 0 0 171 490 126 1, 399
1985 353 140 846 1 1 52 228 65 601 179 1, 060 0 0 179 381 86 459
1986 353 162 1, 581 4 7 64 191 68 331 213 2, 141 0 0 213 528 115 468
1987 355 189 4, 230 0 0 105 445 73 392 226 4, 659 0 0 226 1, 306 103 498
1988 370 206 3, 733 2 2 149 1, 753 100 530 252 5, 627 0 0 252 2, 210 101 475
1989 373 204 3, 264 4 7 144 1, 241 108 882 237 4, 977 0 0 237 3, 201 135 1, 067
1990 370 197 3, 105 3 9 155 1, 502 126 1, 511 247 5, 107 0 0 247 3, 149 151 1, 342
1991 371 159 2, 227 9 32 138 1, 283 141 2, 568 227 4, 361 0 0 227 2, 692 181 2, 893
1992 355 107 1, 494 0 0 119 820 123 2, 205 215 2, 958 0 0 215 2, 047 177 1, 924
1993 374 99 865 4 4 96 545 122 1, 337 207 2, 051 0 0 207 1, 677 180 1, 865
1994 374 97 909 3 12 52 148 104 1, 293 175 1, 281 0 0 175 724 174 1, 827
1995 375 113 830 4 4 35 140 107 1, 057 153 958 0 0 153 220 137 1, 611
1996 374 114 869 4 14 57 109 98 963 148 1, 069 0 0 148 222 134 1, 414
1997 375 116 1, 325 2 4 62 168 83 504 161 1, 336 0 0 161 289 125 582
1998 374 146 1, 704 4 6 53 160 73 344 176 2, 032 0 0 176 396 128 624
1999 372 137 2, 608 6 20 52 255 85 510 170 2, 816 0 0 170 550 124 567
2000 371 142 2, 249 0 0 61 242 55 345 188 2, 836 0 0 188 628 133 653
2001 374 164 3, 675 3 3 83 364 72 644 211 4, 036 0 0 211 629 145 817
2002 374 154 3, 583 2 2 81 350 70 500 186 3, 912 0 0 186 458 154 1, 089
2003 375 153 2, 830 3 4 111 923 83 752 203 4, 754 0 0 203 900 153 1, 349
2004 374 173 3, 563 10 359 90 427 80 656 236 4, 568 0 0 236 1, 027 179 1, 873
2005 372 201 3, 349 2 3 103 634 74 928 254 4, 496 0 0 254 1, 280 185 1, 753
2006 375 210 4, 355 4 9 143 1, 332 125 1, 327 254 6, 224 0 0 254 1, 757 211 4, 054
2007 375 185 2, 420 6 10 138 1, 311 136 1, 396 261 4, 697 0 0 261 1, 982 201 2, 907
2008 374 153 1, 747 0 0 104 580 120 1, 783 240 3, 127 0 0 240 2, 116 196 2, 146
2009 375 171 2, 408 0 0 75 363 115 1, 317 216 2, 879 0 0 216 1, 144 187 1, 954
2010 375 186 3, 171 5 9 67 245 104 941 223 3, 654 0 0 223 1, 268 166 1, 702
2011 375 193 5, 044 0 0 90 471 102 705 210 6, 095 0 0 210 1, 115 167 1, 941
2012 375 195 3, 577 6 34 100 942 97 720 215 5, 526 0 0 215 1, 564 139 1, 296
2013 375 163 2, 900 9 17 116 1, 417 101 1, 002 207 5, 592 0 0 207 2, 675 137 1, 344
2014 375 165 2, 207 3 4 98 482 121 1, 584 222 4, 746 0 0 222 3, 286 167 2, 829
2015 375 118 1, 455 0 0 60 445 94 1, 363 225 2, 737 0 0 225 1, 859 200 2, 817
2016 375 110 1, 372 1 1 56 370 82 1, 248 222 2, 235 0 0 222 1, 170 218 3, 668
2017 375 129 2, 027 1 1 50 213 99 1, 125 185 2, 233 0 0 185 423 204 3, 529

456



Appendix C: Tanner Crab Spatial Patterns
William Stockhausen

14 September, 2017
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Legal-sized males 45

Introduction

This report creates a time series of maps of Tanner crab CPUE and bottom temperature from the
NMFS EBS bottom trawl survey.

Basemap

The following figure illustrates the base map for subsequent maps of bottom temperature and survey
CPUE.

Figure 1: Basemap for future maps, with EBS bathymetry (blue lines) and the NMFS EBS bottom
trawl survey station grid.
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Survey CPUE by sex and maturity state

The following maps present survey CPUE (in biomass) for immature and mature components of the
Tanner crab stock by sex superimposed on bottom temperature at the time of the survey for each
year of the NMFS bottom trawl survey.
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Figure 2: Tanner crab crab CPUE (biomass) from the 1975 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 3: Tanner crab crab CPUE (biomass) from the 1976 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 4: Tanner crab crab CPUE (biomass) from the 1977 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 5: Tanner crab crab CPUE (biomass) from the 1978 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 6: Tanner crab crab CPUE (biomass) from the 1979 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 7: Tanner crab crab CPUE (biomass) from the 1980 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 8: Tanner crab crab CPUE (biomass) from the 1981 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 9: Tanner crab crab CPUE (biomass) from the 1982 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 10: Tanner crab crab CPUE (biomass) from the 1983 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 11: Tanner crab crab CPUE (biomass) from the 1984 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 12: Tanner crab crab CPUE (biomass) from the 1985 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 13: Tanner crab crab CPUE (biomass) from the 1986 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 14: Tanner crab crab CPUE (biomass) from the 1987 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.

470



MALE
2
4
6
10
14

1988: imm. males

FEMALE
1
2
3
4
5

1988: imm. females

MALE
5
10
15

25

35

1988: mat. males

FEMALE
2
4
8
12

1988: mat. females

Figure 15: Tanner crab crab CPUE (biomass) from the 1988 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 16: Tanner crab crab CPUE (biomass) from the 1989 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 17: Tanner crab crab CPUE (biomass) from the 1990 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 18: Tanner crab crab CPUE (biomass) from the 1991 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 19: Tanner crab crab CPUE (biomass) from the 1992 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 20: Tanner crab crab CPUE (biomass) from the 1993 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 21: Tanner crab crab CPUE (biomass) from the 1994 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 22: Tanner crab crab CPUE (biomass) from the 1995 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 23: Tanner crab crab CPUE (biomass) from the 1996 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 24: Tanner crab crab CPUE (biomass) from the 1997 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 25: Tanner crab crab CPUE (biomass) from the 1998 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 26: Tanner crab crab CPUE (biomass) from the 1999 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 27: Tanner crab crab CPUE (biomass) from the 2000 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 28: Tanner crab crab CPUE (biomass) from the 2001 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 29: Tanner crab crab CPUE (biomass) from the 2002 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 30: Tanner crab crab CPUE (biomass) from the 2003 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 31: Tanner crab crab CPUE (biomass) from the 2004 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 32: Tanner crab crab CPUE (biomass) from the 2005 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 33: Tanner crab crab CPUE (biomass) from the 2006 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 34: Tanner crab crab CPUE (biomass) from the 2007 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 35: Tanner crab crab CPUE (biomass) from the 2008 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 36: Tanner crab crab CPUE (biomass) from the 2009 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 37: Tanner crab crab CPUE (biomass) from the 2010 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 38: Tanner crab crab CPUE (biomass) from the 2011 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 39: Tanner crab crab CPUE (biomass) from the 2012 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 40: Tanner crab crab CPUE (biomass) from the 2013 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 41: Tanner crab crab CPUE (biomass) from the 2014 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 42: Tanner crab crab CPUE (biomass) from the 2015 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 43: Tanner crab crab CPUE (biomass) from the 2016 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 44: Tanner crab crab CPUE (biomass) from the 2017 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Legal-sized males

The following maps present survey CPUE (in biomass) for immature and mature components of the
Tanner crab stock by sex superimposed on bottom temperature at the time of the survey for each
year of the NMFS bottom trawl survey.
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Figure 45: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 1 of 11
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Figure 46: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 2 of 11
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Figure 47: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 3 of 11
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Figure 48: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 4 of 11
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Figure 49: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 5 of 11
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Figure 50: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 6 of 11
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Figure 51: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 7 of 11
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Figure 52: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 8 of 11
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Figure 53: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 9 of 11
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Figure 54: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 10 of 11
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Figure 55: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 11 of 11
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Appendix C: Tanner Crab Spatial Patterns
William Stockhausen

14 September, 2017

Contents
Introduction 1

Basemap 1

Survey CPUE by sex and maturity state 2

Legal-sized males 45

Introduction

This report creates a time series of maps of Tanner crab CPUE and bottom temperature from the
NMFS EBS bottom trawl survey.

Basemap

The following figure illustrates the base map for subsequent maps of bottom temperature and survey
CPUE.

Figure 1: Basemap for future maps, with EBS bathymetry (blue lines) and the NMFS EBS bottom
trawl survey station grid.
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Survey CPUE by sex and maturity state

The following maps present survey CPUE (in biomass) for immature and mature components of the
Tanner crab stock by sex superimposed on bottom temperature at the time of the survey for each
year of the NMFS bottom trawl survey.
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Figure 2: Tanner crab crab CPUE (biomass) from the 1975 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 3: Tanner crab crab CPUE (biomass) from the 1976 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 4: Tanner crab crab CPUE (biomass) from the 1977 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 5: Tanner crab crab CPUE (biomass) from the 1978 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 6: Tanner crab crab CPUE (biomass) from the 1979 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 7: Tanner crab crab CPUE (biomass) from the 1980 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 8: Tanner crab crab CPUE (biomass) from the 1981 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 9: Tanner crab crab CPUE (biomass) from the 1982 NMFS EBS bottom trawl survey. upper
row: immature crab; lower row: mature crab; lefthand column: males; righthand column: females.
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Figure 10: Tanner crab crab CPUE (biomass) from the 1983 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 11: Tanner crab crab CPUE (biomass) from the 1984 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 12: Tanner crab crab CPUE (biomass) from the 1985 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 13: Tanner crab crab CPUE (biomass) from the 1986 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.

524



MALE
1
2
4

6

1987: imm. males

FEMALE
2
4

6

8

1987: imm. females

MALE
1
2
4

6

1987: mat. males

FEMALE
0.2
0.4
0.6
1.0
1.4

1987: mat. females

Figure 14: Tanner crab crab CPUE (biomass) from the 1987 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 15: Tanner crab crab CPUE (biomass) from the 1988 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 16: Tanner crab crab CPUE (biomass) from the 1989 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 17: Tanner crab crab CPUE (biomass) from the 1990 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 18: Tanner crab crab CPUE (biomass) from the 1991 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 19: Tanner crab crab CPUE (biomass) from the 1992 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 20: Tanner crab crab CPUE (biomass) from the 1993 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 21: Tanner crab crab CPUE (biomass) from the 1994 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 22: Tanner crab crab CPUE (biomass) from the 1995 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 23: Tanner crab crab CPUE (biomass) from the 1996 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 24: Tanner crab crab CPUE (biomass) from the 1997 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 25: Tanner crab crab CPUE (biomass) from the 1998 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 26: Tanner crab crab CPUE (biomass) from the 1999 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 27: Tanner crab crab CPUE (biomass) from the 2000 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 28: Tanner crab crab CPUE (biomass) from the 2001 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 29: Tanner crab crab CPUE (biomass) from the 2002 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 30: Tanner crab crab CPUE (biomass) from the 2003 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 31: Tanner crab crab CPUE (biomass) from the 2004 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 32: Tanner crab crab CPUE (biomass) from the 2005 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 33: Tanner crab crab CPUE (biomass) from the 2006 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 34: Tanner crab crab CPUE (biomass) from the 2007 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 35: Tanner crab crab CPUE (biomass) from the 2008 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 36: Tanner crab crab CPUE (biomass) from the 2009 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 37: Tanner crab crab CPUE (biomass) from the 2010 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 38: Tanner crab crab CPUE (biomass) from the 2011 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 39: Tanner crab crab CPUE (biomass) from the 2012 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 40: Tanner crab crab CPUE (biomass) from the 2013 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 41: Tanner crab crab CPUE (biomass) from the 2014 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.

552



MALE
0.5
1.0
1.5
2.0

2015: imm. males

FEMALE
0.1
0.2
0.3
0.4

2015: imm. females

MALE
2
4

6

8

10

2015: mat. males

FEMALE
1
2
4

6

2015: mat. females

Figure 42: Tanner crab crab CPUE (biomass) from the 2015 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 43: Tanner crab crab CPUE (biomass) from the 2016 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Figure 44: Tanner crab crab CPUE (biomass) from the 2017 NMFS EBS bottom trawl survey.
upper row: immature crab; lower row: mature crab; lefthand column: males; righthand column:
females.
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Legal-sized males

The following maps present survey CPUE (in biomass) for immature and mature components of the
Tanner crab stock by sex superimposed on bottom temperature at the time of the survey for each
year of the NMFS bottom trawl survey.
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Figure 45: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 1 of 11
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Figure 46: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 2 of 11
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Figure 47: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 3 of 11
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Figure 48: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 4 of 11
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Figure 49: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 5 of 11
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Figure 50: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 6 of 11
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Figure 51: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 7 of 11
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Figure 52: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 8 of 11
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Figure 53: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 9 of 11
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Figure 54: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 10 of 11
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Figure 55: Survey CPUE (biomass) for legal-sized male Tanner crab. Page 11 of 11
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Appendix D: Tanner crab molt increment data
William T. Stockhausen

12 September, 2017
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Tanner crab growth data

Input data file for Tanner crab growth data is ‘/Users/WilliamStockhausen/StockAssessments-
Crab/Assessments/TannerCrab/2017-09.TannerCrab/Data/MoltIncrementData/TannerCrab.20160701.csv’.
Figure 1 shows molt increment data collected from crab near Kodiak Island in the Gulf of Alaska
and in the eastern Bering Sea (EBS). THe Kodiak data was collected over a 20+ year period
during opportunistic surveys and caged grow-out experiments. The EBS data was collected in 2014,
2015, and 2016 through cooperative research conducted by the AFSC/NMFS and the Bering Sea
Research Foundation (BSFRF).
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Figure 1: Tanner crab molt increment data, by region and sex.

Mean growth

Sex-specific parameters for post-molt size as a power function of pre-molt size (zpost = ea · zpre
b)

were estimated in R using the glm function from the EBS data on the log-scale using the regression
formula ln[zpost] = a + b · ln[zpre]. The resulting estimates

Table 1: Estimated growth parameters for the EBS molt increment data with post-molt size as a
power lae of pre-molt size..

parameter males females

a 0.2708370 0.6106653
b 0.9922623 0.8975509

Sex-specific parameters from the 2016 assessment model reflecting estimated mean growth are listed
in Table 2, where zpost = ea · zpre

b.

Table 2: 2016 assessment model mean growth parameters.

parameter males females

a 0.4220295 0.6999999
b 0.9721004 0.8850577

Growth parameters estimated from the Kodiak data, used as prior mean values for parameters in
the assessment model are listed in Table 3.

Table 3: Growth parameters based on Kodiak data, used as prior means for parameters in the
assessment model.

parameter males females

a 0.437941 0.5656024
b 0.948700 0.9132661

Assessment model growth vs. growth data

The 2016 assessment model estimated mean growth parameters from size composition data. Priors
were placed on the growth parameters based on a previous analysis by Rugolo and Turnock of molt
increment data from Kodiak Island in the Gulf of Alaska. The estimated mean growth curves from
the assessment appear to over-predict post-molt size at larger pre-molt sizes for both males and
females. The molt increment data from the EBS does not appear to be radically different from that
collected at Kodiak.
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Figure 2: Tanner crab growth data, by region and sex. Colored lines indicate mean growth, by sex,
as determined by the assessment model.

Absolute residuals

Residuals to assessment model estimates are shown in Figure 3 as observed postmolt size -
predicted postmolt size.
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Figure 3: Absolute-scale residuals to mean growth as determined by the assessment model, by
region and sex.
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Relative residuals

Residuals to assessment model estimates are shown in Figure 4 as (observed postmolt size -
predicted postmolt size)/observed postmolt size.
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Figure 4: Relative-scale residuals to mean growth as determined by the assessment model, by
region and sex.
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Appendix E: TCSAM02, Version 2 of The Tanner Crab Stock Assessment 
Model

Introduction 
The computer code used in the last Tanner crab stock assessment (Stockhausen, 2016), referred to here as 
“TCSAM2013” (i.e., an acronym for Tanner Crab Stock Assessment Model, 2013), evolved directly from 
the assessment model code developed by Rugolo and Turnock (2011, 2012a) used in the 2012 stock 
assessment (Rugolo and Turnock, 2012b), as rewritten and revised by Stockhausen for the 2013 and 
subsequent stock assessments (Stockhausen et al., 2013; Stockhausen, 2014; Stockhausen, 2015; 
Stockhausen, 2016). TCSAM2013 is an integrated assessment model that estimates model parameters in 
a maximum likelihood framework using AD Model Builder C++ libraries (Fournier et al., 2012) for 
automatic differentiation to fit to time series of survey (fishery-independent) biomass and size 
compositions, retained catch biomass and size compositions in the directed fishery, and catch biomass 
and size compositions in several fisheries that take Tanner crab as bycatch. The computer code for the 
TCSAM2013 is available on GitHub (the 2016 assessment model version is on the 
“2016AssessmentModel” branch). While a number of model options can be configured “on-the-fly” 
using a control file, assessment models developed using the TCSAM2013 computer code are constrained 
in a number of ways, including the number of directed fisheries (1) and bycatch fisheries (3) that can be 
accommodated, the type of surveys that can accommodated (1), and the number and type of time blocks 
that are defined for model parameters (most are hard-wired in the code). Additionally, status 
determination and overfishing limit (OFL) calculations require a separate “projection model” code to be 
run using a results file from TCSAM2013. 

The “TCSAM02” (Tanner Crab Stock Assessment Model, version 2) modeling framework was developed 
“from scratch” to eliminate many of the constraints imposed on potential future assessment models by 
TCSAM2013. Like TCSAM2013, TCSAM02 uses AD Model Builder libraries as the basis for model 
optimization using a maximum likelihood (or Bayesian) approach. The model code for TCSAM02 is 
available on GitHub (the current development branch is “After201705CPT”).  

TCSAM02 is referred to here as a “modeling framework” because, somewhat similar to Stock Synthesis 
(Methot and Wetzel, 2013), model structure and parameters are defined “on-the-fly” using control files—
rather than editing and re-compiling the underlying code. In particular, the number of fisheries and 
surveys, as well as their associated data types (abundance, biomass, and /or size compositions) and the 
number and types of time blocks defined for every model parameter, are defined using control files in 
TCSAM02 and have not been pre-determined. New data types (e.g., growth data) can also be included in 
the model optimization with TCSAM02 that couldn’t be fit with TCSAM2013, as can priors on any model 
parameter. Additionally, status determination and OFL calculations can be done directly within a 
TCSAM02 model run, rather having to run a separate “projection model”. Finally, TCSAM02 can be 
substantially “backward compatible” with TCSAM2013. 

As a result of comparisons between models based on TCSAM2013 and TCSAM02 presented at the 2017 
Crab Modeling Workshop and the May 2017 Crab Plan Team (CPT) Meeting, the CPT and SSC have 
approved the TCSAM02 modeling framework as the basis for models to be considered during the next 
stock assessment (September, 2017). It should be noted, however, that TCSAM02 is only a transition to 
assessments based on an even more generalized model framework, Gmacs (the Generalized Model for 
Alaska Crab Stocks). Gmacs is intended to be used for all crab stock assessments conducted for the North 
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Pacific Fisheries Management Council (NPFMC), including both lithodid (king crab) and Chionoecetes 
(Tanner and snow crab) stocks, while TCSAM02 is specific to Chionoecetes biology (i.e., terminal molt). 

Model Description 

A. General population dynamics 
TCSAM02 is a stage/size-based population dynamics model. 
Population abundance at the start (July 1) of year y in the 
model, !",$,%,&,', is characterized by sex x (male, female), 
maturity state m (immature, mature), shell condition s (new 
shell, old shell), and size z (carapace width, CW). Changes in 
abundance due to natural mortality, molting and growth, 
maturation, shell aging, fishing mortality and recruitment are 
tracked on an annual basis. Because the principal crab 
fisheries occur during the winter, the model year runs from 
July 1 to June 30 of the following calendar year. 

The order of calculation steps to project population 
abundance from year y to y+1 depends on the assumed timing 
of the fisheries (()"*) relative to molting/growth/mating (()"%) 
in year y. The steps when the fisheries occur before 
molting/growth/mating (()"* ≤ ()"%) are outlined below first 
(Steps A1.1-A1.4), followed by the steps when 
molting/growth/mating occurs after the fisheries (()"% < ()"*; 
Steps A2.1-A2.4). 

A1. Calculation sequence when -./0 ≤ -./1 

Step A1.1: Survival prior to fisheries 
Natural mortality is applied to the population from the start of the model year (July 1) until just prior to 
prosecution of pulse fisheries for year y at ()"*. The numbers surviving to ()"* in year y are given by: 

!",$,%,&,'2 = 4567,8,9,:,;∙=>7? ∙ !",$,%,&,' A1.1 

where M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 

Step A1.2: Prosecution of the fisheries 
The directed and bycatch fisheries are modeled as simultaneous pulse fisheries occurring at ()"* in year y. 
The numbers that remain after the fisheries are prosecuted are given by: 

!",$,%,&,'@ = 45*7,8,9,:,;
A

∙ !",$,%,&,'2  A1.2 

where B",$,%,&,'C  represents the total fishing mortality (over all fisheries) on crab classified as x, m, s, z in 
year y. 

Step A1.3: Survival after fisheries to time of molting/growth/mating 
Natural mortality is again applied to the population from just after the fisheries to the time just before 
molting/growth/mating occurs for year y at ()"% (generally Feb. 15). The numbers surviving to ()"% in 
year y are given by: 

 

Fig. 1. Timing of annual events in TCSAM02 when 
fisheries occur before molting/growth/mating. 
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!",$,%,&,'D = 4567,8,9,:,;∙(=>795=>7?) ∙ !",$,%,&,'@  A1.3 

where, as above, M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 

Step A1.4: Molting, growth, and maturation 
The changes in population structure due to molting, growth and maturation of immature (new shell) crab, 
as well as the change in shell condition for mature new shell (MAT, NS) crab to mature old shell (MAT, 
OS) crab due to aging, are given by: 

!",$,6GC,HI,'J = K",$,' ∙ Θ",$,','M ∙ !",$,N66,HI,'M
D

'M
 A1.4a 

!",$,N66,HI,'J = (1 − K",$,') ∙ Θ",$,','M ∙ !",$,N66,HI,'M
D

'M
 A1.4b 

!",$,6GC,QI,'J = !",$,6GC,QI,'D + !",$,6GC,HI,'D  A1.4c 

where Θ",$,','M is the growth transition matrix in year y for an immature new shell (IMM, NS) crab of sex 
x and pre-molt size z’ to post-molt size z and K",$,' is the probability that a just-molted crab of sex x and 
post-molt size z has undergone its terminal molt to maturity (MAT). All crab that molted remain new 
shell (NS) crab. Additionally, all mature crab that underwent terminal molt to maturity the previous year 
are assumed to change shell condition from new shell to old shell (A1.4c). Note that the numbers of 
immature old shell (IMM, OS) crab are identically zero in the current model because immature crab are 
assumed to molt each year until they undergo the terminal molt to maturity; consequently, the “missing” 
equation for m=IMM, s=OS is unnecessary. 

Step A1.5: Survival to end of year, recruitment, and update to start of next year 
Finally, the population abundance at the start of year y+1, due to natural mortality on crab from just after 
the time of molting/growth/mating in year y until the end of the model year (June 30) and recruitment 
(S",$,') at the end of year y of immature new shell (IMM, NS) crab by sex x and size z, is given by: 

!"T2,$,%,&,' =
4567,8,UVV,WX,;∙(25=>7

9) ∙ !",$,N66,HI,'J + S",$,' Y = Z[[, \ = ]^

4567,8,9,:,;∙(25=>79) ∙ !",$,%,&,'J 																										 `)ℎ4bcd\4																
 A1.5 

A2. Calculation sequence when -./1 < -./0 

Step A2.1: Survival prior to molting/growth/mating 
As in the previous sequence, natural mortality is first applied to the population from the start of the model 
year (July 1), but this time until just prior to molting/growth/mating in year y at ()"% (generally Feb. 15). 
The numbers surviving at ()"% in year y are given by: 

!",$,%,&,'2 = 4567,8,9,:,;∙=>79 ∙ !",$,%,&,' A2.1 

where M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 
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Step A2.2: Molting, growth, and maturation 
The changes in population structure due to molting, growth and maturation of immature new shell (IMM, 
NS) crab, as well as the change in shell condition for mature new shell (MAT, NS) crab to mature old 
shell (MAT, OS) crab due to aging, are given by: 

!",$,6GC,HI,'@ = K",$,' ∙ Θ",$,','M ∙ !",$,N66,HI,'M
2

'M
 A2.2a 

!",$,N66,HI,'@ = (1 − K",$,') ∙ Θ",$,','M ∙ !",$,N66,HI,'M
2

'M
 A2.2b 

!",$,6GC,QI,'@ = !",$,6GC,QI,'2 + !",$,6GC,HI,'2  A2.2c 

where Θ",$,','M is the growth transition matrix in year y for an immature new shell (IMM, NS) crab of sex 
x and pre-molt size z’ to post-molt size z and K",$,' is the probability that a just-molted crab of sex x and 
post-molt size z has undergone its terminal molt to maturity. Additionally, mature new shell (MAT, NS) 
crab that underwent their terminal molt to maturity the previous year are assumed to change shell 
condition from new shell to old shell (A2.2c). Again, the numbers of immature old shell crab are 
identically zero because immature crab are assumed to molt each year until they undergo the terminal 
molt to maturity. 

Step A2.3: Survival after molting/growth/mating to prosecution of fisheries 
Natural mortality is again applied to the population from just after molting/growth/mating to the time at 
which the fisheries occur for year y (at ()"*). The numbers surviving at ()"* in year y are then given by: 

!",$,%,&,'D = 4567,8,9,:,;∙(=>7?5=>79) ∙ !",$,%,&,'@  A2.3 

where, as above, M represents the annual rate of natural mortality in year y on crab classified as x, m, s, z. 

Step A2.4: Prosecution of the fisheries 
The directed fishery and bycatch fisheries are modeled as pulse fisheries occurring at ()"* in year y. The 
numbers that remain after the fisheries are prosecuted are given by: 

!",$,%,&,'J = 45*7,8,9,:,;
A

∙ !",$,%,&,'D  A2.4 

where B",$,%,&,'C  represents the total fishing mortality (over all fisheries) on crab classified as x, m, s, z in 
year y. 

Step A2.5: Survival to end of year, recruitment, and update to start of next year 
Finally, population abundance at the start of year y+1 due to natural mortality on crab from just after 
prosecution of the fisheries in year y until the end of the model year (June 30) and recruitment of 
immature new (IMM, NS) shell crab at the end of year y (S",$,') and are given by: 

!"T2,$,%,&,' =
4567,8,UVV,WX,;∙(25=>7

?) ∙ !",$,N66,HI,'J + S",$,' Y = Z[[, \ = ]^

4567,8,9,:,;∙(25=>7?) ∙ !",$,%,&,'J 																										 `)ℎ4bcd\4																
 A2.5 
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B. Parameter specification  
Because parameterization of many model processes (e.g., natural mortality, fishing mortality) in 
TCSAM02 is fairly flexible, it is worthwhile discussing how model processes and their associated 
parameters are configured in TCSAM02 before discussing details of the model processes themselves. 
Each type of model process has a set of (potentially estimable) model parameters and other information 
associated with it, but different “elements” of a model process can be defined that apply, for example, to 
different segments of the population and/or during different time blocks. In turn, several “elements” of a 
model parameter associated with a model process may also be defined (and applied to different elements 
of the process). At least one combination of model parameters and other information associated with a 
model process must be defined—i.e., one process element must be defined. 

Model processes and parameters are configured in a “ModelParametersInfo” file, one of the three control 
files required for a model run (the others are the “ModelConfiguration” file and the “ModelOptions” file). 
As an example of the model processes and parameter specification syntax, Text Box 1 presents the part of 
a “ModelParametersInfo” file concerned with specifying fishing processes in the directed Tanner crab 
fishery.  

In Text Box 1, the keyword “fisheries” identifies the model process in question. The first section, 
following the “PARAMETER_COMBINATIONS” keyword (up to the first set of triple blue dots), 
specifies the indices associated with fishing process parameters (pHM, pLnC, pDC1, pDC2, pDC3, 
pDC4, pDevsLnC, pLnEffX, pLgtRet), selectivity and retention functions (idxSelFcn, idxRetFcn), and 
effort averaging time period (effAvgID) that apply to a single fishing process element. In this example, 
the indices for the selectivity and retention functions, as well as those for the effort averaging time period, 
constitute the “other information” specified for each fishing process element. Each fishing process 
element in turn applies to a specific fishery (FISHERY=1 indicates the directed fishery, in this case), time 
block (specified by YEAR_BLOCK), and components of the model population (specified by SEX, 
MATURITY STATE, and SHELL CONDITION). Using indices to identify which parameters and 
selectivity and retention functions apply to a given combination of fishery/time block/sex/maturity 
state/shell condition allows one to “share” individual parameters and selectivity and retention functions 
across different fishery/time block/sex/maturity state/shell condition combinations. 

The second section (following the “PARAMETERS” keyword) determines the characteristics for each of 
the fishing process parameters, organized by parameter name (note: the parameters associated with the 
different selectivity and retention functions are specified in a different section of the 
ModelParametersInfo file). Here, each parameter name corresponds to an ADMB 
“param_init_bounded_number_vector” in the model code—the exception being pDevsLnC, which 
corresponds to an ADMB “param_init_bounded_vector_vector”.  

Each row under a “non-devs” parameter name in the fisheries section (e.g., pLnC) specifies the index 
used to associate an element of the parameter with the fishing processes defined in the 
PARAMETER_COMBINATIONS section, as well as characteristics of the element in the associated 
ADMB number_vector (upper and lower bounds, initial value, and initial estimation phase), various flags 
for initialization (“jitter”, “resample”), definition of an associated prior probability distribution, and a 
label. Each row under a “devs” parameter name (e.g., pDevsLnC) specifies much the same information 
for the associated ADMB devs vector, with the “read” flag replacing the “initial value” entry. If “read?” is 
TRUE, then a vector of initial values is read from the file after all “info” rows for the devs parameter have 
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been read. The “jitter” flag (if set to TRUE) provides the ability to change the initial value for an element 
of a non-devs parameter using a randomly selected value based on the element’s upper and lower bounds. 
For a devs parameter, an element with jitter set to TRUE is initialized using a vector of randomly-
generated numbers (subject to being a devs vector within the upper and lower bounds). The “resample” 
flag was intended to specify an alternative method to providing randomly-generated initial values (based 
on an element’s prior probability distribution, rather than its upper and lower bounds), but this has not yet 
been fully implemented. 

Some model processes apply only to specific segments of the population (e.g., growth only applies to 
immature, new shell crab). In general, though, a model process element can be defined to apply to any 
segment of the population (by specifying SEX, MATURITY STATE, and SHELL CONDITION 
appropriately) and range of years (by specifying YEAR_BLOCK). In turn, an element of a parameter may 
be “shared” across multiple processes by specifying the element’s index in multiple rows of a 
PARAMETERS_COMBINATION block.  
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Text Box 1. Abbreviated example of process and parameter specifications in a “ModelParametersInfo” file for fishing mortality in TCSAM02. 
Only parameter combinations and parameters relevant to the directed fishery are shown. Input values are in black text, comments are in green, 
triple blue dots indicate additional input lines not shown. 

#------------------------------- 
# Fishery parameters 
#------------------------------- 
fisheries #process name 
PARAMETER_COMBINATIONS 
42  #number of rows defining parameter combinations for all fisheries 
#Directed Tanner Crab Fishery (TCF)                                                                         
#                                          |MATURITY|SHELL|                                |pDevs| pLn | pLgt| idx  | idx  |  eff  | 
#id  FISHERY  YEAR_BLOCK             SEX   | STATE  |COND |  pHM  pLnC pDC1 pDC2 pDC3 pDC4 | LnC | EffX| Ret |SelFcn|RetFcn| AvgID | label 
1       1     [-1:1964]              MALE      ALL    ALL     1    1    0     0   0    0      0      0    0     9       5       0    TCF:_M_T1 
2       1     [1965:1984;1987:1990]  MALE      ALL    ALL     1    2    0     0   0    0      1      0    0     9       5       0    TCF:_M_T2 
3       1     [1991:1996]            MALE      ALL    ALL     1    2    0     0   0    0      1      0    0    10       6       0    TCF:_M_T3 
4       1     [2005:2009]            MALE      ALL    ALL     1    2    0     0   0    0      1      0    1    11       7       0    TCF:_M_T4 
5       1     [2013:-1]              MALE      ALL    ALL     1    2    0     0   0    0      1      0    1    12       8       0    TCF:_M_T5 
6       1     [-1:1964]              FEMALE    ALL    ALL     1    1    0     1   0    0      0      0    0    13       0       0    TCF:_F_T1 
7       1     [1965:1984;1987:1996]  FEMALE    ALL    ALL     1    2    0     1   0    0      1      0    0    13       0       0    TCF:_F_T2 
8       1     [2005:2009;2013:-1]    FEMALE    ALL    ALL     1    2    0     1   0    0      1      0    0    14       0       0    TCF:_F_T3 
… 
PARAMETERS 
pHM #handling mortality (0-1) 
3   #number of parameters 
#   |   limits    |       | initial | start |         |-       priors           -| 
#id |lower   upper|jitter?| value   | phase |resample?| wgt| type| params| consts| label 
1      0       1    OFF     0.321      -1       OFF      1   none   none    none    handling_mortality_for_crab_pot_fisheries 

… 
pLnC #base (ln-scale) capture rate (mature males) 
9    #number of parameters 
#   |   limits    |       |  initial   | start |         |-       priors           -| 
#id |lower   upper|jitter?|   value    | phase |resample?| wgt| type| params| consts| label 
 1    -15     15     OFF   -2.995732274    -1      OFF      1   none  none    none      TCF:_base_capture_rate,_pre-1965_(=0.05) 
 2    -15     15     ON    -1.164816291     1      OFF      1   none  none    none      TCF:_base_capture_rate,_1965+ 

… 
pDC1 #main temporal ln-scale capture rate offset 
0    #number of parameters 
pDC2 #ln-scale capture rate offset for female crabs 
6    #number of parameters 
#   |   limits    |       |  initial   | start |         |-       priors            -| 
#id |lower  upper |jitter?|   value    | phase |resample?|  wgt  type  params  consts| label 
1    -5.0    5.0     ON    -2.058610432    1      OFF       1.0  none   none    none   TCF:_female_offset 

… 
pDevsLnC #annual ln-scale capture rate deviations 
6        #number of parameter vectors 
#   | index  |             index                     |       |   limits     |        |initial |start |         |-      priors                 -| 
#id |  type  |             block                     | read? |lower   upper | jitter?| value  |phase |resample?|  wgt | type | params | consts |label 
 1     YEAR   [1965:1984;1987:1996;2005:2009;2013:-1]  FALSE   -15     15       ON       0       1      OFF       2.0  normal    0 1     none    TCF:_T2345 

… 
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C. Model processes: natural mortality 
The natural mortality rate applied to crab of sex x, maturity state m, shell condition s, and size z in year y, 
!",$,%,&,', can be specified using one of two parameterizations. The first parameterization option uses a 
ln-scale parameterization with an option to include an inverse- size dependence using Lorenzen’s 
approach: 

()!",$,%,& = +",$,%,&, + .+",$,%,&/
0

/12
 C.1a 

!",$,%,&,' =
exp ()!",$,%,& 67	9:;<)=<)	:>?6:)	6@	):?	@<(<A?<B

exp ()!",$,%,& ∙
=DE&F
=

67	9:;<)=<)	:>?6:)	6@	@<(<A?<B
 

C.1b 

C.1c 

where the +,  and the .+/ ’s are (potentially) estimable parameters defined for time block T, sex S 
(MALE, FEMALE, or ANY), maturity M (IMMATURE, MATURE, or ANY), and shell condition S 
(NEWSHELL, OLDSHELL, or ANY), and {y,x,m,s} falls into the set {T,X,M,S}. In Eq. C.1c, =DE&F 
denotes the specified reference size (mm CW) for the inverse-size dependence. 

The second parameterization option uses an arithmetic parameterization in order to provide backward 
compatibility with the 2016 assessment model based on TCSAM2013. In TCSAM2013, the natural 
mortality rate !",$,%,&,' was parameterized using: 

!",$,%1GHH,&,' = !DE&F ∙ .!GHH C.2a 

!",$,%1HIJ,&,' =
!DE&F ∙ .!$,HIJ :?ℎ<;L6@<

!DE&F ∙ .!$,HIJ ∙ .!$,HIJ
J 1980 ≤ R ≤ 1984

 C.2b 

where !DE&F was a fixed value (0.23 yr-1), .!GHH was a multiplicative factor applied for all immature 
crab, the .!$,HIJ were sex-specific multiplicative factors for mature crab, and the .!$,HIJ

J  were 
additional sex-specific multiplicative factors for mature crab during the 1980-1984 time block (which has 
been identified as a period of enhanced natural mortality on mature crab, the mechanisms for which are 
not understood). While it would be possible to replicate Eq.s C.2a and C.2b using ln-scale parameters, 
TCSAM2013 also placed informative arithmetic-scale priors on some of these parameters—and this could 
not be duplicated on the ln-scale. Consequently, the second option uses the following parameterization, 
where the parameters (and associated priors) are defined on the arithmetic-scale: 

()!",$,%,& = ln	[+",$,%,&, ] + ln	[.+",$,%,&/ ]
0

/12
 C.3a 

A system of equations identical to C.2a-b can be achieved under the following assignments: 

+ ",$,%,& ∈{J1IZZ,[1IZZ,H1IZZ,\1IZZ}
, = 	!DE&F C.4a 

.+ ",$,%,& ∈{J1IZZ,[1IZZ,H1GHH,\1IZZ}
2 = .!GHH  C.4e 

.+ ",$,%,& ∈{J1IZZ,[1$,H1HIJ,\1IZZ}
2 = .!$,HIJ  C.4f 

.+ ",$,%,& ∈{J12^_,`2^_0,[1$,H1HIJ,\1IZZ}
a = .!$,HIJ

J   C.4g 
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where unassigned .+",$,%,&/  are set equal to 1. Pending further model testing using alternative model 
configurations, the TCSAM2013 option is standard. 

It is worth noting explicitly that, given the number of potential parameters above that could be used, 
extreme care must be taken when defining a model to achieve a set of parameters that are not confounded 
and are, at least potentially, estimable. 

D. Model processes: growth 
Because Tanner crab are assumed to undergo a terminal molt to maturity, in TCSAM02 only immature 
crab experience growth. Annual growth of immature crab is implemented as using two options, the first 
based on a formulation used in Gmacs and the second (mainly for purposes of backward compatibility) 
based on that used in TCSAM2013. In TCSAM02, growth can vary by time block and sex, so it is 
expressed by sex-specific transition matrices for time block t, Θc,$,','d, that specify the probability that 
crab of sex x in pre-molt size bin =e grow to post-molt size bin = at molting.  

In the Gmacs-like approach (the standard approach as of May, 2017), the sex-specific growth matrices are 
given by: 

Θc,$,','d = Ac,$,'d ∙ Γ
=′′ − =c,$,'d

ic,$
B=′′

'jD/k/a

'`D/k/a

 
Sex-specific (x) transition matrix for 
growth from pre-molt =e to post-molt =, 
with = ≥ =e 

D.1a 

Ac,$,'d = Γ
=′′ − =c,$,'d

ic,$
B=′′

n

'd

`2

 
Normalization constant so  

1 = Θc,$,','d
'

 D.1b 

=c,$,'d = <Eo,p ∙ =eDo,p Mean size after molt, given pre-molt size 
=e D.1c 

where the integral represents a cumulative gamma distribution across the post-molt (=) size bin. This 
approach may have better numerical stability properties than the TCSAM2013 approach below. 

The TCSAM2013 approach is an approximation to the Gmacs approach, where the sex-specific growth 
matrices Θc,$,','d are given by 

Θc,$,','d = Ac,$,'d ∙ ∆','d
ro,p,sd`2 ∙ <

`
∆s,sd
to,p  

Sex-specific (x) transition matrix for 
growth from pre-molt =e to post-molt =, 
with = ≥ =e 

D.2a 

Ac,$,'d = ∆','d
ro,p,sd`2 ∙ <

`
∆s,sd
to,p

'd

`2

 
Normalization constant so  

1 = Θc,$,','d
'

 D.2b 

∆','d= = − =e Actual growth increment D.2c 
uc,$,'d = =c,$,'d − =e /ic,$ Mean molt increment, scaled by ic,$ D.2d 

=c,$,'d = <Eo,p ∙ =eDo,p Mean size after molt, given pre-molt size 
=e D.2e 

 

In both approaches, the at,x, bt,x, and ic,$ are arithmetic-scale parameters with imposed bounds. Θc,$,','d is 
used to update the numbers-at-size for immature crab, )",$,', from pre-molt size =e to post-molt size = 
using: 
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)",$,'j = Θc,$,','d ∙ )",$,'d
'd

 numbers at size of immature crab after 
growth D.3 

where y falls within time block t (see also Eq.s A1.4a-b and A2.2a-b). 

Priors using normal distributions are imposed on at,x and bt,x in TCSAM2013, with the values of the 
hyper-parameters hard-wired in the model code. While priors may be defined for the associated 
parameters here, these are identified by the user in the model input files and are not hard-wired in the 
model code. 

E. Model processes: maturity (terminal molt) 
Maturation of immature crab in TCSAM02 is based on a similar approach to that taken in TCSAM2013, 
except that the sex- and size-specific probabilities of terminal molt for immature crab, vc,$,' (where size z 
is post-molt size), can vary by time block. After molting and growth, the numbers of (new shell) crab at 
post-molt size z remaining immature, )",$,GHH,w\,'j , and those maturing, )$,HIJ,w\,'j , are given by: 

)",$,GHH,w\,'j = 1 − vc,$,' ∙ )",$,GHH,w\,'
)",$,HIJ,w\,'j = vc,$,' ∙ )",$,GHH,w\,'

 crab remaining immature 
crab maturing (terminal molt) 

E.1a 
E.1b 

where y falls in time block t and )",$,GHH,w\,' is the number of immature, new shell crab of sex x at post-
molt size z. 

The sex- and size-specific probabilities of terminal molt, vc,$,', are related to logit-scale model 
parameters >c,$,'%Ec by: 

vc,xyH,' =
1

1 + <zo,{|},s
~�o = ≤ =c,xyH%Ec

1 = > =c,xyH%Ec
 female probabilities of maturing at 

post-molt size z E.2a 

vc,HIZy,' =
1

1 + <zo,}ÅÇ|,s
~�o = ≤ =c,HIZy%Ec

1 = > =c,HIZy%Ec
 male probabilities of maturing at 

post-molt size z E.2b 

where the =c,$%Ec are constants specifying the minimum pre-molt size at which to assume all immature crab 
will mature upon molting. The =c,$%Ec are used here pedagogically; in actuality, the user specifies the 
number of logit-scale parameters to estimate (one per size bin starting with the first bin) for each sex, and 
this determines the =c,$%Ec used above. This parameterization is similar to that implemented in 
TCSAM2013 for the 2016 assessment model.  

Second difference penalties are applied to the parameter estimates in TCSAM2013’s objective function to 
promote relatively smooth changes in these parameters with size. Similar penalties (smoothness, non-
decreasing) can be applied in TCSAM02. 

F. Model processes: recruitment 
Recruitment in TCSAM02 consists of immature new shell crab entering the population at the end of the 
model year (June 30). Recruitment in TCSAM02 has a similar functional form to that used in 
TCSAM2013, except that the sex ratio at recruitment is not fixed at 1:1 and multiple time blocks can be 
specified. In TCSAM2013, two time blocks were defined: “historical” (model start to 1974) and “current” 
(1975-present), with “current” recruitment starting in the first year of NMFS survey data. In TCSAM02, 
recruitment in year y of immature new shell crab of sex x at size z is specified as 
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É",$,' = É" ∙ É",$ ∙ É",' recruitment of immature, new shell crab 
by sex and size bin F.1 

where É" represents total recruitment in year y and É",$ represents the fraction of sex x crab recruiting, 
and É",'is the size distribution of recruits, which is assumed identical for males and females. 

Total recruitment in year y, É", is parameterized as 

É" = <zZkÑojÖÑo,Ü R ∈ ? total recruitment in year y F.2 

where y falls within time block t, >9)Éc is the ln-scale mean recruitment parameter for t, and .Éc,"is an 
element of a “devs” parameter vector for t (constrained such that the elements of the vector sum to zero 
over the time block). 

The fraction of crab recruiting as sex x in year y in time block t is parameterized using the logistic model 

É",$ =
1

1 + <zZácÑ$o
à = !â9ä

1 − É",HIZy à = ãä!â9ä
R ∈ ? sex-specific fraction recruiting in year y F.3 

where >9å?Éàc is a logit-scale parameter determining the sex ratio in time block t. 

The size distribution for recruits in time block t, Éc,', is assumed to be a gamma distribution and is 
parameterized as  

Éc,' = A`2 ∙ ∆'
ro
to
`2
∙ <

`∆sto  size distribution of recruiting crab  F.4 

Ac = ∆'
ro
to
`2
∙ <

`∆sto

'

 normalization constant so that 1 = Éc,''  F.5 

∆'= = + .=/2 − =%/k offset from minimum size bin F.6 

uc = <zZkÑEo gamma distribution location parameter F.7 

ic = <zZkÑDo gamma distribution shape parameter F.8 

where >9)Ééc and >9)Éèc are the ln-scale location and shape parameters and the constant .= is the size 
bin spacing. 

A final time-blocked parameter, pLnRCVt, is associated with the recruitment process representing the ln-
scale coefficient of variation (cv) in recruitment variability in time block t. These parameters are used to 
apply priors on the recruitment “devs” in the model likelihood function. 

G. Selectivity and retention functions 
Selectivity and retention functions in TCSAM02 are specified independently from the fisheries and 
surveys to which they are subsequently applied. This allows a single selectivity function to be “shared” 
among multiple fisheries and/or surveys, as well as among multiple time block/sex/maturity state/shell 
condition categories, if so desired. 

Currently, the following functions are available for use as selectivity or retention curves in a model: 
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ê' = 1 + <`t∙('`'íì)
`2

 standard logistic G.1 

ê' = 1 + <`t∙('`ïñó òkôíì ) `2
 

logistic w/ alternative 
parameterization G.2 

ê' = 1 + <`öõ	(2^)∙
('`'íì)
∆'úíùíì

`2

 
logistic w/ alternative 
parameterization G.3 

ê' = 1 + <`öõ	(2^)∙
(sùsíì)

ûü†	(°¢∆súíùíì)

`2

  
logistic w/ alternative 
parameterization G.4 

ê' = 1 + <
`öõ	(2^)∙('`ïñó òkôíì )

ïñó	(òk∆'úíùíì)
`2

 
logistic w/ alternative 
parameterization G.5 

ê' =
1

1 + <`t�∙('`'�íì)
∙

1
1 + <t£∙('`'£íì)

 double logistic G.6 

ê' =
1

1 + <
`öõ	(2^)∙ ('`'�íì)∆'�(úíùíì)

∙
1

1 + <
öõ	(2^)∙ ('`'£íì)∆'£(úíùíì)

 double logistic with alt. 
parameterization G.7 

ê' =
1

1 + <
`öõ	(2^)∙ ('`'�íì)

ïñó	(òk∆'� úíùíì )

∙
1

1 + <
öõ	(2^)∙ ('`'£íì)

ïñó	(òk∆'£ úíùíì )

Lℎ<;<	=§•, = [=E•, + exp ()∆=E ^•`•, + exp	(()∆=§ ^•`•, )]

 double logistic with alt. 
parameterization G.8 

ê' =
1

1 + <
`öõ	(2^)∙ ('`ïñó	(òk'�íì))ïñó	(òk∆'� úíùíì )

∙
1

1 + <
öõ	(2^)∙ ('`'£íì)

ïñó	(òk∆'£ úíùíì )

Lℎ<;<	=§•, = [exp	(()=E•,) + exp ()∆=E ^•`•, + exp	(()∆=§ ^•`•, )]

 double logistic with alt. 
parameterization G.9 

ê' =
1

1 + <`t�∙('`'�íì)
∙

1
1 + <t£∙('`['�íìjïñó òkô£íìù�íì ])

 double logistic with alt. 
parameterization G.10 

A double normal selectivity function (requiring 6 parameters to specify) has also been implemented as an 
alternative to the double logistic functions. In the above functions, all symbols (e.g., i, =•,, ∆=^•`•,) 
represent parameter values, except “z” which represents crab size.  

Selectivity parameters are defined independently of the functions themselves, and subsequently assigned. 
It is thus possible to “share” parameters across multiple functions. The “parameters” used in selectivity 
functions are further divided into mean parameters across a time block and annual deviations within a 
time block. To accommodate the 6-parameter double normal equation, six “mean” parameter sets (pS1, 
pS2,…, pS6) and six associated sets of “devs” parameter vectors (pDevsS1, pDevsS2,…, pDevsS6) are 
defined to specify the parameterization of individual selectivity/retention functions. Thus, for example, 
=•, in eq. F1 is actually expressed as =•,," = 	 =•, + 	.=•,," in terms of model parameters pS1 and 
pDevsS1y, where =•, = >ê1 is the mean size-at-50%-selected over the time period and .=•,," =
>¶<ß@ê1" is the annual deviation. 

Finally, three different options to normalize individual selectivity curves are provided: 1) no 
normalization, 2) specifying a fully-selected size, and 3) re-scaling such that the maximum value of the 
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re-scaled function is 1. A normalization option must be specified in the model input files for each defined 
selectivity/retention curve. 

H. Fisheries 
Unlike TCSAM2013, which explicitly models 4 fisheries that catch Tanner crab (one as a directed 
fishery, three as bycatch), there is no constraint in TCSAM02 on the number of fisheries that can be 
incorporated in the model. All fisheries are modeled as “pulse” fisheries occurring at the same time. 

TCSAM02 uses the Gmacs approach to modeling fishing mortality (also implemented in TCSAM2013). 
The total (retained + discards) fishing mortality rate, ã®,",$,%,&,', in fishery f during year y on crab in state 
x, m, s, and z (i.e., sex, maturity state, shell condition, and size) is related to the associated fishery capture 
rate v®,",$,%,&,' by 

ã®,",$,%,&,' = ℎ®,c ∙ 1 − ©®,",$,%,&,' + ©®,",$,%,&,' ∙ v®,",$,%,&,' fishing mortality rate H.1 

where ℎ®,c is the handling (discard) mortality for fishery f in time block t (which includes year y) and 
©®,",$,%,&,' is the fraction of crabs in state x, m, s, z that were caught and retained (i.e., the retention 
function). The retention function is assumed to be identically 0 for females in a directed fishery and for 
both sexes in a bycatch fishery.  

In TCSAM2013, the same retention function (in each of two time blocks) was applied to male crab 
regardless of maturity state or shell condition. Additionally, full retention of large males was assumed, 
such that the retention function essentially reached 1 at large sizes. In TCSAM02, different retention 
functions can be applied based on maturity state and/or shell condition, and “max retention” is now an 
(potentially) estimable logit-scale parameter. Thus, in TCSAM02, the retention function ©®,",$,%,&,' is 
given by 

©®,",$,%,&,' =
1

1 + <™´,o,p,~,¨
∙ É®,",$,%,&,' retention function H.2 

where f corresponds to the directed fishery, y is in time block t, x=MALE, ©®,c,$,%,& is the corresponding 
logit-scale “max retention” parameter, and É®,",$,%,&,' is the associated selectivity/retention curve. 

If ny,x,m,s,z is the number of crab classified as x, m, s, z in year y just prior to the prosecution of the 
fisheries, then 

A®,",$,%,&,' =
v®,",$,%,&,'
ã",$,%,&,'J ∙ 1 − <`xÜ,p,~,¨,s

≠
∙ )",$,%,&,' number of crab 

captured H.3 

is the number of crab classified in that state that were captured by fishery f, where ã",$,%,&,'J =
ã®,",$,%,&,'®  represents the total (across all fisheries) fishing mortality on those crab. The number of crab 

retained in fishery f classified as x, m, s, z in year y is given by 

;®,",$,%,&,' =
©®,",$,%,&,' ∙ v®,",$,%,&,'

ã",$,%,&,'J ∙ 1 − <`xÜ,p,~,¨,s
≠

∙ )",$,%,&,' number of 
retained crab H.4 

while the number of discarded crab, B®,",$,%,&,', is given by 
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B®,",$,%,&,' =
1 − ©®,",$,%,&,' ∙ v®,",$,%,&,'

ã",$,%,&,'J ∙ 1 − <`xÜ,p,~,¨,s
≠

∙ )",$,%,&,' number of 
discarded crab H.5 

and the discard mortality, BÆ®,",$,%,&,', is  

BÆ®,",$,%,&,' =
ℎ®," ∙ 1 − ©®,",$,%,&,' ∙ v®,",$,%,&,'

ã",$,%,&,'J ∙ 1 − <`xÜ,p,~,¨,s
≠

∙ )",$,%,&,' 
discard 
mortality 
(numbers) 

H.6 

 

The capture rate v®,",$,%,&,' (not the fishing mortality rate ã®,",$,%,&,') is modeled as a function separable 
into separate year and size components such that 

v®,",$,%,&,' = v®,",$,%,& ∙ ê®,",$,%,&,' fishing capture 
rate H.7 

where v®,",$,%,& is the fully-selected capture rate in year y and ê®,",$,%,&,' is the size-specific selectivity. 

The fully-selected capture rate v®,",$,%,& for y in time block t is parameterized in the following manner: 

v®,",$,%,& = exp	 ()Ø®,c,$,%,& + >¶<ß@Ø®,",$,%,&  H.8 

where the >¶<ß@Ø®,",$,%,& are elements for year y in time block t of a “devs” vectors representing annual 
variations from the ln-scale mean fully-selected capture rate ()Ø®,c,$,%,&. The latter is expressed in terms 
of model parameters as  

()Ø®,c,$,%,& = >9)Ø®,c,$,%,& + .Ø®,c,$,%,&
/

0

/12
 H.9 

where the >9)Ø®,c,$,%,& is the mean ln-scale capture rate (e.g., for mature males) and the .Ø®,c,$,%,&
/  are ln-

scale offsets. 

I. Surveys 
If ny,x,m,s,z is the number of crab classified as x, m, s, z in year y just prior to the prosecution of a survey, 
then the survey abundance, é∞,",$,%,&,', of crab classified in that state by survey v is given by 

é∞,",$,%,&,' = ±∞,",$,%,&,' ∙ )",$,%,&,' survey abundance I.1 

where ±∞,",$,%,&,' is the size-specific survey catchability on this component of the population.  

The survey catchability ±∞,",$,%,&,' is decomposed in the usual fashion into separate time block and size 
components such that, for y in time block t: 

±∞,",$,%,&,' = ±∞,c,$,%,& ∙ ê∞,c,$,%,&,' survey catchability I.2 

where ±∞,c,$,%,& is the fully-selected catchability in time block t and ê∞,c,$,%,&,' is the size-specific survey 
selectivity. 
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The fully-selected catchability ±∞,c,$,%,& is parameterized in a fashion similar to that for fully-selected 
fishery capture rates (except that annual “devs” are not included) in the following manner: 

±∞,c,$,%,& = exp	 >9)≤∞,c,$,%,& + .≤∞,c,$,%,&/
0

/12
 I.3 

where the >9)≤∞,c,$,%,& is the mean ln-scale catchability (e.g., for mature males) and the .≤∞,c,$,%,&/  are ln-
scale offsets. 

J. Model fitting: objective function equations 
The TCSAM02 model is fit by minimizing an objective function, ℴ, with additive components consisting 
of: 1) negative log-likelihood functions based on specified prior probability distributions associated with 
user-specified model parameters, and 2) several negative log-likelihood functions based on input data 
components, of the form: 

ℴ = −2 ¥z ∙ ln ℘z
z

− 2 ¥ò ∙ ln	(ℒò)
ò

 model objective function  J.1 

where ℘z represents the pth prior probability function, ℒò represents the lth likelihood function, and the 
¥’s represent user-adjustable weights for each component. 

Prior Probability Functions 
Prior probability functions can be associated with each model parameter or parameter vector by the user 
in the model input files (see Section L below for examples on specifying priors). 

Likelihood Functions 
The likelihood components included in the model’s objective function are based on normalized size 
frequencies and time series of abundance or biomass from fishery or survey data. Survey data optionally 
consists of abundance and/or biomass time series for males, females, and/or all crab (with associated 
survey cv’s), as well as size frequencies by sex, maturity state, and shell condition. Fishery data consists 
of similar data types for optional retained, discard, and total catch components. 

Size frequency components 
Likelihood components involving size frequencies are based on multinomial sampling: 

ln ℒ = )",∑ ∙ >",∑,'∏D& ∙ ln >",∑,'%∏§ + . − >",∑,'∏D& ∙ ln >",∑,'∏D& + .
'"

 multinomial 
log-likelihood  J.2 

where the y’s are years for which data exists, “c” indicates the population component classifiers (i.e., sex, 
maturity state, shell condition) the size frequency refers to, )",∑ is the classifier-specific effective sample 
size for year y, >",∑,'∏D&  is the observed size composition in size bin z (i.e., the size frequency normalized to 
sum to 1 across size bins for each year), >",∑,'%∏§ is the corresponding model-estimated size composition, 
and . is a small constant. The manner in which the observed and estimated size frequencies for each data 
component are aggregated (e.g., over shell condition) prior to normalization is specified by the user in the 
model input files. Data can be entered in input files at less-aggregated levels of than will be used in the 
model; it will be aggregated in the model to the requested level before fitting occurs.  
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Aggregated abundance/biomass components 
Likelihood components involving aggregated (over size, at least) abundance and or biomass time series 
can be computed using one of three potential likelihood functions: the normal, the lognormal, and the 
“norm2”. The likelihood function used for each data component is user-specified in the model input files. 

The ln-scale normal likelihood function is 

ln ℒw ∑ = −
1
2

é",∑∏D& − é",∑%∏§
a

π",∑a"

 normal log-
likelihood J.3 

where é",∑∏D& is the observed abundance/biomass value in year y for aggregation level c, é",∑%∏§ is the 
associated model estimate, and π",∑a  is the variance associated with the observation.  

The ln-scale lognormal likelihood function is  

ln ℒZw ∑ = −
1
2

() é",∑∏D& + . − () é",∑%∏§ + .
a

π",∑a"

 lognormal log-
likelihood J.4 

where é",∑∏D& is the observed abundance/biomass value in year y for aggregation level c, é",∑%∏§ is the 
associated model estimate, and π",∑a  is the ln-scale variance associated with the observation. 

For consistency with TCSAM2013, a third type, the “norm2”, may also be specified 

ln ℒwa $ = −
1
2

é",$∏D& − é",$%∏§
a

"

 “norm2” log-likelihood  J.5 

This is equivalent to specifying a normal log-likelihood with π",$a ≡ 1.0. This is the standard likelihood 
function applied tin TCSAM2013 to fishery catch time series. 

Growth data 
Growth (molt increment) data represents a new data source that can be fit as part of a TCSAM02 model. 
Multiple datasets can be fit at the same time. This capability does not exist in TCSAM2013. The 
likelihood for each dataset (L§) is based on the same gamma distribution used in the growth model: 

L§ = − () Γ
=/ − ="Ω,$Ω,'Ω

i"Ω,$Ω/∈§

 

where =/ and =/ are the pre-molt and post-molt sizes for individual i (of sex xi collected in year yi) in 
dataset d, respectively, ="Ω,$Ω,'Ω is the predicted mean post-molt size for individual i, and i"Ω,$Ω is the scale 
factor for the gamma distribution corresponding to individual i. 

Effort data 
In both TCSAM2013 and TCSAM02, fishery-specific effort data is used to predict annual fully-selected 
fishery capture rates for Tanner crab bycatch in the snow crab and Bristol Bay red king crab fisheries in 
the period before at-sea observer data is available (i.e., prior to 1991), based on the assumed relationship 

ã®," = ±® ∙ ä®," 
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where ã®," is the fully-selected capture rate in fishery f in year y, ±® is the estimated catchability in 
fishery f, and ä®," is the reported annual, fishery-specific effort (in pots). In TCAM2013, the fishery q’s 
are estimated directly from the ratio of fishery mean F to mean E over the time period (tf) when at-sea 
observer data is available from which to estimate the ã®,"’s as parameters: 

±® =
x´,ÜÜ∈o´

y´,ÜÜ∈o´
. 

Note that, in this formulation, the fishery q’s are not parameters (i.e., estimated via maximizing the 
likelihood) in the model. In TCSAM2013, the time period over which q is estimated for each fishery is 
hard-wired. This approach is also available as an option in TCSAM02, although different time periods for 
the averaging can be specified in the model options file. 

A second approach to effort extrapolation in which the fishery q’s are fully-fledged parameters estimated 
as part of maximizing the likelihood is provided in TCSAM02 as an option, as well. In this case, the 
effort data is assumed to have a lognormal error distribution and the following negative log-likelihood 
components are included in the overall model objective function: 

9® = 	
ln ä®," + . − ln

ã®,"
±®

+ .
a

2 ∙ π®
a

"

 

where π®a is the assumed ln-scale variance associated with the effort data and . is a small value so that the 
arguments of the ln functions do not go to zero.  

Aggregation fitting levels 
A number of different ways to aggregate input data and model estimates prior to fitting likelihood 
functions have been implemented in TCSAM02. These include:  

 

where x, m, s refer to sex, maturity state and shell condition and missing levels are aggregated over. For 
size compositions that are “extended by” x, m, s, or {x, m}, this involves appending the size compositions 
corresponding to each combination of “extended by” factor levels, renormalizing the extended 
composition to sum to 1, and then fitting the extended composition using a multinomial likelihood.  

Abundance/Biomass
by by	 extended	by
total total x
x x,	m

x,	mature	only x --
x,	m m
x,	s s

x,	m,	s x,	m --
s

x,	s
x,	m,	s

Size	Conpositions
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K. Devs vectors 
For TCSAM02 to accommodate arbitrary numbers of fisheries and time blocks, it is necessary to be able 
to define arbitrary numbers of devs vectors. This is currently not possible in ADMB, so TCSAM02 uses 
an alternative implementation of “devs” vectors from that implemented in ADMB. In TCSAM02, an n-
element “devs” vector is implemented using an (n-1)-element bounded parameter vector, with the final 
element of the “devs” vector defined as − ß/k`2 , where ß/ is the ith value of the parameter (or devs) 
vector, so that the sum over all elements of the devs vector is identically 0. Penalties are placed on the 
final element of the devs vector to ensure it is bounded in the same manner as the parameter vector. 

L. Priors for model parameters 
A prior probability distribution can be specified for any element of model parameter. The following 
distributions are available for use as priors: 

indicator parameters constants description 
none none none no prior applied 
ar1_normal +, π none random walk with normal deviates 
cauchy à,, æ none Cauchy pdf 
chisquare ø none ¿a pdf 
constant min, max none uniform pdf 
exponential ¥ none exponential pdf 
gamma ;, + none gamma pdf 
invchisquare ø none inverse ¿a pdf 
invgamma ;, + none inverse gamma pdf 
invgaussian +, ¥ none inverse Gaussian pdf 
lognormal median, CV none lognormal pdf 
logscale_normal median, CV none normal pdf on ln-scale 
normal +, π none normal pdf 
scaled_invchisquare ø, @ none inverse ¿a scaled pdf 
scaledCV_invchisquare ø, Ø¡ none inverse ¿a pdf, scaled by CV 
t ø none t distribution 
truncated_normal +, π min, max truncated normal pdf 

 

M. Parameters and other information determined outside the model 
Several nominal model parameters are not estimated in the model, rather they are fixed to values 
determined outside the model. These include Tanner crab handling mortality rates for discards in the crab 
fisheries (32.1%), the groundfish trawl fisheries (80%), and the groundfish pot fisheries (50%), as well 
the base rate for natural mortality (0.23 yr-1). Sex- and maturity-state-specific parameters for individual 
weight-at-size have also been determined outside the model, based on fits to data collected on the NMFS 
EBS bottom trawl survey (Daly et al., 2016). Weight-at-size, wx,m,z, is given by 

L$,%,' = é$,% ∙ =Dp,~ 

where 

sex maturity state ¬√,ƒ ≈√,ƒ 
male all states 0.000270 3.022134 
female immature 0.000562 2.816928 
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mature 0.000441 2.898686 
and size is in mm CW and weight is in kg. 

N. OFL calculations and stock status determination 
Overfishing level (OFL) calculations and 
stock status determination for Tanner crab are 
based on Tier 3 considerations for crab stocks 
as defined by the North Pacific Fishery 
Management Council (NPFMC; NPFMC 
2016). Tier 3 considerations require life 
history information such as natural mortality 
rates,  growth, and maturity but use proxies 
based on a spawner-per-recruit approach for 
FMSY, BMSY, and MSY because there is no 
reliable stock-recruit relationship. 
Equilibrium recruitment is assumed to be 
equal to the average recruitment over a selected time period (1982-present for Tanner crab). For Tier 3 
stocks, the proxy for BMSY is defined as 35% of longterm (equilibrium) mature male biomass (MMB) for 
the unfished stock (B0). The proxy FMSY for Tier 3 stocks is then the directed fishing mortality rate that 
results in B35% (i.e., F35%), while the MSY proxy is the longterm total (retained plus discard) catch 
mortality resulting from fishing at FMSY. The OFL calculation for the upcoming year is based on a sloping 
harvest control rule for FOFL (Fig. 2), the directed fishing mortality rate that results in the OFL. If the 
“current” MMB (projected to Feb. 15 of the upcoming year under the FOFL) is above BMSY (B35%), then 
FOFL=FMSY=F35%. If the current MMB is between i ∙ ∆H\« and BMSY, then FOFL is determined from the 
slope of the control rule. In either of these cases, the OFL is simply the projected total catch mortality 
under directed fishing at FOFL. If current MMB is less than i ∙ ∆H\«, then no directed fishing is allowed 
(FOFL=0) and the OFL is set to provide for stock rebuilding with bycatch in non-directed fisheries. Note 
that if current MMB is less than BMSY, then the process of determining FOFL is generally an iterative one. 

Stock status is determined by comparing “current” MMB with the Minimum Stock Size Threshold 
(MSST), which is defined as 0.5xBMSY: if “current” MMB is below the MSST, then the stock is 
overfished—otherwise, it is not overfished. 

N.1 Equilibrium conditions 
Both OFL calculations and stock status determination utilize equilibrium considerations, both equilibrium 
under unfished conditions (to determine B0  and B35%) and under fished conditions (to determine F35%). 
For Tier 3 stocks, because there is no reliable stock-recruit relationship, analytical solutions can be found 
for equilibrium conditions for any fishing mortality conditions. These solutions are described below (the 
notation differs somewhat from that used in previous sections). 

N.1.1 Population states 
The Tanner crab population on July 1 can be characterized by abundance-at-size in four population states: 

in– immature new shell crab 
io– immature old shell crab 
mn – mature new shell crab 
mo – mature old shell crab 

 
Fig. 2. The FOFL harvest control rule. 
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where each of these states represents a vector of abundance-at-size (i.e., a vector subscripted by size).  

N.1.2 Population processes 
The following processes then describe the dynamics of the population over a year: 

S1 – survival from start of year to time of molting/growth of immature crab, possibly including 
fishing mortality (a diagonal matrix) 

S2 – survival after time of molting/growth of immature crab to end of year, possibly including 
fishing mortality (a diagonal matrix) 

Φ – probability of an immature crab molting (pr(molt|z), where z is pre-molt size; a diagonal 
matrix) (pr(molt|z) is assumed to be 1 in TCSAM02). 

Θ – probability that a molt was terminal (pr(molt to maturity|z, molt), where z is post-molt size; a 
diagonal matrix) 

T – size transition matrix (a non-diagonal matrix) 
1 – identity matrix 
R –number of recruits by size (a vector) 

The matrices above are doubly–subscripted, and R is singly-subscripted, by size. Additionally, the 
matrices above (except for the identity matrix) can also be subscripted by population state (in, io, mn, mo) 
for generality. For example, survival of immature crab may differ between those that molted and those 
that skipped.  

N.1.3 Population dynamics  
The following equations then describe the development of the population from the beginning of one year 
to the beginning of the next: 

6)j = É + êa/k ∙ 1 − Θ/k ∙ …/k ∙ Φ/k ∙ ê2/k ∙ 6) + …/∏ ∙ 1 − Θ/∏ ∙ Φ/∏ ∙ ê2/∏ ∙ 6:   (N.1) 
6:j = êa/∏ ∙ 1 − Φ/k ∙ ê2/k ∙ 6) + 1 − Φ/∏ ∙ ê2/∏ ∙ 6:  (N.2) 
Æ)j = êa%k ∙ Θ/k ∙ …/k ∙ Φ/k ∙ ê2/k ∙ 6) + Θ/∏ ∙ …/∏ ∙ Φ/∏ ∙ ê2/∏ ∙ 6:   (N.3) 
Æ:j = êa%∏ ∙ ê2%k ∙ Æ) + ê2%∏ ∙ Æ:   (N.4) 

where “+” indicates year+1 and all recruits (R) are assumed to be new shell.  

N.1.4 Equilibrium equations 
The equations reflecting equilibrium conditions (i.e., 6)j = 6), etc.) are simply: 

6) = É + êa/k ∙ 1 − Θ/k ∙ …/k ∙ Φ/k ∙ ê2/k ∙ 6) + 1 − Θ/∏ ∙ …/∏ ∙ Φ/∏ ∙ ê2/∏ ∙ 6:   (N.5) 
6: = êa/∏ ∙ 1 − Φ/k ∙ ê2/k ∙ 6) + 1 − Φ/∏ ∙ ê2/∏ ∙ 6:  (N.6) 
Æ) = êa%k ∙ Θ/k ∙ …/k ∙ Φ/k ∙ ê2/k ∙ 6) + Θ/∏ ∙ …/∏ ∙ Φ/∏ ∙ ê2/∏ ∙ 6:   (N.7) 
Æ: = êa%∏ ∙ ê2%k ∙ Æ) + ê2%∏ ∙ Æ:  (N.8) 

where R above is now the equilibrium (longterm average) number of recruits-at-size vector. 

N.1.5 Equilibrium solution 
The equilibrium solution can be obtained by rewriting the above equilibrium equations as: 

6) = É + â ∙ 6) + ∆ ∙ 6: (N.9) 
6: = Ø ∙ 6) + ¶ ∙ 6:  (N.10) 
Æ) = ä ∙ 6) + ã ∙ 6:   (N.11) 
Æ: =   ∙ Æ) + À ∙ Æ:  (N.12) 
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where A, B, C, D, E, F, G, and H are square matrices. Solving for io in terms of in in eq. 10, one obtains 

6: = 1 − ¶ `2 ∙ Ø ∙ 6) (N.13) 

Plugging eq. 13 into 9 and solving for in yields 

6) = 1 − â − ∆ ∙ 1 − ¶ `2 ∙ Ø `2 ∙ É (N.14) 

Equations 13 for io and 14 for in can simply be plugged into eq. 11 to yield mn:  

Æ) = ä ∙ 6) + ã ∙ 6:  (N.15) 

while eq. 12 can then be solved for mo, yielding: 

Æ: = 1 − À `2 ∙   ∙ Æ)  (N.16) 

where (for completeness): 

â = êa/k ∙ 1 − Θ/k ∙ …/k ∙ Φ/k ∙ ê2/k  (N.17) 
∆ = êa/k ∙ 1 − Θ/∏ ∙ …/∏ ∙ Φ/∏ ∙ ê2/∏  (N.18) 
Ø = êa/∏ ∙ 1 − Φ/k ∙ ê2/k  (N.19) 
¶ = êa/∏ ∙ 1 − Φ/∏ ∙ ê2/∏  (N.20) 
ä = êa%k ∙ Θ/k ∙ …/k ∙ Φ/k ∙ ê2/k  (N.21) 
ã = êa%k ∙ Θ/∏ ∙ …/∏ ∙ Φ/∏ ∙ ê2/∏  (N.22) 
  = êa%∏ ∙ ê2%k  (N.23) 
À = êa%∏ ∙ ê2%∏  (N.24) 

Note that Θ, the size-specific conditional probability of a molt being the terminal molt-to-maturity, is 
defined above on the basis of post-molt, not pre-molt, size. This implies that whether or not a molt is 
terminal depends on the size a crab grows into, not the size it at which it molted. An alternative approach 
would be to assume that the conditional probability of terminal molt is determined by pre-molt size. This 
would result in an alternative set of equations, but these can be easily obtained from the ones above by 
simply reversing the order of the terms involving T and Θ (e.g., the term 1 − Θ/k ∙ …/k becomes …/k ∙
1 − Θ/k ). 

N.2 OFL calculations 
Because a number of the calculations involved in determining the OFL are iterative in nature, the OFL 
calculations do not involve automatically-differentiated (AD) variables. Additionally, they are only done 
after model convergence or when evaluating an MCMC chain. The steps involved in calculating the OFL 
are outlined as follows: 

1. The initial population numbers-at-sex/maturity state/shell condition/size for the upcoming year 
are copied to a non-AD array. 

2. Mean recruitment is estimated over a pre-determined time frame (currently 1982-present). 
3. The arrays associated with all population rates in the final year are copied to non-AD arrays for 

use in the upcoming year. 
4. Calculate the average selectivity and retention functions for all fisheries over the most recent 5-

year period. 
5. Determine the average maximum capture rates for all fisheries over the most recent 5-year period.  
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6. Using the equilibrium equations, calculate B0 for unfished stock (B35% = 0.35*B0). 
7. Using the equilibrium equations, iterate on the maximum capture rate for males in the directed 

fishery to find the one (F35%) that results in the equilibrium MMB = B35%. 
8. Calculate “current” MMB under directed fishing at F=F35% by projecting initial population (1) to 

Feb. 15. 
a. If current MMB > B35%, FOFL = F35%. The associated total catch mortality is OFL. 
b. Otherwise 

i. set directed F based on the harvest control rule and the ratio of the calculated 
current MMB to B35% 

ii. recalculate current MMB 
iii. iterate i-iii until current MMB doesn’t change between iterations. Then ãÃxZ =

ã	(< ãŒ•%) and the OFL is the associated total (retained plus discard) catch 
mortality. 
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Population processes

Figures and tables in this section present comparisons between alternative model scenarios for
estimated rates (e.g., natural mortality) or other attributes (e.g., molt increments) describing
inferred Tanner crab population processes.

Natural mortality

female male

all

im
m

ature

all

m
ature

1960 1980 2000 1960 1980 2000

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

year

na
tu

ra
l m

or
ta

lit
y

case

B0

B0.2016

B0a

B1

B1a

B1b

B1c

B2

B2a

B2b

B3

Natural Mortality

Figure 1: Estimated natural mortality rates, by year.
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Probability of terminal molt
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Figure 2: Probability of terminal molt.

604
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Figure 3: Mean growth.
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Growth matrices

Growth matrices for each model case are compared as bubble plots in the following figure.
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Figure 4: Estimated growth matrices, as bubble plots, for scenario B0.
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Figure 5: Estimated growth matrices, as bubble plots, for scenario B0.2016.
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Figure 6: Estimated growth matrices, as bubble plots, for scenario B0a.
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B1
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Figure 7: Estimated growth matrices, as bubble plots, for scenario B1.
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Figure 8: Estimated growth matrices, as bubble plots, for scenario B1a.
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B1b
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Figure 9: Estimated growth matrices, as bubble plots, for scenario B1b.
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B1c
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Figure 10: Estimated growth matrices, as bubble plots, for scenario B1c.
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Figure 11: Estimated growth matrices, as bubble plots, for scenario B2.
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Figure 12: Estimated growth matrices, as bubble plots, for scenario B2a.
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B2b
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Figure 13: Estimated growth matrices, as bubble plots, for scenario B2b.
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Figure 14: Estimated growth matrices, as bubble plots, for scenario B3.
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The same growth matrices are compared in the following figure(s) as line plots for each pre-molt
size bin, by sex.
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Figure 15: Growth matrices for males during 1948-2016, 1948-2015, page 1.
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Figure 16: Growth matrices for males during 1948-2016, 1948-2015, page 2.
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Figure 17: Growth matrices for males during 1948-2016, 1948-2015, page 3.
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Figure 18: Growth matrices for females during 1948-2016, 1948-2015, page 1.
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Figure 19: Growth matrices for females during 1948-2016, 1948-2015, page 2.
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Figure 20: Growth matrices for females during 1948-2016, 1948-2015, page 3.
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Size distribution for recruits
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Figure 21: Size distribution for recruits.
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Model fits
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Figure 22: Model fits to EBS.
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Figure 23: Negative log-likelihood values for fits to EBS.
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Figure 24: Z-scores for fits to EBS.
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Figure 25: Model fits to Kodiak.
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Figure 26: Negative log-likelihood values for fits to Kodiak.
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Figure 27: Z-scores for fits to Kodiak.
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Figure 28: Comparison of observed and predicted survey biomass for NMFS trawl survey.
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Figure 29: Comparison of observed and predicted survey biomass for NMFS trawl survey. Recent
time period.

[1] “NMFS trawl survey”
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Figure 30: Z-scores for index catch biomass in NMFS trawl survey.
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Fishery retained catch biomass
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Figure 31: Comparison of observed and predicted retained catch mortality for TCF.
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Figure 32: Comparison of observed and predicted retained catch mortality for TCF. Recent time
period.

[1] “TCF”
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Figure 33: Z-scores for retained catch biomass in TCF.
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Fishery total catch biomass
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Figure 34: Comparison of observed and predicted total catch for TCF.
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Figure 35: Comparison of observed and predicted total catch for TCF. Recent time period.
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Figure 36: Comparison of observed and predicted total catch for SCF.
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Figure 37: Comparison of observed and predicted total catch for SCF. Recent time period.
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Figure 38: Comparison of observed and predicted total catch for GTF.
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Figure 39: Comparison of observed and predicted total catch for GTF. Recent time period.
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Figure 40: Comparison of observed and predicted total catch for RKF.
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Figure 41: Comparison of observed and predicted total catch for RKF. Recent time period.
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Figure 42: Comparison of observed and predicted total catch for GF.FixedGear.
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Figure 43: Comparison of observed and predicted total catch for GF.FixedGear. Recent time
period.
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Figure 44: Comparison of observed and predicted total catch for GF.TrawlGear.
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Figure 45: Comparison of observed and predicted total catch for GF.TrawlGear. Recent time
period.

[1] “TCF” “SCF” “GTF” “RKF”
[5] “GF.FixedGear” “GF.TrawlGear”

647



TCF

fem
ale

m
ale

1960 1980 2000

0

1

−0.5

0.0

0.5

year

z−
sc

or
e

case

B0

B0.2016

B0a

B1

B1a

B1b

B1c

B2

B2a

B2b

B3

TCF

Figure 46: Z-scores for total catch biomass in TCF.
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Figure 47: Z-scores for total catch biomass in SCF.
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Figure 48: Z-scores for total catch biomass in GTF.
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Figure 49: Z-scores for total catch biomass in RKF.
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Figure 50: Z-scores for total catch biomass in GF.FixedGear.
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Figure 51: Z-scores for total catch biomass in GF.TrawlGear.
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Mean survey size compositions
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Figure 52: Comparison of observed and predicted mean survey size comps for NMFS trawl survey.
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Fishery retained catch mean size compositions
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Figure 53: Comparison of observed and predicted mean retained catch size comps for TCF.
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Figure 54: Comparison of observed and predicted mean total catch size comps for GTF.
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Figure 55: Comparison of observed and predicted mean total catch size comps for RKF.
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Figure 56: Comparison of observed and predicted mean total catch size comps for SCF.
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Figure 57: Comparison of observed and predicted mean total catch size comps for TCF.
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Figure 58: Comparison of observed and predicted mean total catch size comps for GF.FixedGear.
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Figure 59: Comparison of observed and predicted mean total catch size comps for GF.TrawlGear.
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Figure 60: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.
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Figure 61: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Figure 62: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0a.
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Figure 63: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1.
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Figure 64: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1a.
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Figure 65: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1b.
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Figure 66: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1c.
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Figure 67: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2.
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Figure 68: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2a.
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Figure 69: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.
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Figure 70: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B3.
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Figure 71: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.
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Figure 72: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Figure 73: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0a.
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Figure 74: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1.
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Figure 75: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1a.
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Figure 76: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1b.
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Figure 77: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1c.
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Figure 78: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2.
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Figure 79: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2a.
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Figure 80: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.
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Figure 81: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B3.
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Figure 82: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.
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Figure 83: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Figure 84: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0a.
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Figure 85: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1.
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Figure 86: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1a.
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Figure 87: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1b.
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Figure 88: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1c.
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Figure 89: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2.
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Figure 90: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2a.
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Figure 91: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.

694



B3

female

all shell

im
m

ature

1980 1990 2000 2010

50

100

150

year

si
ze

 (
m

m
 C

W
)

val

0.0

2.5

5.0

7.5

sign

<0

>0

NMFS trawl survey

Figure 92: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B3.
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Figure 93: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.
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Figure 94: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Figure 95: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0a.
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Figure 96: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1.
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Figure 97: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1a.
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Figure 98: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1b.
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Figure 99: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B1c.
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Figure 100: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2.
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Figure 101: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2a.
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Figure 102: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.
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Figure 103: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B3.
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Effective Ns for survey size compositions
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Figure 104: Input and effective sample sizes from retained catch size compositions from the NMFS trawl survey.
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Fishery retained catch size composition residuals
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Figure 105: Pearson’s residuals for proportions-at-size from the TCF for scenario B0.
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Figure 106: Pearson’s residuals for proportions-at-size from the TCF for scenario B0.2016.
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Figure 107: Pearson’s residuals for proportions-at-size from the TCF for scenario B0a.
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Figure 108: Pearson’s residuals for proportions-at-size from the TCF for scenario B1.
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Figure 109: Pearson’s residuals for proportions-at-size from the TCF for scenario B1a.
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Figure 110: Pearson’s residuals for proportions-at-size from the TCF for scenario B1b.
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Figure 111: Pearson’s residuals for proportions-at-size from the TCF for scenario B1c.
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Figure 112: Pearson’s residuals for proportions-at-size from the TCF for scenario B2.
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Figure 113: Pearson’s residuals for proportions-at-size from the TCF for scenario B2a.
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Figure 114: Pearson’s residuals for proportions-at-size from the TCF for scenario B2b.
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Figure 115: Pearson’s residuals for proportions-at-size from the TCF for scenario B3.
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Effective Ns for retained catch size compositions
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Figure 116: Input and effective sample sizes from retained catch size compositions from the TCF fishery.
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Fishery total catch size composition residuals
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Figure 117: Pearson’s residuals for proportions-at-size from the TCF for scenario B0.
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Figure 118: Pearson’s residuals for proportions-at-size from the TCF for scenario B0.2016.

721



B0a

male

B0a

female

all shell

all m
aturity

1990 1995 2000 2005 2010 20151990 1995 2000 2005 2010 2015

50

100

150

year

si
ze

 (
m

m
 C

W
)

val

0.0

0.5

1.0

1.5

2.0

sign

<0

>0

TCF

Figure 119: Pearson’s residuals for proportions-at-size from the TCF for scenario B0a.
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Figure 120: Pearson’s residuals for proportions-at-size from the TCF for scenario B1.
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Figure 121: Pearson’s residuals for proportions-at-size from the TCF for scenario B1a.
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Figure 122: Pearson’s residuals for proportions-at-size from the TCF for scenario B1b.
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Figure 123: Pearson’s residuals for proportions-at-size from the TCF for scenario B1c.
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Figure 124: Pearson’s residuals for proportions-at-size from the TCF for scenario B2.
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Figure 125: Pearson’s residuals for proportions-at-size from the TCF for scenario B2a.

728



B2b

male

B2b

female

all shell

all m
aturity

1990 1995 2000 2005 2010 20151990 1995 2000 2005 2010 2015

50

100

150

year

si
ze

 (
m

m
 C

W
)

val

0.0

0.5

1.0

1.5

2.0

sign

<0

>0

TCF

Figure 126: Pearson’s residuals for proportions-at-size from the TCF for scenario B2b.
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Figure 127: Pearson’s residuals for proportions-at-size from the TCF for scenario B3.
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Figure 128: Pearson’s residuals for proportions-at-size from the SCF for scenario B0.
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Figure 129: Pearson’s residuals for proportions-at-size from the SCF for scenario B0.2016.
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Figure 130: Pearson’s residuals for proportions-at-size from the SCF for scenario B0a.
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Figure 131: Pearson’s residuals for proportions-at-size from the SCF for scenario B1.
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Figure 132: Pearson’s residuals for proportions-at-size from the SCF for scenario B1a.
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Figure 133: Pearson’s residuals for proportions-at-size from the SCF for scenario B1b.
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Figure 134: Pearson’s residuals for proportions-at-size from the SCF for scenario B1c.
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Figure 135: Pearson’s residuals for proportions-at-size from the SCF for scenario B2.
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Figure 136: Pearson’s residuals for proportions-at-size from the SCF for scenario B2a.
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Figure 137: Pearson’s residuals for proportions-at-size from the SCF for scenario B2b.
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Figure 138: Pearson’s residuals for proportions-at-size from the SCF for scenario B3.
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Figure 139: Pearson’s residuals for proportions-at-size from the GTF for scenario B0.
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Figure 140: Pearson’s residuals for proportions-at-size from the GTF for scenario B0.2016.
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Figure 141: Pearson’s residuals for proportions-at-size from the GTF for scenario B0a.
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Figure 142: Pearson’s residuals for proportions-at-size from the GTF for scenario B1.
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Figure 143: Pearson’s residuals for proportions-at-size from the GTF for scenario B1a.
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Figure 144: Pearson’s residuals for proportions-at-size from the GTF for scenario B1b.
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Figure 145: Pearson’s residuals for proportions-at-size from the GTF for scenario B1c.
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Figure 146: Pearson’s residuals for proportions-at-size from the GTF for scenario B2.
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Figure 147: Pearson’s residuals for proportions-at-size from the GTF for scenario B2a.
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Figure 148: Pearson’s residuals for proportions-at-size from the GTF for scenario B2b.
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Figure 149: Pearson’s residuals for proportions-at-size from the GTF for scenario B3.
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Figure 150: Pearson’s residuals for proportions-at-size from the RKF for scenario B0.
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Figure 151: Pearson’s residuals for proportions-at-size from the RKF for scenario B0.2016.
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Figure 152: Pearson’s residuals for proportions-at-size from the RKF for scenario B0a.
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Figure 153: Pearson’s residuals for proportions-at-size from the RKF for scenario B1.
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Figure 154: Pearson’s residuals for proportions-at-size from the RKF for scenario B1a.
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Figure 155: Pearson’s residuals for proportions-at-size from the RKF for scenario B1b.
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Figure 156: Pearson’s residuals for proportions-at-size from the RKF for scenario B1c.
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Figure 157: Pearson’s residuals for proportions-at-size from the RKF for scenario B2.
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Figure 158: Pearson’s residuals for proportions-at-size from the RKF for scenario B2a.
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Figure 159: Pearson’s residuals for proportions-at-size from the RKF for scenario B2b.
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Figure 160: Pearson’s residuals for proportions-at-size from the RKF for scenario B3.
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Figure 161: Pearson’s residuals for proportions-at-size from the GF.FixedGear for scenario B3.
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Figure 162: Pearson’s residuals for proportions-at-size from the GF.TrawlGear for scenario B3.
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Effective Ns for total catch size compositions
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Figure 163: Input and effective sample sizes from total catch size compositions from the TCF fishery.
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Figure 164: Input and effective sample sizes from total catch size compositions from the SCF fishery.
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Figure 165: Input and effective sample sizes from total catch size compositions from the GTF fishery.
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Figure 166: Input and effective sample sizes from total catch size compositions from the RKF fishery.
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Figure 167: Input and effective sample sizes from total catch size compositions from the GF.FixedGear fishery.
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Figure 168: Input and effective sample sizes from total catch size compositions from the GF.TrawlGear fishery.
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Figure 169: Survey catchabilities for NMFS trawl survey.
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Figure 170: NMFS trawl survey.1
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Figure 171: Fishery catchabilities for GTF.
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Figure 172: Fishery catchabilities for RKF.
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Figure 173: Fishery catchabilities for SCF.
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Figure 174: Fishery catchabilities for TCF.
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Figure 175: Fishery catchabilities for GF.FixedGear.
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Figure 176: Fishery catchabilities for GF.TrawlGear.
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Figure 177: Selectivity functions for GTF(1 of 6).
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Figure 178: Selectivity functions for GTF(2 of 6).
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Figure 179: Selectivity functions for GTF(3 of 6).
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Figure 180: Selectivity functions for GTF(4 of 6).
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Figure 181: Selectivity functions for GTF(5 of 6).
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Figure 182: Selectivity functions for GTF(6 of 6).
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Figure 183: Selectivity functions for RKF(1 of 6).
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Figure 184: Selectivity functions for RKF(2 of 6).
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Figure 185: Selectivity functions for RKF(3 of 6).
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Figure 186: Selectivity functions for RKF(4 of 6).
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Figure 187: Selectivity functions for RKF(5 of 6).
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Figure 188: Selectivity functions for RKF(6 of 6).
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Figure 189: Selectivity functions for SCF(1 of 6).
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Figure 190: Selectivity functions for SCF(2 of 6).
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Figure 191: Selectivity functions for SCF(3 of 6).
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Figure 192: Selectivity functions for SCF(4 of 6).
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Figure 193: Selectivity functions for SCF(5 of 6).
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Figure 194: Selectivity functions for SCF(6 of 6).
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Figure 195: Selectivity functions for TCF(1 of 4).
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Figure 196: Selectivity functions for TCF(2 of 4).
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Figure 197: Selectivity functions for TCF(3 of 4).
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Figure 198: Selectivity functions for TCF(4 of 4).
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Figure 199: Selectivity functions for GF.FixedGear(1 of 5).

802



female male

1996
1997

1998
1999

2000

50 100 150 50 100 150

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

size (mm CW)

S
el

ec
tiv

ity

case

B3

B3

GF.FixedGear

Figure 200: Selectivity functions for GF.FixedGear(2 of 5).
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Figure 201: Selectivity functions for GF.FixedGear(3 of 5).
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Figure 202: Selectivity functions for GF.FixedGear(4 of 5).
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Figure 203: Selectivity functions for GF.FixedGear(5 of 5).
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Figure 204: Selectivity functions for GF.TrawlGear(1 of 5).
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Figure 205: Selectivity functions for GF.TrawlGear(2 of 5).
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Figure 206: Selectivity functions for GF.TrawlGear(3 of 5).
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Figure 207: Selectivity functions for GF.TrawlGear(4 of 5).
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Figure 208: Selectivity functions for GF.TrawlGear(5 of 5).
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Retention functions
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Figure 209: Retention functions for TCF(1 of 4).
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Figure 210: Retention functions for TCF(2 of 4).
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Figure 211: Retention functions for TCF(3 of 4).
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Figure 212: Retention functions for TCF(4 of 4).
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Population quantities

Figures and tables in this section present comparisons between alternative model scenarios for
estimated quantities (e.g., recruitment, abundance time series) describing the inferred Tanner crab
population.
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Figure 213: Estimated annual recruitment.
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Figure 214: Estimated recent recruitment.
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Figure 215: Estimated annual recruitment, on ln-scale.
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Figure 216: Estimated recent recruitment, on ln-scale.
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Figure 217: Estimated annual mature biomass.
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Figure 218: Estimated recent mature biomass.
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Figure 219: Estimated annual mature biomass, on ln-scale.
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Figure 220: Estimated recent mature biomass, on ln-scale.
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Figure 221: Population abundance trends.
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Figure 222: Recent population abundance trends.
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Figure 223: Ln-scale population abundance trends.
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Figure 224: Recent ln-scale population abundance trends.
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Population processes

Figures and tables in this section present comparisons between alternative model scenarios for
estimated rates (e.g., natural mortality) or other attributes (e.g., molt increments) describing
inferred Tanner crab population processes.
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Figure 1: Estimated natural mortality rates, by year.
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Probability of terminal molt
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Figure 2: Probability of terminal molt.
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Mean growth

fem
ale

m
ale

50 100 150

50

100

150

200

250

50

100

150

200

250

pre−molt size (mm CW)

po
st

−
m

ol
t s

iz
e 

(m
m

 C
W

)

case

B2b

B0.2016

Mean Growth

Figure 3: Mean growth.
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Growth matrices

Growth matrices for each model case are compared as bubble plots in the following figure.
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Figure 4: Estimated growth matrices, as bubble plots, for scenario B2b.
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B0.2016
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Figure 5: Estimated growth matrices, as bubble plots, for scenario B0.2016.
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The same growth matrices are compared in the following figure(s) as line plots for each pre-molt
size bin, by sex.
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Figure 6: Growth matrices for males during 1948-2016, 1948-2015, page 1.
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Figure 7: Growth matrices for males during 1948-2016, 1948-2015, page 2.
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Figure 8: Growth matrices for males during 1948-2016, 1948-2015, page 3.
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Figure 9: Growth matrices for females during 1948-2016, 1948-2015, page 1.
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Figure 10: Growth matrices for females during 1948-2016, 1948-2015, page 2.
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Figure 11: Growth matrices for females during 1948-2016, 1948-2015, page 3.
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Figure 12: Size distribution for recruits.
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Figure 13: Model fits to EBS.
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Figure 14: Negative log-likelihood values for fits to EBS.
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Figure 15: Z-scores for fits to EBS.
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Figure 16: Model fits to Kodiak.

851



fem
ale

m
ale

0 50 100

0

10

20

30

40

0

10

20

30

40

pre−molt size (mm CW)

N
LL

s

case

B2b

B0.2016

Kodiak

Figure 17: Negative log-likelihood values for fits to Kodiak.
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Figure 18: Z-scores for fits to Kodiak.
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Figure 19: Comparison of observed and predicted survey biomass for NMFS trawl survey.
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Figure 20: Comparison of observed and predicted survey biomass for NMFS trawl survey. Recent
time period.
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Figure 21: Z-scores for index catch biomass in NMFS trawl survey.
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Figure 22: Comparison of observed and predicted retained catch mortality for TCF.
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Figure 23: Comparison of observed and predicted retained catch mortality for TCF. Recent time
period.
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Figure 24: Z-scores for retained catch biomass in TCF.
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Figure 25: Comparison of observed and predicted total catch for TCF.
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Figure 26: Comparison of observed and predicted total catch for TCF. Recent time period.
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Figure 27: Comparison of observed and predicted total catch for SCF.
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Figure 28: Comparison of observed and predicted total catch for SCF. Recent time period.
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Figure 29: Comparison of observed and predicted total catch for GTF.
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Figure 30: Comparison of observed and predicted total catch for GTF. Recent time period.
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Figure 31: Comparison of observed and predicted total catch for RKF.
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Figure 32: Comparison of observed and predicted total catch for RKF. Recent time period.
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Figure 33: Z-scores for total catch biomass in TCF.
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Figure 34: Z-scores for total catch biomass in SCF.
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Figure 35: Z-scores for total catch biomass in GTF.
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Figure 36: Z-scores for total catch biomass in RKF.
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Mean survey size compositions
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Figure 37: Comparison of observed and predicted mean survey size comps for NMFS trawl survey.
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Figure 38: Comparison of observed and predicted mean retained catch size comps for TCF.

873



Fishery total catch mean size compositions

m
ale

fem
ale

50 100 150

0.00

0.02

0.04

0.06

0.00

0.02

0.04

size (mm CW)

m
ea

n 
to

ta
l c

at
ch

 s
iz

e 
co

m
ps

predicted

B2b

B0.2016

predicted

B0.2016

B2b

observed

B2b

GTF

Figure 39: Comparison of observed and predicted mean total catch size comps for GTF.
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Figure 40: Comparison of observed and predicted mean total catch size comps for RKF.
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Figure 41: Comparison of observed and predicted mean total catch size comps for SCF.
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Figure 42: Comparison of observed and predicted mean total catch size comps for TCF.
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Survey size composition residuals
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Figure 43: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.
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Figure 44: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Figure 45: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.
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Figure 46: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Figure 47: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.
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Figure 48: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Figure 49: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B2b.
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Figure 50: Pearson’s residuals for proportions-at-size from the NMFS trawl survey for scenario B0.2016.
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Effective Ns for survey size compositions
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Figure 51: Input and effective sample sizes from retained catch size compositions from the NMFS trawl survey.
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Fishery retained catch size composition residuals
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Figure 52: Pearson’s residuals for proportions-at-size from the TCF for scenario B2b.
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Figure 53: Pearson’s residuals for proportions-at-size from the TCF for scenario B0.2016.
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Figure 54: Input and effective sample sizes from retained catch size compositions from the TCF fishery.
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Figure 55: Pearson’s residuals for proportions-at-size from the TCF for scenario B2b.
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Figure 56: Pearson’s residuals for proportions-at-size from the TCF for scenario B0.2016.
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Figure 57: Pearson’s residuals for proportions-at-size from the SCF for scenario B2b.
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Figure 58: Pearson’s residuals for proportions-at-size from the SCF for scenario B0.2016.
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Figure 59: Pearson’s residuals for proportions-at-size from the GTF for scenario B2b.

895



B0.2016

male

B0.2016

female

all shell

all m
aturity

1980 1990 2000 2010 1980 1990 2000 2010

50

100

150

year

si
ze

 (
m

m
 C

W
)

val

0

1

2

3

4

5

sign

<0

>0

GTF

Figure 60: Pearson’s residuals for proportions-at-size from the GTF for scenario B0.2016.
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Figure 61: Pearson’s residuals for proportions-at-size from the RKF for scenario B2b.
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Figure 62: Pearson’s residuals for proportions-at-size from the RKF for scenario B0.2016.
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Effective Ns for total catch size compositions
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Figure 63: Input and effective sample sizes from total catch size compositions from the TCF fishery.
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Figure 64: Input and effective sample sizes from total catch size compositions from the SCF fishery.
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Figure 65: Input and effective sample sizes from total catch size compositions from the GTF fishery.
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Figure 66: Input and effective sample sizes from total catch size compositions from the RKF fishery.
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Figure 67: Survey catchabilities for NMFS trawl survey.
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Figure 68: NMFS trawl survey.1
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Figure 69: Fishery catchabilities for GTF.
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Figure 70: Fishery catchabilities for RKF.
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Figure 71: Fishery catchabilities for SCF.
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Figure 72: Fishery catchabilities for TCF.
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Figure 73: Selectivity functions for GTF(1 of 6).
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Figure 74: Selectivity functions for GTF(2 of 6).
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Figure 75: Selectivity functions for GTF(3 of 6).
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Figure 76: Selectivity functions for GTF(4 of 6).
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Figure 77: Selectivity functions for GTF(5 of 6).
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Figure 78: Selectivity functions for GTF(6 of 6).
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Figure 79: Selectivity functions for RKF(1 of 6).
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Figure 80: Selectivity functions for RKF(2 of 6).
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Figure 81: Selectivity functions for RKF(3 of 6).
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Figure 82: Selectivity functions for RKF(4 of 6).
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Figure 83: Selectivity functions for RKF(5 of 6).
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Figure 84: Selectivity functions for RKF(6 of 6).
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Figure 85: Selectivity functions for SCF(1 of 6).

921



female male

1991
1992

1993
1994

1995

50 100 150 50 100 150

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

size (mm CW)

S
el

ec
tiv

ity

case

B2b

B0.2016

B2b

B0.2016

SCF

Figure 86: Selectivity functions for SCF(2 of 6).
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Figure 87: Selectivity functions for SCF(3 of 6).
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Figure 88: Selectivity functions for SCF(4 of 6).
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Figure 89: Selectivity functions for SCF(5 of 6).
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Figure 90: Selectivity functions for SCF(6 of 6).
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Figure 91: Selectivity functions for TCF(1 of 4).
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Figure 92: Selectivity functions for TCF(2 of 4).
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Figure 93: Selectivity functions for TCF(3 of 4).
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Figure 94: Selectivity functions for TCF(4 of 4).
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Retention functions
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Figure 95: Retention functions for TCF(1 of 4).
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Figure 96: Retention functions for TCF(2 of 4).
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Figure 97: Retention functions for TCF(3 of 4).
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Figure 98: Retention functions for TCF(4 of 4).
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Population quantities

Figures and tables in this section present comparisons between alternative model scenarios for
estimated quantities (e.g., recruitment, abundance time series) describing the inferred Tanner crab
population.
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Figure 99: Estimated annual recruitment.
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Figure 100: Estimated recent recruitment.
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Figure 101: Estimated annual recruitment, on ln-scale.
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Figure 102: Estimated recent recruitment, on ln-scale.
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Figure 103: Estimated annual mature biomass.
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Figure 104: Estimated recent mature biomass.
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Figure 105: Estimated annual mature biomass, on ln-scale.
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Figure 106: Estimated recent mature biomass, on ln-scale.
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Population abundance
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Figure 107: Population abundance trends.
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Figure 108: Recent population abundance trends.
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Figure 109: Ln-scale population abundance trends.
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Figure 110: Recent ln-scale population abundance trends.
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Figure 112: Recent population biomass trends.
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2017 Stock assessment and fishery evaluation report for the Pribilof Island red king crab fishery of 

the Bering Sea and Aleutian Islands regions 

B.J. Turnock, C.S. Szuwalski and R.J. Foy 

Alaska Fishery Science Center 

National Marine Fishery Service 

National Oceanic and Atmospheric Administration 

Executive summary 

1. Stock: Pribilof Islands red king crab, Paralithodes camtschaticus

2. Catches: Retained catches have not occurred since 1998/1999. Bycatch and discards have been

decreasing since 2012/13, and are low relative to the OFL.

3. Stock biomass:

a. According to the random effects model, mature male biomass decreased from 2007 to 2010

and increased during 2011 through 2015, then declined in 2016 and 2017.  MMB at mating

was estimated to be above BMSY (4,604 t) in 2016/17 at 4,788 t.

b. Observed survey mature male biomass (≥120mm) declined from 15,173 t in 2015 to 4,150

t in 2016 and 3,658 t in 2017.  Total female biomass declined from 1,898 t in 2016 to 505

t in 2017.

4. Recruitment: No estimates of recruitment are available.

5. Recent management statistics:  OFL and ABC in 2011/12 was based on the unweighted 3-year

running average.  Biomass in 2011/2012 and OFL and ABC from 2012/13 to 2015/16 were based

on the weighted 3-year running average using the inverse of the variance. Biomass (MMB) in

2016/17 and 2017/18 is based on the random effects model (CV=2.24) estimated biomass.

Units in tons 

Year 
MSST Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2011/12 2,571 2,775 0 0 5.4 393 307 

2012/13 2,609 4,025 0 0 13.1 569 455 

2013/14 2,582 4,679  0 0 2.25 903 718 

2014/15 2,871 8,894  0 0 1.76 1,359 1,019 

2015/16    2,756 9,062  0 0 0.32 2,119 1,467 

2016/17 2,302A 4,788 A 0 0 0.49 1,492 1,096 

2017/18 2,302 A 3,364 A 482 362 

Units in millions of pounds 

Year 
MSST Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2011/12 5.67 6.12 0 0 0.011 0.87 0.68 

2012/13 5.75 8.87 0 0 0.029 1.25 1.00 

2013/14 5.66 10.32 0 0 0.005 1.99 1.58 

2014/15 6.33 19.61 0 0 0.004 3.00 2.25 

2015/16 6.08 19.99 0 0 <0.001 4.67 3.23 

2016/17 5.07 A 10.56 A 0 0 0.001 3.22 2.42 

2017/18 5.07 A 7.42 A 1.06 0.80 

A – Based on the Random effects model (CV=2.24) 
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The OFL is the total catch OFL for each year. The stock was above MSST in 2016/2017 according to the 

random effects model (CV=2.24) at 4,788 t (MSST = 2,302 t).  The catch in 2016/17 (0.49 t) was below 

the OFL (1,492 t) and the ABC (1,096 t). 

 

6. 2017/2018 OFL projections: 

All biomass in tons 
Tier Assessment 

Method 

OFL BMSY 

 

MMB 

At 

matingA  

B/BMSY 

(MMB) 

MMB at 

mating 

Feb 15 

2017 

 Years to 

define 

BMSY 

FMSY ABC 

(p*=0.4

9) 

ABC 

= 

0.75*

OFL 

4b Running 

Average 

 

330 

 

5,502 

 

3,139 

 

  

0.57 

 

6,445 

 

1

.

0 

1991/1992-

2016/2017 

(MMB) 

 

0.06 319 
 

248 

4b Random 

Effects 

Model fixed   

442 4,711 3,274 0.69 4,683 

1 1991/1992-

2016/2017 

(MMB) 

0.12 428 332 

4b Random 

Effects 

Model prior 

cv 2.24 

482 4,604 3,364 0.73 4,788 

1 1991/1992-

2016/2017 

(MMB) 
0.13 467 362 

4b Random 

Effects 

Model prior 

cv 4.0 

573 4,397 3,563 0.81 4,961 

1 1991/1992-

2016/2017 

(MMB) 
0.14 554 429 

4b Observed 

Survey 

291 5,502 2,971 0.54 3,681 1 1991/1992-

2016/2017 

(MMB) 

0.09 280 218 

A: Feb. 15, 2018 fishing at OFL 

For the following Table units are in millions of pounds. 

 
Tier Assessment 

Method 

OFL BMSY 

 

MMB 

At 

matingA  

B/BMSY 

(MMB) 

MMB at 

mating 

Feb 15 

2017 

 Years to 

define BMSY 

FMSY ABC 

(p*=0

.49) 

ABC 

= 

0.75*

OFL 

4b Running 

Average 

0.73 12.13 6.92 0.57 14.21 1 1991/1992-

2016/2017 

(MMB) 

0.06 0.70 0.55 

4b Random 

Effects 

Model fixed   

0.97 10.39 7.22 0.69 10.32 1 1991/1992-

2016/2017 

(MMB) 

0.12 0.94 0.73 

4b Random 

Effects 

Model prior 

cv 2.24 

1.06 10.15 7.42 0.73 10.56 1 1991/1992-

2016/2017 

(MMB) 

0.13 1.03 0.80 

4b Random 

Effects 

Model prior 

cv 4.0 

1.26 9.69 7.85 0.81 10.94 1 1991/1992-

2016/2017 

(MMB) 

0.14 1.22 0.95 

4b Observed 

Survey 

0.64 12.13 6.55 0.54 8.12 1 1991/1992-

2016/2017 

(MMB) 

0.09 0.62 0.48 

A. Feb. 15, 2018 fishing at OFL 
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7. Probability distributions of the OFL for tier 4 methods were generated by bootstrapping values of 

MMB in the current year with an additional sigma of 0.3.  

8. Basis for ABC: ABCs were identified as the 49th percentile of the distributions of the OFL given a 

p-star of 0.49.  In addition the ABC was estimated using a 25% buffer from the OFL as 

recommended by the CPT and SSC in 2016/17. 

 

Summary of Major Changes: 

1. Management: None. 

2. Input data: Survey (2017) and bycatch (2016/17) data were incorporated into the assessment.   

3. Assessment methodology: The 3-year running average and random effects models only are 

presented in this assessment. 

4. Assessment results: Male biomass estimates from the 3-year running average and a random effects 

model were fit to survey male biomass ≥120mm with process error fixed at the value estimated 

from a simple exponential model and with a prior with mean equal to the process error estimated 

from the simple exponential model and with cv=2.24 and cv=4.0.  Tier 4 control rules are used to 

estimate MMB at mating, OFL, and ABC for the four models. 

 

CPT comments May 2017 

 

The CPT recommended that the author continue to develop the random effects model and consider the 

following for models at the September CPT: 

1.     Better describe the exponential smoother methods and bring forward one model with the exponential 

model result as a prior and one model with the process error based on the exponential model fixed. 

Included are 3 runs of the random effects model: 1) fixed process error at simple exponential model value, 

2) with cv of 2.2 in the prior, and 3) cv of 4.0 in the prior. 

2.     Status quo 3-year running average. 

Included. 

3.     Consider fitting to the female biomass to determine if assessing the effects of single sex high biomass 

tows are informative for determining the observed error relative to process error. 

The random effects model did not converge using female biomass.  The simple exponential model was fit 

to female biomass to compare the estimate of process error to fitting male biomass. 

4.     Consider fitting spatial models (e.g., Thorson et al. 2015) to the survey data that may better account 

for zero tows and high biomass tows.  

Not done in this assessment.   

 

 

SSC comments June 2017 

 

There were no comments specific to the Pribilof red king crab assessment by the SSC in June 2017. 
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1. Introduction 

1.1 Distribution 

Red king crabs, Paralithodes camtschaticus, (Tilesius, 1815) are anomurans in the family Lithodidae and 

are distributed from the Bering Sea south to the Queen Charlotte Islands and to Japan in the western Pacific 

(Jensen 1995; Figure 1). Red king crabs have also been introduced and become established in the Barents 

Sea (Jørstad et al. 2002). The Pribilof Islands red king crab stock is located in the Pribilof District of the 

Bering Sea Management Area Q. The Pribilof District is defined as Bering Sea waters south of the latitude 

of Cape Newenham (58° 39’ N lat.), west of 168° W long., east of the United States – Russian convention 

line of 1867 as amended in 1991, north of 54° 36’ N lat. between 168° 00’ N and 171° 00’ W long and 

north of 55° 30’N lat. between 171° 00’ W. long and the U.S.-Russian boundary (Figure 2). 

 

1.2 Stock structure 

Populations of red king crab in the eastern Bering Sea (EBS) for which genetic studies have been performed 

appear to be composed of four stocks: Aleutian Islands, Norton Sound, Southeast Alaska, and the rest of 

the EBS. Seeb and Smith (2005) reported micro-satellite samples from Bristol Bay, Port Moller, and the 

Pribilof Islands were divergent from the Aleutian Islands and Norton Sound. A more recent study describes 

the genetic distinction of Southeast Alaska red king crab compared to Kodiak and the Bering Sea; the latter 

two being similar (Grant and Cheng 2012). 

 

1.3 Life history 

Red king crabs reproduce annually and mating occurs between hard-shelled males and soft-shelled females. 

Red king crabs do not have spermathecae and cannot store sperm, therefore a female must mate every year 

to produce a fertilized clutch of eggs (Powell and Nickerson 1965). A pre-mating embrace is formed 3-7 

days prior to female ecdysis, the female molts, and copulation occurs within hours. The male inverts the 

female so they are abdomen to abdomen and then the male extends his fifth pair of periopods to deposit 

sperm on the female’s gonopores. Eggs are fertilized after copulation as they are extruded through the 

gonopores located at the ventral surface of the coxopides of the third periopods. The eggs form a spongelike 

mass, adhering to the setae on the pleopods where they are brooded until hatching (Powell and Nickerson 

1965). Fecundity estimates are not available for Pribilof Islands red king crab, but range from 42,736 to 

497,306 for Bristol Bay red king crab (Otto et al. 1990). The estimated size at 50 percent maturity of female 

Pribilof Islands red king crabs is approximately 102 mm carapace length (CL) which is larger than 89 mm 

CL reported for Bristol Bay and 71 mm CL for Norton Sound (Otto et al. 1990). Size at maturity has not 

been determined specifically for Pribilof Islands red king crab males, however, approximately 103 mm CL 

is reported for eastern Bering Sea male red king crabs (Somerton 1980). Early studies predicted that red 

king crab become mature at approximately age 5 (Powell 1967; Weber 1967); however, Stevens (1990) 

predicted mean age at recruitment in Bristol Bay to be 7 to 12 years, and Loher et al. (2001) predicted age 

to recruitment to be approximately 8 to 9 years after settlement. Based upon a long-term laboratory study, 

longevity of red king crab males is approximately 21 years and less for females (Matsuura and Takeshita 

1990). 
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Natural mortality of Bering Sea red king crab stocks is poorly known (Bell 2006). Siddeek et al. (2002) 

reviewed natural mortality estimates from various sources. Natural mortality estimates based upon 

historical tag-recapture data range from 0.001 to 0.93 for crabs 80-169 mm CL with natural mortality 

increasing with size. Natural mortality estimates based on more recent tag-recovery data for Bristol Bay 

red king crab males range from 0.54 to 0.70, however, the authors noted that these estimates appear high 

considering the longevity of red king crab. Natural mortality estimates based on trawl survey data vary from 

0.08 to 1.21 for the size range 85-169 mm CL, with higher mortality for crabs <125 mm CL. In an earlier 

analysis that utilized the same data sets, Zheng et al. (1995) concluded that natural mortality is dome shaped 

over length and varies over time. Natural mortality was set at 0.2 for Bering Sea king crab stocks (NPFMC 

1998) and was changed to 0.18 with Amendment 24.  

 

The reproductive cycle of Pribilof Islands red king crabs has not been established, however, in Bristol Bay, 

timing of molting and mating of red king crabs is variable and occurs from the end of January through the 

end of June (Otto et al. 1990). Primiparous (i.e. brooding their first egg clutch) Bristol Bay red king crab 

females extrude eggs on average 2 months earlier in the reproductive season and brood eggs longer than 

multiparous (i.e. brooding their second or subsequent egg clutch) females (Stevens and Swiney 2007a, Otto 

et al. 1990), resulting in incubation periods that are approximately eleven to twelve months in duration 

(Stevens and Swiney 2007a, Shirley et al. 1990). Larval hatching among red king crabs is relatively 

synchronous among stocks and in Bristol Bay occurs March through June with peak hatching in May and 

June (Otto et al. 1990), however larvae of primiparous females hatch earlier than multiparous females 

(Stevens and Swiney 2007b, Shirley and Shirley 1989). As larvae, red king crabs exhibit four zoeal stages 

and a glaucothoe stage (Marukawa 1933).  

 

Growth parameters have not been examined for Pribilof Islands red king crabs; however they have been 

studied for Bristol Bay red king crab. A review by the Center for Independent Experts (CIE) reported that 

growth parameters are poorly known for all red king crab stocks (Bell 2006). Growth increments of 

immature southeastern Bering Sea red king crabs are approximately:  23% at 10 mm CL, 27% at 50 mm 

CL, 20% at 80 mm CL and 16 mm for immature crabs over 69 mm CL (Weber 1967). Growth of males and 

females is similar up to approximately 85 mm CL, thereafter females grow more slowly than males (Weber 

1967; Loher et al. 2001). In a laboratory study, growth of female red king crabs was reported to vary with 

age; during their pubertal molt (molt to maturity) females grew on average 18.2%, whereas primiparous 

females grew 6.3% and multiparous females grew 3.8% (Stevens and Swiney, 2007a).  Similarly, based 

upon tag-recapture data from 1955-1965 researchers observed that adult female growth per molt decreases 

with increased size (Weber 1974). Adult male growth increment averages 17.5 mm irrespective of size 

(Weber 1974). 

 

Molting frequency has been studied for Alaskan red king crabs, but Pribilof Islands specific studies have 

not been conducted. Powell (1967) reports that the time interval between molts increases from a minimum 

of approximately three weeks for young juveniles to a maximum of four years for adult males. Molt 

frequency for juvenile males and females is similar and once mature, females molt annually and males molt 

annually for a few years and then biennially, triennially and quadrennial (Powell 1967). The periodicity of 

mature male molting is not well understood and males may not molt synchronously like females who molt 

prior to mating (Stevens 1990). 

 

1.4 Management history 

Red king crab stocks in the Bering Sea and Aleutian Islands are managed by the State of Alaska through 

the federal Fishery Management Plan (FMP) for Bering Sea/Aleutian Islands King and Tanner Crabs 

(NPFMC 1998). The Alaska Department of Fish and Game (ADF&G) has not published harvest regulations 

for the Pribilof district red king crab fishery. The king crab fishery in the Pribilof District began in 1973 

with blue king crab Paralithodes platypus being targeted (Figure 3). A red king crab fishery in the Pribilof 

District opened for the first time in September 1993. Beginning in 1995, combined red and blue king crab 
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GHLs were established. Declines in red and blue king crab abundance from 1996 through 1998 resulted in 

poor fishery performance during those seasons with annual harvests below the fishery GHL. The North 

Pacific Fishery Management Council (NPFMC) established the Bering Sea Community Development 

Quota (CDQ) for Bering Sea fisheries including the Pribilof Islands red and blue king crab fisheries which 

was implemented in 1998. From 1999 to present the Pribilof Islands fishery was not open due to low blue 

king crab abundance, uncertainty with estimated red king crab abundance, and concerns for blue king crab 

bycatch associated with a directed red king crab fishery. Pribilof Islands blue king crab was declared 

overfished in September of 2002 and is still considered overfished (see Bowers et al. 2011 for complete 

management history). 

 

Amendment 21a to the BSAI groundfish FMP established the Pribilof Islands Habitat Conservation Area 

(Figure 4) which prohibits the use of trawl gear in a specified area around the Pribilof Islands year round 

(NPFMC 1994). The amendment went into effect January 20, 1995 and protects the majority of crab habitat 

in the Pribilof Islands area from impacts from trawl gear.  

          

Pribilof Islands red king crab often occur as bycatch in the eastern Bering Sea snow crab (Chionoecetes  

opilio), eastern Bering Sea Tanner crab (Chionoecetes bairdi), Bering Sea hair crab (Erimacrus isenbeckii), 

and Pribilof Islands blue king crab fisheries (when there is one). Limited non-directed catch exists in crab 

fisheries and groundfish pot and hook and line fisheries (see bycatch and discards section below).  However, 

bycatch is currently very low compared to historical levels. 

 

2. Data 

The standard groundfish discards time series data (updated through 2016/17) were used in this assessment. 

The crab fishery retained and discard catch time series were updated with 2016/2017 data.  The following 

sources and years of data are available: 

 

Data source Years available 

NMFS trawl survey 1975-2017 

Retained catch 1993-2016/17 

Trawl bycatch 1991-2016/17 

Fixed gear bycatch 1991-2016/17 

Pot discards 1998-2016/17 

  

2.1 Retained catch 

Red king crab were targeted in the Pribilof Islands District from the 1993/1994 season to 1998/1999.  Live 

and deadloss landings data and effort data are available during that time period (Tables 1 and 2), but no 

retained catch has been allowed since 1999. 

2.2 Bycatch and discards 

Non-retained (directed and non-directed) pot fishery catches are provided for sub-legal males (≤138 mm 

CL), legal males (>138 mm CL), and females based on data collected by onboard observers. Catch weight 

was calculated by first determining the mean weight (g) for crabs in each of three categories: legal non-

retained, sublegal, and female. Length to weight parameters were available for two time periods: 1973 to 

2009 (males: A=0.000361, B=3.16; females: A=0.022863, B=2.23382) and 2010 to 2013 (males: 

A=0.000403, B=3.141; ovigerous females: A=0.003593, B=2.666; non-ovigerous females: A=0.000408, 

B=3.128). The average weight for each category was multiplied by the number of crabs at that CL, summed, 

and then divided by the total number of crabs (equation 2). 

 

Weight (g) = A * CL(mm)B (1) 

 

Mean Weight (g) = ∑(weight at size * number at size) / ∑(crabs) (2) 
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Finally, weights, discards, and bycatch were the product of average weight, CPUE, and total pot lifts in the 

fishery.  A 20% handling mortality rate was applied to these estimates (assumed the same as Bristol Bay 

red king crab). 

 

Historical non-retained catch data are available from 1998/1999 to present from the snow crab, golden king 

crab (Lithodes aequispina), and Tanner crab fisheries (Table 3) although data may be incomplete for some 

of these fisheries. Limited observer data exists prior to 1998 for catcher-processor vessels only so non-

retained catch before this date are not included here. In 2016/2017 there was no catch of Pribilof Islands 

red king crab from crab fisheries (Table 3). 

 

2.3 Groundfish pot, trawl, and hook and line fisheries 

The data through 2016/2017 from the NOAA Fisheries Regional Office (J. Gasper, NMFS, personal 

communication) assessments of non-retained catch from all groundfish fisheries are included in this SAFE 

report. Groundfish catches of crab are reported for all crab combined by federal reporting areas and by State 

of Alaska reporting areas since 2009/2010. Catches from observed fisheries were applied to non-observed 

fisheries to estimate a total catch. Catch counts were converted to biomass by applying the average weight 

measured from observed tows from July 2011 to June 2012. Prior to 2011/2012, Areas 513 and 521 were 

included in the estimate, a practice that likely resulted in an overestimate of the catch of Pribilof Islands red 

king crab due to the extent of Area 513 into the Bristol Bay District. In 2012/2013 these data were available 

in State of Alaska reporting areas that overlap specifically with stock boundaries so that the management 

unit for each stock can be more appropriately represented. To estimate sex ratios it was assumed that the 

male to female ratio was one. To assess crab mortalities in these groundfish fisheries a 50% handling 

mortality rate was applied to pot and hook and line estimates and an 80% handling mortality rate was 

applied to trawl estimates. 

 

Historical non-retained groundfish catch data are available from 1991/1992 to present (J. Mondragon, 

NMFS, personal communication) although sex ratios have not been determined (Table 3). Prior to 1991, 

data are only available in INPFC reports. Between 1991 and December 2001 bycatch was estimated using 

the “blend method”. The blend method combined data from industry production reports and observer 

reports to make the best, comprehensive accounting of groundfish catch. For shoreside processors, Weekly 

Production Reports (WPR) submitted by industry were the best source of data for retained groundfish 

landings. All fish delivered to shoreside processors were weighed on scales, and these weights were used 

to account for retained catch. Observer data from catcher vessels provided the best data on at-sea discards 

of groundfish by vessels delivering to shoreside processors. Discard rates from these observer data were 

applied to the shoreside groundfish landings to estimate total at-sea discards from both observed and 

unobserved catcher vessels. For observed catcher/processors and motherships, the WPR and the Observer 

Reports recorded estimates of total catch (retained catch plus discards). If both reports were available, one 

of them was selected during the “blend method” for incorporation into the catch database. If the vessel was 

unobserved, only the WPR was available. From January 2003 to December 2007, a new database structure 

named the Catch Accounting System (CAS) led to large method change. Bycatch estimates were derived 

from a combination of observer and landing (catcher vessels/production data). Production data included 

CPs and catcher vessels delivering to motherships. To obtain fishery level estimates, CAS used a ratio 

estimator derived from observer data (counts of crab/kg groundfish) that is applied to production/landing 

information. (See http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-205.pdf). 

Estimates of crab are in numbers because the PSC is managed on numbers. There were two issues with this 

dataset that required estimation work outside of CAS:  

 

1) The estimated number of crab had to be converted to weights. An average weight was calculated 

using groundfish observer data. This weight was specific to crab year, crab species, and fixed or 
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trawl gear. This average was applied to the estimated number of crab for crab year by federal 

reporting area. 

2) In some situations, crab estimates were identified and grouped in the observed data to the genus 

level. These crabs were apportioned to the species level using the identified crab.  

 

From January 2008 to 2012 the observer program changed the method in which they speciate crab to better 

reflect their hierarchal sampling method and to account for broken crab that in the past were only identified 

to genus. In addition, haul-level weights collected by the observers were used to estimate the weight of crab 

through CAS instead of applying an annual (global) weight factor. Spatial resolution was at federal 

reporting area.  

 

Starting in 2013, a new data set based on the CAS system was made available for January 2009 to present. 

In 2009 reporting State statistical areas was required on groundfish production reports. The level of spatial 

resolution in CAS was formally federal reporting area since this the highest spatial resolution at which 

observer data is aggregated to create bycatch rates. The federal reporting area does not follow crab stock 

boundaries, in particular for species with small stock areas such as Pribilof Islands or St. Matthew Island 

stocks, so the new data was provided at the State reporting areas. This method uses ratio estimator (weight 

crab/weight groundfish) applied to the weight of groundfish reported on production/landing reports. Where 

possible, this dataset aggregates observer data to the stock area level to create bycatch estimates by stock 

area. There are instances where no observer data is available and aggregation may go outside of a stock 

area, but this practice is greatly reduced compared with the pre-2009 data, which at best was at the Federal 

reporting area level. 

 

Total catch in 2015/16 was 0.32 t and in 2016/17 0.49 t below the 2016/17 OFL 1,492 t and below the ABC 

of 1,096 t (Tables 3 and 5, Figures 13 and 14).  Catch by weight in 2016/17 was 81% from non-pelagic 

trawl and 19% from hook and line fisheries (Table 4).  

 

2.4 Catch-at-length 

Catch-at-length data are not available for this fishery. 

2.5 Survey biomass and length frequencies 

The 2017 NOAA Fisheries EBS bottom trawl survey results are included in this SAFE report. Data available 

for estimating the abundance of crab around the Pribilof Islands are relatively sparse.  Red king crab have 

been observed at 35 unique tows in the Pribilof District over the years 1975 to 2017 (in 22 of the 20nm x 

20nm station grids).  The number of stations at which at least one crab was observed in a given year ranges 

from 0 (in 1975) to 14 (in 2000 and 2013) over the period from 1975-present (Figure 5).   

 

Observed survey biomass estimates for males  ≥120 mm are used in the Tier 4 assessment as an estimate 

of mature male biomass and to estimate the BMSY proxy, MMB at mating and in fitting the 3-yr running 

average and the random effects model. 

 

Historical survey data are available from 1975 to the present (Tables 6 and 7), and survey data analyses 

were standardized in 1980 (Stauffer, 2004). Male and female abundance varies widely over the history of 

the survey time series and uncertainty around area-swept estimates of abundance are large due to relatively 

low sample sizes (Table 7). Male crabs were observed at 9 of 35 stations in the Pribilof District during the 

2015 NMFS survey (Figure 6); female crabs were observed at 5 (Figure 7). Two (possibly three) cohorts 

can be seen moving through the length frequencies over time (Figures 8 and 9).  Numbers at length vary 

dramatically from year to year, but the cohorts can nonetheless also be discerned in these data (Figure 10 

and Figure 11).   
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The centers of distribution for both males and females have moved within a 40 nm by 40 nm region around 

St. Paul Island. The center of the red king crab distribution moved to within 20 nm of the northeast side of 

St. Paul Island as the population abundance increased in the 1980’s and remained in that region until the 

1990’s. Since then, the centers of distribution have been located closer to St. Paul Island the exception of 

2000-2003 located towards the north east.  

 

Survey abundance for males ≥105 mm declined from 3,662,609 in 2015 to 1,807,323 in 2016 and again in 

2017 to 1,158,383 (Table 6).  Female biomass (all sizes) declined from 3,859 t in 2015 to 1,898 t in 2016 

and declined further in 2017 to 505 t.  Survey biomass for males ≥120mm declined from 15,173 t in 2015 

to 4,150 t in 2016 and declined further in 2017 to 3,658 t (Table 8). 

 

3. Analytical approaches 

3.1 History of modeling 

An inverse-variance weighted 3-year running average of male biomass (≥120mm) based on densities 

estimated from the NMFS summer trawl survey has been used in recent years to set allowable catches.  The 

natural mortality rate has been used as a proxy for the fishing mortality at which maximum sustainable 

yield occurs (FMSY) and target biomasses are set by identifying a range of years over which the stock was 

thought to be near BMSY (i.e. a tier 4 control rule).  

In 2017, biomass and derived management quantities are estimated by a 3-yr running-average method and 

a random effects method.  The Tier 4 harvest control rule (HCR) is applied to the running-average and 

random effects estimates of mature male biomass (≥120mm).  The current year biomass estimate was 

projected forward to February 15 for use in the OFL control rule to estimate the OFL and ABC.  The BMSY 

proxy for both the 3-yr running average and the random effects model was estimated as the average of the 

1991/92 to 2016/17 observed survey data projected forward to February 15, removing the observed catch.   

3.2 Model descriptions 

3.2.1. Running average 

A 3 year running average of male biomass (≥120mm) at survey time was calculated using the weighted 

average with weights being the inverse of the variance, 

 

𝐵𝑊𝑅𝐴𝑡 =

∑
𝑀𝑀𝐵𝑡
𝜎𝑡
2

𝑡+1
𝑡−1

∑
1
𝜎𝑡
2

𝑡+1
𝑡−1

  

 

(4) 

Where,  

𝑀𝑀𝐵𝑡  

 

Estimated male biomass (≥120mm) from the survey data 

𝜎𝑡
2  The variance associated with the estimate of MMB in year t 

 

  

 𝑤𝑡 is calculated as the variance of the log(biomass) using the CVs of the estimates of MMB 

from the survey provided by the Kodiak lab: 

 𝑤𝑡 = ln ((𝐶𝑉𝑡
𝑀𝑀𝐵)2 + 1) (5) 

Where,  
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𝐶𝑉𝑡
𝑀𝑀𝐵 Coefficient of variation associated with the estimate of 

MMB at time t 
 

 

 

3.2.2 Random Effects Model 

 

A random effects model was fit to the survey male biomass (≥120mm) for estimation of current biomass, 

MMB at mating, OFL and ABC (Model developed for use in NPFMC groundfish assessments).  The 

model uses the CVs as calculated for the 3-yr running average.  The random effects model was fit to the 

log of survey biomass at the time of the survey.  The likelihood equation for the random effects model is, 

∑{0.5(log (2𝜋𝜎𝑖
2) + (

(�̂�𝑖 − 𝐵𝑖)
2

𝜎𝑖
2 ))} +∑{0.5 (log (2𝜋𝜎𝑝

2) + (
(�̂�𝑡 − �̂�𝑡−1)

2

𝜎𝑝
2 ))}

𝑦𝑟𝑠

𝑡=2

𝑦𝑟𝑠

𝑖=1

 

Where, 

 Bi is the log of observed biomass in year i, 

𝐵�̂� is the model estimated log biomass in year t, 

𝜎𝑖
2  is the variance of observed log biomass in year i, 

 𝜎𝑝
2 is the variance of the deviations in log survey biomass between years (i.e. process error variance),   

𝜎𝑝
2 was estimated as 𝑒(2𝜆), where 𝜆 is a parameter estimated in the random effects model and, 

Yrs is the number of years of survey biomass values. 

In the case where the random effects model does not converge due to high observation errors, an estimate 

of the process error is necessary to use as a prior or to fix in the model (P. Spencer pers. comm., Figure 

15).  A simple exponential model can be used to estimate the ratio of observation error to process error in 

a time series, 

�̂�𝑡 =  𝛼𝑦𝑡 +  𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)
2𝑦𝑡−2 +  𝛼(1 − 𝛼)

3𝑦𝑡−3 +⋯ , 

Where, 

�̂�0  is set equal to 𝑦0,  the log of observed biomass in the first year, 

𝑦𝑡 is the log of observed biomass in year t and, 

𝛼 is the parameter estimated in the model which ranges from 0 to 1. 

An estimate of the ratio of observation error (𝜎𝑜
2) to process error (𝜎𝑝

2) (log scale) is, 

𝜎𝑜
2

𝜎𝑝
2  =  

(1 − 𝛼)

𝛼2
 

. 

An estimate of 𝜆 to use as a prior in the random effects model is, 
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𝜆 = 0.5 log(𝜎𝑝
2) 

The variance of 𝛼 is an output of the arima function in R which was used to fit the simple exponential 

model.  A bootstrap using the logit distribution on 𝛼 was used to approximate the variance of 𝜆 for use in 

the prior that is added to the likelihood in the random effects model, 

0.5 
(𝜆 − 𝜆𝑝)

2

𝜎𝜆
2  

 

Where, 

𝜆𝑝 is the prior estimate of 𝜆 from the simple exponential model 

𝜎𝜆
2  is the variance of 𝜆𝑝 estimated from the parametric bootstrap. 

The random effects model was run with 𝜆 fixed at the value estimated from the simple exponential model 

and with 𝜆 estimated adding the prior likelihood into the random effects model. 

4. Model Selection and Evaluation 

The running average method with a tier 4 HCR was selected in 2016 by the SSC as the model to determine 

the OFL and ABC based on concerns around different trends over the last decade between the integrated 

model and the running average and the lack of fit of the integrated model to survey abundance data.  Four 

assessment methods are presented here for comparison:  a running average with a tier 4 HCR, a random 

effects model with fixed 𝜆,  and a random effects model with a prior likelihood component added for 𝜆.  

 

5.0 Results 

5.1 Tier 4 

Survey mature male biomass (≥120mm) declined from 4,150 t in 2016 to 3,658 t in 2017.  The 3-yr running 

average estimate of mature male biomass (≥120mm) was 3,888 t in 2017 at the survey time, while the 

random effects model with process error fixed estimate was 4,163 t (Table 8 and Figure 16).  The simple 

exponential model estimated 𝛼 = 0.705 with a standard deviation of 0.134, which results in   
𝜎𝑝
2 = 0.643 and a CV=2.24 (estimated from bootstrap). When process error is estimated with a prior in the 

random effects model with a CV = 2.24, the 2017 biomass estimate was estimated at 4,307 t.   When process 

error is estimated with a prior in the random effects model with a CV = 4.0, the 2017 biomass estimate was 

4,633 t and results in more smoothing of the estimates (Figure 16).   The random effects model was also fit 

with a CV on the prior of 5.0 which resulted in the model not converging.   The random effects model did 

not converge when trying to fit female biomass due to high observed variances similar to male biomass.  

The increase in CV in the prior on 𝜆 results in lower process error and a smoother fit to biomass.  The 

parameters and process error for the random effects models were, 

 

 

Random effects 

Model 𝜆 𝜎𝑝
2 CV 

𝜆 fixed -0.221 0.643 NA 

with prior on 𝜆 -0.364 0.483 2.24 

with prior on 𝜆 -0.640 0.278 4 
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The simple exponential model fit to female mature biomass (≥90mm) estimated process error at 0.280, 

which is lower than the process error estimated at 0.643 for the mature male biomass (≥120mm), however, 

similar to process error estimated in the random effects model (0.278) with prior on 𝜆 = −0.221  and CV=4.    

 

MMB at mating on February 15, 2017 (2016/17 crab year) was estimated at 3,681 t for the observed survey, 

6,445 t for the 3-yr weighted average, 4,683 t for the random effects model fixed process error, 4,788 t for 

the random effects model cv=2.24 and 4,961 t for the random effects model cv=4.0 (Table 9 and Figure 

17). The estimation of process error in the random effects model with a cv=4.0 results in a smoother fit to 

biomass than the 3 year running average or the random effects models with lower cv or fixed process error. 

The 3-yr running average biomass estimate in 2016 is the weighted average of survey biomass in 2015, 

2016 and 2017.  The high survey biomass in 2015 results in a larger estimated biomass in 2016 (and the 

projected February 15, 2017 biomass) than for the random effects models which take into account the whole 

time series.  The use of the 3-yr running average can be thought of as imposing a prior on smoothness by 

using 3 biomass values for each estimate.  Using more biomass values for the average would result in a 

smoother fit to the data as well as using the random effects model with a weaker prior.  The CVs of the 

survey biomass range from 0.36 to 1.0 with an average of 0.67.  

 

6. Calculation of reference points 

6.1 Tier 4 OFL and BMSY 

Natural mortality was used as a proxy for FMSY and a proxy for BMSY was calculated by averaging the 

biomass of a predetermined period of time thought to represent the time when the stock was at BMSY in the 

tier 4 HCR.  The OFL was calculated by applying a fishing mortality determined by equation 4 to the mature 

male biomass at the time of fishing.  

 

 

𝐹𝑂𝐹𝐿 =

{
  
 

  
 𝐵𝑦𝑐𝑎𝑡𝑐ℎ 𝑜𝑛𝑙𝑦                                             𝑖𝑓 

𝐵𝑐𝑢𝑟
𝐵𝑀𝑆𝑌 𝑝𝑟𝑜𝑥𝑦

≤ 𝛽

𝛾𝑀 (
𝐵𝑐𝑢𝑟

𝐵𝑀𝑆𝑌 𝑝𝑟𝑜𝑥𝑦
− 𝛼)

1 − 𝛼
                               𝑖𝑓 𝛽 <

𝐵𝑐𝑢𝑟
𝐵𝑀𝑆𝑌 𝑝𝑟𝑜𝑥𝑦

< 1

𝛾𝑀                                                                 𝑖𝑓 𝐵𝑐𝑢𝑟 > 𝐵𝑀𝑆𝑌 𝑝𝑟𝑜𝑥𝑦

 

 

 

 

 

(4) 

Where,  

𝐵𝑐𝑢𝑟 Estimated mature male biomass projected to time of mating fishing at the OFL 

𝐵𝑀𝑆𝑌 𝑝𝑟𝑜𝑥𝑦 Average mature male biomass over the years 1991-present 

𝑀 Natural mortality 

𝛼 Determines the slope of the descending limb of the HCR (0.05) 

𝛽 Fraction of BMSY proxy below which directed fishing mortality is zero (here set to 

0.25) 

  

 

 

6.3 Acceptable biological catches 

An acceptable biological catch (ABC) was estimated below the OFL by a proportion based a predetermined 

probability that the ABC would exceed the OFL (P*). Currently, P* is set at 0.49 and represents a proportion 

of the OFL distribution that accounts for within assessment uncertainty (σw) in the OFL to establish the 

maximum permissible ABC (ABCmax). Any additional uncertainty outside of the assessment methods (σb) 

will be considered as a recommended ABC below ABCmax. Additional uncertainty will be included in the 

application of the ABC by adding the uncertainty components as 2 2

total b w    . 
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6.4 Specification of the distributions of the OFL used in the ABC 

A distribution for the OFL associated with estimates of MMB from the running average method was 

constructed by bootstrapping values of MMBmating (assuming that MMB is log-normally distributed) and 

calculating the OFL according to equation 4.  Additional uncertainty (σb) equal to 0.3 was added when 

bootstrapping values of MMB while calculating the distribution for the OFL for the tier 4 HCR. The 

posterior distribution for the OFL generated from the integrated assessment was used for determining the 

ABC. 

 

 

6.6 Tier 4 Reference points and OFL 

BMSY was estimated at 5,502 t using observed male survey biomass (≥120mm) from 1991/92 to 2016/17.  

Projected MMB for 2017/18 (on February 15, 2018 removing the OFL) calculated from the 3-year running 

average was 3,139 t (57% of BMSY).  Bmsy for the random effects models was estimated from model output 

from 1991/92 to 2016/17.  The random effects model (RE) with fixed process error estimated projected 

MMB for 2017/18 at 3,274 t (69% of BMSY = 4,711 t).  The RE with CV=2.24 estimated 2017/18 MMB at 

3,364 t (73% of BMSY = 4,604 t)   and the RE with CV=4.0 at 3,563 t (67% of BMSY = 4,397 t).  The 2017/18 

OFL for the 3-yr weighted average was 330 t, from the random effects model (RE) with fixed process error 

at 442 t, the RE with CV=2.24 at 482 t and the RE with CV=4.0 at 573 t (see Table in item 6 of the executive 

summary).  

6.7 Recommended ABCs 

The ABC estimated using a p* of 0.49 with an additional sigma of 0.30 was 319 t for the 3-yr running 

average, 428 t for the random effects model (RE) with fixed process error, 467 t for the RE with CV=2.24 

and 554 t for the RE with CV=4.0.  The ABC with a 25% buffer (ABC = OFL * 0.75) (recommended by 

the CPT and SSC in 2015) was 248 t for the 3-yr running average, 332 t for the random effects model (RE) 

with fixed process error, 362 t for the RE with CV=2.24 and 429 t for the RE with CV=4.0 (see Table in 

item 6 of the executive summary).  

6.8 Variables related to scientific uncertainty in the OFL probability distribution  

Uncertainty in estimates of stock size and OFL for Pribilof Islands red king crab was relatively high due to 

small sample sizes. The coefficient of variation for the estimate of mature male biomass for 2017 was 0.65 

and has ranged between 0.36 and 0.92 since the 1991 peak in numbers. These CVs were calculated by 

assuming the data are Poisson distributed, but the data are overdispersed.  Using a negative binomial (or 

other distribution that can allow for overdispersion) would increase the CVs. Growth and survey selectivity 

were estimated within the integrated assessment (and therefore uncertainty in both processes is accounted 

for in the posterior distributions), but maturity, survey catchability, fishery selectivity, and natural mortality 

were fixed.  FMSY was assumed to be equal to natural mortality and BMSY was somewhat arbitrarily set to 

the average MMB over a predetermined range of years for tier 4 HCRs; both of which were assumptions 

that had a direct impact on the calculated OFL.  Sources of mortality from discard in the crab pot fishery 

and the fixed gear fishery were not included in the integrated assessment because of a lack of length data 

to apportion removals correctly.  Including these sources of mortality may alter the estimated MMB.  

 

6.9 Author Recommendation 

In the foreseeable future, low sample size will be a problem for the Pribilof Island red king crab, so extra 

precaution should be taken given the uncertainty associated with MMB estimates.  In this respect, the tier 

4 HCR is more precautionary in that it sets a higher MSST and a lower FOFL, OFL, and ABC for a given 

MMB (Turnock, et al. 2016). If there is a particularly high estimate of MMB from the survey (often 

associated with high variance–see 2015 for an example), the biomass and OFL can be higher for the 3-yr 

running average than the random effects models. The random effects model can be useful in these years 

because it smooths over fluctuations in estimates of biomass and numbers, which often appear to be the 
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result of measurement error The authors recommendation is to use the random effects model with CV=2.24 

in the prior on process error as this results in a more smooth fit to biomass and would be less influenced by 

fluctuations in biomass than the 3-yr running average model.  The CV=2.24 is estimated from the variance 

of the parameter estimated from the simple exponential model while the CV=4.0 is arbitrary and was used 

as a sensitivity. 

 

Females and males experienced similar increases in abundance in the early 1990s, and only in recent years 

did trends in their abundances deviate from previously correlated trajectories. This suggests that some 

population process (e.g. natural mortality or catchability) has changed for males or females, but it is difficult 

to say if the change in trends was a result of a population process for females or for males (or both) changing. 

It is generally inadvisable to invoke time-varying population processes within an assessment for the sake 

of improving fits without a hypothesis behind the changes and data to corroborate it.   

 

7. Data gaps and research priorities 

The largest data gap is the number of observations from which the population size and biomass is 

extrapolated. Catch-at-length data for the trawl fishery would allow trawl fishery selectivity to be estimated 

and discard mortality specific to PIRKC to be incorporated into the integrated model.  Simulation studies 

designed to prioritize research on population processes for which additional information would be 

beneficial in achieving more accurate estimates of management quantities could be useful for this stock 

(e.g. Szuwalski and Punt, 2012).  Research on the probability of molting at length for males would allow 

the use of data specific to PIRKC in specifying molting probability in the assessment.  Research aimed at 

the catchability and availability of PIRKC may shed some light on divergent changes in abundance in recent 

years. 

 

8. Ecosystem Considerations 

The impact of a directed fishery for Pribilof Islands red king crab on the population of Pribilof island blue 

king crab will likely continue to be the largest ecosystem consideration facing this fishery and preclude the 

possibility of a directed fishery for red king crab.  Linking changes in productivity as seen in the 1980s with 

environmental influences is a potential avenue of research useful in selecting management strategies for 

crab stocks around the Pribilof Islands (e.g. Szuwalski and Punt, 2013a). It is possible that the large year 

class in the mid-1980s reflected changing environmental conditions, similar to proposed relationships 

between the Pacific Decadal Oscillation snow crab recruitment in the EBS (Szuwalski and Punt, 2013b).  

Ocean acidification also appears to have a large detrimental effect on red king crab (Long et al., 2012), 

which may impact the productivity of this stock in the future. 
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11. Tables 

Table 1. Total retained catches from directed fisheries for Pribilof Islands District red king crab (Bowers et 

al. 2011; D. Pengilly, ADF&G, personal communications). 

Year Catch (count) Catch (t) 

Avg CPUE (legal crab count 

pot-1) 

1973/1974 0 0 0 

1974/1975 0 0 0 

1975/1976 0 0 0 

1976/1977 0 0 0 

1977/1978 0 0 0 

1978/1979 0 0 0 

1979/1980 0 0 0 

1980/1981 0 0 0 

1981/1982 0 0 0 

1982/1983 0 0 0 

1983/1984 0 0 0 

1984/1985 0 0 0 

1985/1986 0 0 0 

1986/1987 0 0 0 

1987/1988 0 0 0 

1988/1989 0 0 0 

1989/1990 0 0 0 

1990/1991 0 0 0 

1991/1992 0 0 0 

1992/1993 0 0 0 

1993/1994 380,286 1183.02 11 

1994/1995 167,520 607.34 6 

1995/1996 110,834 407.32 3 

1996/1997 25,383 90.87 <1 

1997/1998 90,641 343.29 3 

1998/1999 68,129 246.91 3 

1999/2000 

to 

2016/2017 

0 0 0 
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Table 2. Fishing effort during Pribilof Islands District commercial red king crab fisheries, (Bowers et al. 

2011). 

Season Number of 

Vessels 

Number of 

Landings 

Number of Pots 

Registered 

Number of Pots 

Pulled 

1993 112 135 4,860 35,942 

1994 104 121 4,675 28,976 

1995 117 151 5,400 34,885 

1996 66 90 2,730 29,411 

1997 53 110 2,230 28,458 

1998 57 57 2,398 23,381 

1999-2016/17 Fishery Closed 
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Table 3. Non-retained total catch mortalities from directed and non-directed fisheries for Pribilof Islands 

District red king crab. Handling mortalities (pot and hook/line= 0.5, trawl = 0.8) were applied to the 

catches. (Bowers et al. 2011; D. Pengilly, ADF&G; J. Mondragon, NMFS).  **From 2009/10 forward 

the calculation of bycatch uses the AKRO Catch Accounting System with data reported from 

State of Alaska reporting areas that encompass the Pribilof Islands red king crab district.   

                Crab pot fisheries Groundfish fisheries 

Year 

Legal 

male 

(t) 

Sublegal 

male 

(t) 

Female (t) All fixed (t) 
All trawl 

(t) 

1991/1992    0.48 45.71 

1992/1993    16.12 175.93 

1993/1994    0.60 131.87 

1994/1995    0.27 15.29 

1995/1996    4.81 6.32 

1996/1997    1.78 2.27 

1997/1998    4.46 7.64 

1998/1999 0.00 0.91 11.34 10.40 6.82 

1999/2000 1.36 0.00 8.16 12.40 3.13 

2000/2001 0.00 0.00 0.00 2.08 4.71 

2001/2002 0.00 0.00 0.00 2.71 6.81 

2002/2003 0.00 0.00 0.00 0.50 9.11 

2003/2004 0.00 0.00 0.00 0.77 9.83 

2004/2005 0.00 0.00 0.00 3.17 3.52 

2005/2006 0.00 0.18 1.81 4.53 24.72 

2006/2007 1.36 0.14 0.91 6.99 21.35 

2007/2008 0.91 0.05 0.09 1.92 2.76 

2008/2009 0.09 0.00 0.00 1.64 6.94 

**2009/2010 0.00 0.00 0.00 0.19 1.05 

2010/2011 0.00 0.00 0.00 0.45 6.25 

2011/2012 0.00 0.00 0.00 0.35 4.47 

2012/2013 0.00 0.00 0.00 0.12 12.98 

2013/2014 0.00 0.00 0.00 0.25 1.99 

2014/2015 0.00 0.00 0.00 0.73 1.03 

2015/2016 0.167 0.00 0.053 0.03 0.07 

2016/2017 0.00 0.00 0.00 0.06 0.43 
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Table 4. Percent by weight of the Pribilof Islands red king crab bycatch using the new 2014 calculation of 

bycatch using AKRO Catch Accounting System with data reported from State of Alaska reporting areas 

that encompass the Pribilof Islands red king crab district. 

 hook and line non-pelagic trawl pot pelagic trawl  

Crab fishing 

season 
% % % % 

TOTAL 

(# crabs) 

2009/10 19 77 3 1 813 

2010/11 10 90 <1 <1 3,026 

2011/12 10 89 1  2,167 

2012/13 1 99 <1  4,517 

2013/14 11 89 0 0 640 

2014/2015 53 47 0 0 1,439 

2015/16 40 60 0 0 382 

2016/17 19 81 <1 0 857 

 

Table 5.  Total male bycatch (t), Total bycatch (t) and total catch (t) with mortality applied for Pribilof red 

king crab from 1991 to 2016/17. 

 

Year 

Total male 

bycatch (t) 

total bycatch 

(t) 
Total catch (t) 

1991/1992 46.19 46.19 46.19 

1992/1993 192.05 192.05 192.05 

1993/1994 132.47 132.47 1315.49 

1994/1995 15.56 15.56 622.9 

1995/1996 11.13 11.13 418.45 

1996/1997 4.05 4.05 94.92 

1997/1998 12.1 12.1 355.39 

1998/1999 18.13 29.47 265.04 

1999/2000 16.89 25.05 16.89 

2000/2001 6.79 6.79 6.79 

2001/2002 9.52 9.52 9.52 

2002/2003 9.61 9.61 9.61 

2003/2004 10.6 10.6 10.6 

2004/2005 6.69 6.69 6.69 

2005/2006 29.43 31.24 29.43 

2006/2007 29.84 30.75 29.84 

2007/2008 5.64 5.73 5.64 

2008/2009 8.67 8.67 8.67 

**2009/2010 1.24 1.24 1.24 

**2010/2011 6.7 6.7 6.7 

**2011/2012 4.82 4.82 4.82 

**2012/2013 13.1 13.1 13.1 

2013/2014 2.24 2.24 2.24 

2014/2015 1.76 1.76 1.76 

2015/2016 0.32 0.32 0.32 

2016/2017 0.49 0.49 0.49 
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Table 6.  Pribilof Islands District red king crab male abundance, male biomass (≥ 105mm), and female 

biomass estimated based on the NMFS annual EBS bottom trawl survey with no running average. 

Year 

 

Total Male 

Abundance 

 

Males 

≥105mm at 

survey 

(t) 

Total females 

at survey 

(t) 

1975/1976 0 0 11 

1976/1977 50778 165 102 

1977/1978 228477 213 148 

1978/1979 367140 1250 52 

1979/1980 279707 556 93 

1980/1981 400513 1269 262 

1981/1982 80928 312 35 

1982/1983 352166 1482 933 

1983/1984 144735 553 309 

1984/1985 64331 317 112 

1985/1986 16823 61 0 

1986/1987 38419 138 79 

1987/1988 18611 54 31 

1988/1989 1963775 525 836 

1989/1990 1844076 1720 2251 

1990/1991 6354076 8019 2723 

1991/1992 3100675 4979 5032 

1992/1993 1861538 3361 3432 

1993/1994 3787997 10156 6478 

1994/1995 3669755 9538 3964 

1995/1996 7693368 18417 5149 

1996/1997 683611 2378 2007 

1997/1998 3155556 7254 1962 

1998/1999 1192015 2655 1719 

1999/2000 9102898 5751 5418 

2000/2001 1674067 4477 995 

2001/2002 6157584 10186 5774 

2002/2003 1910263 7037 787 

2003/2004 1506201 5373 2269 

2004/2005 2196795 3622 1292 

2005/2006 302997 1262 3118 

2006/2007 1459278 7097 2183 

2007/2008 1883489 5371 1811 

2008/2009 1721467 5603 3017 

2009/2010 923133 25645 826 

2010/2011 927825 4449 840 

2011/2012 1052228 3878 817 

2012/2013 1609444 4753 663 

2013/2014 1831377 7854 169 

2014/2015 3036807 12129 1093 

2015/2016 3662609 15252 3859 

2016/2017 1807323 4619 1898 
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2017/2018 115838 3740  505 

 

Table 7. Pribilof Islands District male red king crab abundance CV and total male and female biomass CVs estimated 

from the NMFS annual EBS bottom trawl survey data. 

Year 

  

Total Male 

Abundance 

CV 

Males 

≥105mm 

at survey  

CV 

Total female 

at survey  

CV 

1975/1976 0.00 0.00 1.00 

1976/1977 1.00 1.00 0.78 

1977/1978 1.00 1.00 1.00 

1978/1979 0.83 0.83 1.00 

1979/1980 0.49 0.52 1.00 

1980/1981 0.40 0.38 0.73 

1981/1982 0.57 0.58 1.00 

1982/1983 0.70 0.70 0.77 

1983/1984 0.64 0.55 0.48 

1984/1985 0.48 0.55 0.57 

1985/1986 1.00 1.00 0.00 

1986/1987 0.70 0.70 1.00 

1987/1988 1.00 1.00 1.00 

1988/1989 0.74 0.56 0.67 

1989/1990 0.69 0.77 0.68 

1990/1991 0.87 0.89 0.72 

1991/1992 0.78 0.80 0.60 

1992/1993 0.68 0.61 0.91 

1993/1994 0.93 0.92 0.72 

1994/1995 0.81 0.78 0.88 

1995/1996 0.57 0.60 0.66 

1996/1997 0.37 0.37 0.74 

1997/1998 0.56 0.54 0.57 

1998/1999 0.42 0.37 0.77 

1999/2000 0.79 0.58 0.82 

2000/2001 0.40 0.38 0.63 

2001/2002 0.90 0.83 0.99 

2002/2003 0.67 0.69 0.52 

2003/2004 0.66 0.66 0.91 

2004/2005 0.83 0.60 0.53 

2005/2006 0.53 0.57 0.78 

2006/2007 0.39 0.38 0.61 

2007/2008 0.61 0.51 0.77 

2008/2009 0.52 0.50 0.68 

2009/2010 0.70 0.64 0.53 

2010/2011 0.45 0.43 0.71 

2011/2012 0.63 0.64 0.73 

2012/2013 0.65 0.59 0.55 

2013/2014 0.58 0.61 0.58 

2014/2015 0.71 0.78 0.94 

2015/2016 0.72 0.74 0.96 
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2016/2017 0.72 0.69 0.61 

2017/2018 0.58 0.64 0.56 
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Table 8.  Estimates of survey male ≥ 120mm biomass (t) at the time of the survey,   3-year running weighted 

average, the random effects model with 𝜆 fixed at -0.221, the random effects model with a prior on 𝜆 with mean = -

0.221 and cv = 2.24, the random effects model with a prior on 𝜆 with mean = -0.221 and cv = 4.0, and the simple 

exponential smooth. 

Year 
MB 

GE120 

CV 

MB 

GE120 
3-yr running 

avg 

random 

effects 

fixed 𝜆 

random 

effects 

prior 𝜆 cv 

2.24 

random 

effects 

prior 𝜆 cv 

4.0 

Simple 

exponential 

smooth 

1976/1977 165 1.00 NA            206             221             261  165 

1977/1978 119 1.00          585 

          585  

           252             271             314  131 

1978/1979 1,250 0.83              648             621             593             558  637 

1979/1980 556 0.52           1,042             645             647             644  579 

1980/1981 1,269 0.38              850         1,005             965             884  1,004 

1981/1982 312 0.58           1,060             520             545             581  443 

1982/1983 1,464 0.70              691             822             771             688  1,024 

1983/1984 527 0.53              679             510             500             480  642 

1984/1985 317 0.55              368             292             293             302  392 

1985/1986 61 1.00              211             136             149             180  107 

1986/1987 138 0.70                95             131             140             166  128 

1987/1988 54 1.00              107             117             133             174  69 

1988/1989 107 1.00              609             218             240             293  94 

1989/1990 1,529 0.91              961             784             759             739  664 

1990/1991 1,141 0.93           2,526         1,386         1,370         1,333  971 

1991/1992 4,430 0.80           3,133         2,991         2,849         2,579  2,815 

1992/1993 3,305 0.60           5,172         3,863         3,839         3,672  3,150 

1993/1994 9,873 0.92           6,597         6,935         6,564         5,757  7,019 

1994/1995 9,139 0.77         13,423         8,605         8,142         7,070  8,446 

1995/1996 18,056 0.60           7,350         9,822         8,954         7,442  14,390 

1996/1997 2,362 0.37           6,816         3,151         3,281         3,521  4,051 

1997/1998 6,159 0.62           2,955         4,244         4,108         3,935  5,435 

1998/1999 2,324 0.36           3,783         2,753         2,831         3,007  2,995 

1999/2000 5,523 0.67           3,614         4,365         4,271         4,138  4,600 

2000/2001 4,320 0.37           5,298         4,588         4,596         4,578  4,402 

2001/2002 8,603 0.79           5,614         6,479         6,217         5,727  7,043 

2002/2003 7,037 0.69           6,853         6,268         6,071         5,664  7,039 

2003/2004 5,373 0.66           5,194         4,998         4,926         4,789  5,824 

2004/2005 3,622 0.59           3,283         3,503         3,556         3,704  4,174 

2005/2006 1,238 0.59           4,805         2,285         2,492         2,926  1,780 

2006/2007 7,003 0.38           5,190         5,675         5,506         5,208  4,652 

2007/2008 5,224 0.49           6,086         5,245         5,198         5,075  5,046 

2008/2009 5,462 0.51           4,642         4,907         4,853         4,766  5,334 

2009/2010 2,500 0.64           4,333         3,393         3,528         3,789  3,135 

2010/2011 4,405 0.44           3,779         4,171         4,175         4,227  3,980 

2011/2012 3,834 0.65           4,292         4,190         4,260         4,415  3,877 

2012/2013 4,477 0.57           5,350         4,950         5,026         5,156  4,289 

2013/2014 7,749 0.62           7,455         7,342         7,217         6,916  6,494 

2014/2015 12,047 0.78         11,235         9,786         9,324         8,414  10,017 

2015/2016 15,173 0.74         10,218         9,872         9,306         8,314  13,403 

2016/2017 4,150 0.70           7,267         5,281         5,399         5,594  5,890 

2017/2018 3,658 0.65           3,888         4,163         4,307         4,633  4,205 
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Table 9.  MMB at mating for survey males ≥ 120mm, the 3-yr running average and the random effects model fit. 

 Projected Biomass from survey time (y) to February 15 (y+1) removing catch 

 

Observed 

survey 

 3-yr 

weighted 

average 

Random 

Effects fixed 

= -0.221 

Random 

Effects  CV = 

2.24 

Random 

Effects  CV = 

4.0 

1976/1977 146 NA            182             196             232  

1977/1978 105              519             223             241             279  

1978/1979 1,108              575             551             526             495  

1979/1980 493              924             572             574             571  

1980/1981 1,125              754             891             856             784  

1981/1982 277              940             461             484             516  

1982/1983 1,298              613             729             684             610  

1983/1984 467              602             452             443             426  

1984/1985 281              326             259             260             268  

1985/1986 55              187             120             132             160  

1986/1987 122                84             116             124             147  

1987/1988 48                95             104             118             154  

1988/1989 95              540             193             213             260  

1989/1990 1,357              852             696             673             655  

1990/1991 1,012           2,240         1,229         1,215         1,182  

1991/1992 3,929           2,779         2,653         2,527         2,287  

1992/1993 2,739           4,395         3,234         3,213         3,065  

1993/1994 7,441           4,536         4,835         4,506         3,790  

1994/1995 7,482        11,282         7,009         6,599         5,648  

1995/1996 15,596           6,101         8,293         7,523         6,182  

1996/1997 2,000           5,950         2,700         2,815         3,028  

1997/1998 5,107           2,266         3,409         3,288         3,135  

1998/1999 1,796           3,091         2,176         2,246         2,402  

1999/2000 4,881           3,189         3,854         3,771         3,653  

2000/2001 3,825           4,692         4,062         4,070         4,053  

2001/2002 7,621           4,970         5,737         5,505         5,070  

2002/2003 6,232           6,068         5,549         5,375         5,014  

2003/2004 4,755           4,596         4,423         4,358         4,237  

2004/2005 3,206           2,905         3,100         3,147         3,279  

2005/2006 1,069           4,232         1,997         2,181         2,565  

2006/2007 6,181           4,573         5,004         4,854         4,590  

2007/2008 4,627           5,392         4,646         4,605         4,496  

2008/2009 4,836           4,108         4,343         4,296         4,218  

2009/2010 2,216           3,841         3,008         3,128         3,359  

2010/2011 3,900           3,345         3,692         3,697         3,742  

2011/2012 3,396           3,801         3,711         3,774         3,911  

2012/2013 3,958           4,732         4,378         4,445         4,560  

2013/2014 6,871           6,610         6,510         6,399         6,132  

2014/2015 10,683           9,963         8,677         8,268         7,461  

2015/2016 13,457           9,062         8,755         8,253         7,373  

2016/2017 3,681           6,445         4,683         4,788         4,961  
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12. Figures 

 
Figure 1. Red king crab distribution. 

 
Figure 2. King crab registration area Q (Bering Sea) showing the Pribilof District. 
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Figure 3. Historical harvests and GHLs for Pribilof Island blue (diamonds) and red king crab (triangles) 

(Bowers et al. 2011). 

 

 

 
Figure 4. The shaded area shows the Pribilof Islands Habitat Conservation area. 
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Figure 5. Total number of observed crab (top) and the number of tows that reported observations of crab 

(female = dashed line, male = solid line) from 1976-2017. 
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Figure 6. Male red king crab relative density by station in the Pribilof Island district in 2017.  Bars represent 

the relative magnitude of the density calculated from the NMFS trawl survey. 
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Figure 7. Female red king crab relative density by station in the Pribilof Island district in 2017.  Bars 

represent the relative magnitude of the density calculated from the NMFS trawl survey. 
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Figure 8. Observed length frequencies (proportions sum to 1.0) by 5 mm length classes of Pribilof Islands 

male red king crab (Paralithodes camtschaticus) from 1975 to 2017. 
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Figure 9. Observed length frequencies (proportions sum to 1.0) by 5 mm length classes of Pribilof Islands 

female red king crab (Paralithodes camtschaticus) from 1975 to 2017. 
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Figure 10. Observed numbers at length by 5 mm length classes of Pribilof Islands male red king crab 

(Paralithodes camtschaticus) from 1975 to 2017. 
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Figure 11. Observed numbers at length by 5 mm length classes of Pribilof Islands female red king crab 

(Paralithodes camtschaticus) from 1975 to 2017. 
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Figure 12. Modes of the length frequency distribution for males and females plotted for two time periods 

over which two cohorts were observed to move through the population.  Growth per molt calculated from 

the modes from the length frequencies with fitted linear relationship (bottom). 
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Figure 13. Directed fishery retained catch. 

 
 

Figure 14.  Total bycatch for Pribilof red king crab. 
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Figure 15.  Using a simple exponential smoothing model to estimate the variance ratio of observation 

error and process error. 
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Figure 16. Mature male biomass (t) (≥120mm) at the time of the survey.  Lines are the fit for the 3 year 

weighted average, the random effects model with process error fixed (0.643), the random effects model 

with cv on prior of 2.24, the random effects model with cv on prior of 4.0 and the simple exponential model.   
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Figure 17.  MMB at mating (t) for the 3 year weighted average, the random effects model with process error 

fixed, the random effects model with cv on prior of 2.24 and the random effects model with cv on prior of 

4.0.  Bmsy is the average of the survey biomass from 1991/92 to 2016/17.  MSST is 50% of Bmsy. 
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Executive Summary

1. Stock: Pribilof Islands blue king crab (PIBKC), Paralithodes platypus.

2. Catches: Retained catches have not occurred since 1998/1999. Bycatch has been relatively
small in recent years. No bycatch mortality was observed in 2016/17 in the crab (e.g., Tanner
crab, snow crab) fisheries that incidentally take PIBKC. Bycatch mortality for PIBKC in these
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fisheries was 0.166 t (0.0004 million lbs) in 2015/16, but this was the first non-zero bycatch
mortality in other crab fisheries since 2010/11. Most bycatch mortality for PIBKC occurs in
the BSAI groundfish fixed gear (pot and hook-and-line) fisheries (5-year average: 0.048 t) and
trawl fisheries (5-year average: 0.309 t). In 2016/17, the estimated PIBKC bycatch mortality
was 0.018 t in the groundfish fixed gear fisheries and 0.364 t in the groundfish trawl fisheries.

3. Stock biomass: Stock biomass decreased between the 1995 and 2008 surveys, and continues to
fluctuate at low abundances in all size classes. Any short-term trends are questionable given
the high uncertainty associated with recent survey results.

4. Recruitment: Recruitment indices are not well understood for Pribilof Islands blue king crab.
Pre-recruits may not be well-assessed by the survey, but have remained consistently low in
the past 10 years.

5. Management performance: The stock is below MSST and consequently is overfished. Overfish-
ing did not occur. The following results are based on determining BMSY /MSST by averaging
the MMB-at-mating time series estimated using the smoothed survey data from a random
effects model; the current (2017/18) MMB-at-mating is also based on the smoothed survey
data. [Note: MSST changed substantially between 2013/14 and 2014/15 as a result of changes
to the NMFS EBS trawl survey dataset used to calculate the proxy BMSY . MSST has changed
slightly since 2014/15 due to small differences in the random effects model results with the
addition of each new year of survey data.]

Table 1: Management performance, all units in metric tons. The OFL is a total catch OFL for each
year.

Year MSST
Biomass 

(MMBmating ) TAC Retained 
Catch

Total Catch 
Mortality OFL ABC

2013/14 2,001 A 225 A closed 0 0.03 1.16 1.04
2014/15 2,055 A 344 A closed 0 0.07 1.16 0.87
2015/16 2,058 A 361 A closed 0 1.18 1.16 0.87
2016/17 2,054 A 232A closed 0 0.38 1.16 0.87
2017/18 -- 230 B -- -- -- 1.16 0.87

Notes:

A – Based on data available to the Crab Plan Team at the time of the assessment following the end of the crab fishing year.

B – Based on data available to the Crab Plan Team at the time of the assessment for the crab fishing year.

Table 2: Management performance, all units in the table are million pounds.

Year MSST
Biomass 

(MMBmating ) TAC Retained 
Catch

Total Catch 
Mortality OFL ABC

2013/14 4.411 A 0.496 A closed 0 0.0001 0.0026 0.002
2014/15 4.531 A 0.758 A closed 0 0.0002 0.0026 0.002
2015/16 4.537 A 0.796 A closed 0 0.0026 0.0026 0.002
2016/17 4.528 A 0.511 A closed 0 0.0008 0.0026 0.002
2016/17 -- 0.507 A -- -- -- 0.0026 0.002
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6. Basis for the 2017/18 OFL: The OFL was based on Tier 4 considerations. The ratio of
estimated 2016/17 MMB-at-mating to BMSY is less than β (0.25) for the FOFL Control Rule,
so directed fishing is not allowed. As per the rebuilding plan (NPFMC, 2014a), the OFL is
based on a Tier 5 calculation of average bycatch mortalities between 1999/2000 and 2005/2006,
which is a time period thought to adequately reflect the conservation needs associated with
this stock and to acknowledge existing non-directed catch mortality. Using this approach, the
OFL was determined to be 1.16 t for 2017/18. The following results are based on determining
BMSY /MSST by averaging the MMB-at-mating time series estimated using the smoothed
survey data from a random effects model; the current (2017/18) MMB-at-mating is also based
on the smoothed survey data.

Table 3: Management performance, all units in metric tons. The OFL is a total catch OFL for each
year.

Year Tier BMSY

 Current 
MMBmating

B/BMSY 

(MMBmating )
g

Years to define 
BMSY

Natural 
Mortality

P*

2013/14 4c 3,988 278 0.07 1
1980/81-1984/85 

&1990/91-1997/98 0.18 10% 
buffer

2014/15 4c 4,002 218 0.05 1
1980/81-1984/85 

&1990/91-1997/98 0.18 25% 
buffer

2015/16 4c 4,109 361 0.09 1
1980/81-1984/85 

&1990/91-1997/98 0.18 25% 
buffer

2016/17 4c 4,116 232 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

2017/18 4c 4,108 230 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

Table 4: Management performance, all units in the table are million pounds.

Year Tier BMSY

 Current 
MMBmating

B/BMSY 

(MMBmating )
g

Years to define 
BMSY

Natural 
Mortality

P*

2013/14 4c 8.79 0.613 0.07 1
1980/81-1984/85 

&1990/91-1997/98 0.18 10% 
buffer

2014/15 4c 8.82 0.481 0.05 1
1980/81-1984/85 

&1990/91-1997/98 0.18 10% 
buffer

2015/16 4c 9.06 0.795 0.09 1
1980/81-1984/85 

&1990/91-1997/98 0.18 25% 
buffer

2016/17 4c 9.07 0.511 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

2017/18 4c 9.06 0.507 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

7. Probability density function for the OFL: Not applicable for this stock.

8. ABC: The ABC was calculated using a 25% buffer on the OFL, as in the previous assessments
since 2015. The ABC is thus 0.87 t (= 0.25x1.16 t).

9. Rebuilding analyses results summary: In 2009, NMFS determined that the PIBKC stock
was not rebuilding in a timely manner and would not meet a rebuilding horizon of 2014. A
preliminary assessment model developed by NMFS (not used in this assessment) suggested
that rebuilding could occur within 50 years due to random recruitment (NPFMC, 2014a).
Subsequently, Amendment 43 to the King and Tanner Crab Fishery Management Plan (Crab
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FMP) and Amendment 103 to the Bering Sea and Aleutian Islands Groundfish FMP (BSAI
Groundfish FMP) to rebuild the PIBKC stock were adopted by the Council in 2012 and
approved by the Secretary of Commerce in early 2015. The function of these amendments is
to promote bycatch reduction on PIBKC by closing the Pribilof Islands Habitat Conservation
Zone to pot fishing for Pacific cod. No pot fishing for Pacific cod occurred within the Pribilof
Islands Habitat Conservation Zone in 2015/16.

A. Summary of Major Changes:

1. Management

In 2002, NMFS notified the NPFMC that the PIBKC stock was overfished. A rebuilding plan was
implemented in 2003 that included the closure of the stock to directed fishing until the stock was
rebuilt. In 2009, NMFS determined that the PIBKC stock was not rebuilding in a timely manner
and would not meet the rebuilding horizon of 2014. Subsequently, Amendment 43 to the Crab FMP
and Amendment 103 to the BSAI Groundfish FMP to rebuild the PIBKC stock were adopted by
the Council in 2012 and approved by the Secretary of Commerce in early 2015. Amendment 103
closed the Pribilof Islands Habitat Conservation Zone to pot fishing for Pacific cod to promote
bycatch reduction on PIBKC. Amendment 43 amended the prior rebuilding plan to incorporate
new information on the likely rebuilding timeframe for the stock, taking into account environmental
conditions and the status and population biology of the stock. No pot fishing for Pacific cod has
occurred within the Pribilof Islands Habitat Conservation Zone since 2015/16.

2. Input data

Retained and discard catch time series were updated with 2015/2016 data from the crab and
groundfish fisheries. Abundance and biomass for PIBKC in the annual summer NMFS EBS bottom
trawl survey were updated for the 2016 survey.

3. Assessment methodology

There are no changes from the 2016/17 assessment. The Tier 4 approach used in this assessment
for status determination, based on smoothing the raw survey biomass time series using a random
effects model, is identical to that adopted by the CPT and SSC in 2015 and used in the 2015 and
2016 assessments (Stockhausen, 2015, 2016).

4. Assessment results

Total catch mortality in 2016/17 was 0.38 t, which DID NOT exceed the OFL (1.16 t). Consequently,
overfishing DID NOT occur in 2016/17. The projected MMB-at-mating for 2017/18 decreased
slightly from that in 2016/17 but remained below the MSST. Consequently, the stock remains
overfished and a directed fishery is prohibited in 2017/18. The OFL, based on average catch, and
ABC are identical to last year’s values.
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B. Responses to SSC and CPT Comments

CPT comments September 2015:

Specific remarks pertinent to this assessment

Use results from the random effects smoothing model to calculate both BMSY and current B for
status determination.

Responses to CPT Comments:

Results from the random effects model were used to calculate both BMSY and current B for status
determination.

SSC comments October 2015:

Specific remarks pertinent to this assessment

none

CPT comments May 2016:

Specific remarks pertinent to this assessment

none

SSC comments June 2016:

Specific remarks pertinent to this assessment

none

CPT comments September 2016:

Specific remarks pertinent to this assessment

Apply the same handling mortality to bycatch of PIBKC by fixed gear as is applied to other king
crab stocks (0.2).

Responses to CPT Comments:

This assessment uses 0.2 as the handling mortality applied to all fixed gear bycatch.

SSC comments October 2016:

Specific remarks pertinent to this assessment

none
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CPT comments May 2017:

Specific remarks pertinent to this assessment

none

SSC comments June 2017:

Specific remarks pertinent to this assessment

none
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C. Introduction

1. Stock

Pribilof Islands blue king crab (PIBKC), Paralithodes platypus.

2. Distribution

Blue king crab are anomurans in the family Lithodidae, which also includes the red king crab
(Paralithodes camtschaticus) and golden or brown king crab (Lithodes aequispinus) in Alaska. Blue
king crabs are found in widely-separated populations across the North Pacific (Figure 1). In the
western Pacific, blue king crabs occur off Hokkaido in Japan and isolated populations have been
observed in the Sea of Okhotsk and along the Siberian coast to the Bering Straits. In North America,
they are found in the Diomede Islands, Point Hope, outer Kotzebue Sound, King Island, and the
outer parts of Norton Sound. In the remainder of the Bering Sea, they are found in the waters off
St. Matthew Island and the Pribilof Islands. In more southerly areas, blue king crabs are found in
the Gulf of Alaska in widely-separated populations that are frequently associated with fjord-like
bays (Figure 1). The insular distribution of blue king crab relative to the similar but more broadly
distributed red king crab is likely the result of post-glacial-period increases in water temperature
that have limited the distribution of this cold-water adapted species (Somerton 1985). Factors
that may be directly responsible for limiting the distribution include the physiological requirements
for reproduction, competition with the more warm-water adapted red king crab, exclusion by
warm-water predators, or habitat requirements for settlement of larvae (Armstrong et al 1985, 1987;
Somerton, 1985).

3. Stock structure

Stock structure of blue king crab in the North Pacific is largely unknown. Samples were collected in
2009-2011 by a graduate student at the University of Alaska to support a genetic study on blue king
crab population structure. Aspects of blue king crab harvest and abundance trends, phenotypic
characteristics, behavior, movement, and genetics will be evaluated by the author following the
guidelines in the AFSC report entitled “Guidelines for determination of spatial management units for
exploited populations in Alaskan groundfish fishery management plans” by P. Spencer (unpublished
report).

The potential for species interactions between blue king crab and red king crab as a potential reason
for PIBKC shifts in abundance and distribution were addressed in a previous assessment (Foy,
2013). Foy (2013) compared the spatial extent of both speices in the Pribilof Islands from 1975
to 2009 and found that, in the early 1980’s when red king crab first became abundant, blue king
crab males and females dominated the 1 to 7 stations where the species co-occurred in the Pribilof
Islands District. Spatially, the stations with co-occurance were all dominated by blue king crab
and broadly distributed around the Pribilof Islands. In the 1990’s, the red king crab population
biomass increased substantially as the blue king crab population biomass decreased. During this
time period, the number of stations with co-occurance remained around a maximum of 8, but they
were equally dominated by both blue king crab and red king crab—sugggesting a direct overlap
in distribution at the scale of a survey station. During this time period, the stations dominated
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by red king crab were dispersed around the Pribilof Islands. Between 2001 and 2009 the blue king
crab population decreased dramatically while the red king crab fluctuated. The number of stations
dominated by blue king crab in 2001-2009 was similar to that for stations dominated by red king
crab for both males and females, suggesting continued competition for similar habitat. The only
stations dominated by blue king crab in the latter period are to the north and east of St. Paul
Island. Although blue king crab protection measures also afford protection for the red king crab in
this region, red king crab stocks continue to fluctuate (more so than simply accounted for by the
uncertainty in the survey).

During the years when the fishery was active (1973-1989, 1995-1999), the Pribilof Islands blue king
crab (PIBKC) were managed under the Bering Sea king crab Registration Area Q Pribilof District.
The southern boundary of this district is formed by a line from 54 36’ N lat., 168 W long., to 54
36’ N lat., 171 W long., to 55 30’ N lat., 171 W. long., to 55 30’ N lat., 173 30’ E long., while its
northern boundary is a line at the latitude of Cape Newenham (58 39’ N lat.), its eastern boundary
is a line from 54 36’ N lat., 168 W long., to 58 39’ N lat., 168 W long., to Cape Newenham (58
39’ N lat.), and its western boundary is the United States-Russia Maritime Boundary Line of 1991
(ADF&G 2008) (Figure 2). In the Pribilof District, blue king crab occupy the waters adjacent to
and northeast of the Pribilof Islands (Armstrong et al. 1987). For assessment purposes, the Pribilof
District as defined in Figure 2, with the addition of a 20 nm mile strip to the east of the District
(bounded by the dotted red line in Figure 2), is considered to define the stock boundary for PIBKC.

4. Life History

Blue king crab are similar in size and appearance, except for color, to the more widespread red
king crab, but are typically biennial spawners with lesser fecundity and somewhat larger sized (ca.
1.2 mm) eggs (Somerton and Macintosh 1983; 1985; Jensen et al. 1985; Jensen and Armstrong
1989; Selin and Fedotov 1996). Blue king crab fecundity increases with size, from approximately
100,000 embryos for a 100-110 mm CL female to approximately 200,000 for a female >140-mm
CL (Somerton and MacIntosh 1985). Blue king crab have a biennial ovarian cycle with embryos
developing over a 12 or 13-month period depending on whether or not the female is primiparous or
multiparous, respectively (Stevens 2006a). Armstrong et al. (1985, 1987), however, estimated the
embryonic period for Pribilof blue king crab at 11-12 months, regardless of previous reproductive
history. Somerton and MacIntosh (1985) placed development at 14-15 months. It may not be
possible for large female blue king crabs to support the energy requirements for annual ovary
development, growth, and egg extrusion due to limitations imposed by their habitat, such as poor
quality or low abundance of food or reduced feeding activity due to cold water (Armstrong et al.
1987; Jensen and Armstrong 1989). Both the large size reached by Pribilof Islands blue king crab
and the generally high productivity of the Pribilof area, however, argue against such environmental
constraints. Development of the fertilized embryos occurs in the egg cases attached to the pleopods
beneath the abdomen of the female crab and hatching occurs February through April (Stevens
2006b). After larvae are released, large female Pribilof blue king crab will molt, mate, and extrude
their clutches the following year in late March through mid April (Armstrong et al. 1987).

Female crabs require an average of 29 days to release larvae, and release an average of 110,033 larvae
(Stevens 2006b). Larvae are pelagic and pass through four zoeal larval stages which last about 10
days each, with length of time being dependent on temperature: the colder the temperature the
slower the development and vice versa (Stevens et al. 2008). Stage I zoeae must find food within
60 hours as starvation reduces their ability to capture prey (Paul and Paul 1980) and successfully
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molt. Zoeae consume phytoplankton, the diatom Thalassiosira spp. in particular, and zooplankton.
The fifth larval stage is the non-feeding (Stevens et al. 2008) and transitional glaucothoe stage in
which the larvae take on the shape of a small crab but retain the ability to swim by using their
extended abdomen as a tail. This is the stage at which the larvae searches for appropriate settling
substrate and, upon finding it, molts to the first juvenile stage and henceforth remains benthic. The
larval stage is estimated to last for 2.5 to 4 months and larvae metamorphose and settle during July
through early September (Armstrong et al. 1987; Stevens et al. 2008).

Blue king crab molt frequently as juveniles, growing a few mm in size with each molt. Unlike red
king crab juveniles, blue king crab juveniles are not known to form pods. Female king crabs typically
reach sexual maturity at approximately five years of age while males may reach maturity at six
years of age (NPFMC 2003). Female size at 50% maturity for Pribilof blue king crab is estimated to
be 96-mm carapace length (CL) and size at maturity for males, estimated from chela height relative
to CL, is estimated to be 108-mm CL (Somerton and MacIntosh 1983). Skip molting occurs with
increasing probability for those males larger than 100 mm CL (NMFS 2005).

Longevity is unknown for this species due to the absence of hard parts retained through molts with
which to age crabs. Estimates of 20 to 30 years in age have been suggested (Blau 1997). Natural
mortality for male Pribilof blue king crabs has been estimated at 0.34-0.94 with a mean of 0.79
(Otto and Cummiskey 1990) and a range of 0.16 to 0.35 for Pribilof and St. Matthew Island stocks
combined (Zheng et al. 1997). An annual natural mortality of 0.2 yr−1 for all king crab species was
adopted in the federal crab fishery management plan for the BSAI areas (Siddeek et al. 2002). A
rate of 0.18 yr−1 is currently used for PIBKC.

5. Management history

The blue king crab fishery in the Pribilof District began in 1973 with a reported catch of 590 t
by eight vessels (Table 9; Figure 3). Landings increased during the 1970s and peaked at a harvest
of 5,000 t in the 1980/81 season (Table 9; Figure 3), with an associated increase in effort to 110
vessels (ADFG 2008). The fishery occurred September through January, but usually lasted less
than 6 weeks (Otto and Cummiskey 1990; ADFG 2008). The fishery was male only, and legal size
was >16.5 cm carapace width (NPFMC 1994). Guideline harvest levels (GHL) were 10 percent of
the abundance of mature males or 20 percent of the number of legal males (ADFG 2006).

PIBKC have occurred as bycatch in the eastern Bering Sea snow crab (Chionoecetes opilio) fishery,
the western Bering Sea Tanner crab (Chionoecetes bairdi) fishery, the Bering Sea hair crab (Erimacrus
isenbeckii) fishery, and the Pribilof red and blue king crab fisheries (Tables 10 and 11). In addition,
blue king crab have been taken as bycatch in groundfish fisheries by both fixed and trawl gear,
primarily those targeting Pacific cod, flathead sole and yellowfin sole (Tables 10-12).

Amendment 21a to the BSAI Groundfish FMP prohibits the use of trawl gear in the Pribilof Islands
Habitat Conservation Area (subsequently renamed the Pribilof Islands Habitat Conservation Zone in
Amendment 43; Figure 4), which the amendment also established (NPFMC 1994). The amendment
went into effect January 20, 1995 and protects the majority of crab habitat in the Pribilof Islands
area from the impact from trawl gear.

Declines in the PIBKC stock after 1995 resulted in a closure of directed fishing from 1999 to the
present. The stock was declared overfished in September 2002, and ADFG developed a rebuilding
harvest strategy as part of the NPFMC comprehensive rebuilding plan for the stock. The rebuilding
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plan also included the closure of the stock to directed fishing until it was rebuilt. In 2009, NMFS
determined that the PIBKC stock was not rebuilding in a timely manner and would not meet the
rebuilding horizon of 2014. Subsequently, Amendment 43 to the King and Tanner Crab Fishery
Management Plan (FMP) and Amendment 103 to the BSAI Groundfish FMP to rebuild the PIBKC
stock were adopted by the Council in 2012 and approved by the Secretary of Commerce in early
2015. Amendment 103 closes the Pribilof Islands Habitat Conservation Zone (Figure 4) to pot
fishing for Pacific cod to promote bycatch reduction on PIBKC. Amendment 43 amends the prior
rebuilding plan to incorporate new information on the likely rebuilding timeframe for the stock,
taking into account environmental conditions and the status and population biology of the stock
(NPFMC 2014a).

D. Data

1. Summary of new information

The time series of retained and discarded catch in the crab fisheries was updated for 2016/17 from
ADFG data (no retained catch, no bycatch mortality; Tables 10 and 11). The time series of discards
in the groundfish pot and trawl fisheries (Tables 10 and 11) were updated for 2009/10 -2016/17
using NMFS Alaska Regional Office (AKRO) estimates obtained from the AKFIN database (as
updated on Aug. 30, 2017). Results from the 2017 NMFS EBS bottom trawl survey were added
to the assessment (Tables 15 and 16), based on the “new” standardization described in the 2015
assessment (Stockhausen, 2015).

2. Fishery data

2.a. Retained catch

Retained pot fishery catches (live and deadloss landings data) are provided for 1973/74 to 2015/16
(Table 9, Figure 3), including the 1973/74 to 1987/88 and 1995/96 to 1998/99 seasons when blue
king crab were targeted in the Pribilof Islands District. In the 1995/96 to 1998/99 seasons, blue
king crab and red king crab were fished under the same Guideline Harvest Level (GHL). Total
allowable catch (TAC) for a directed fishery has been set at zero since 1999/2000; there was no
retained catch in the 2016/17 crab fishing season.

2.b. Bycatch and discards:

Crab pot fisheries

Non-retained (directed and non-directed) pot fishery catches are provided for sublegal males (< 138
mm CL), legal males (≥ 138 mm CL), and females based on data collected by onboard observers in
the crab fisheries (Table 10). Catch weight was calculated by first determining the mean weight (in
grams) for crabs in each of three categories: legal non-retained, sublegal, and female. The average
weight for each category was then calculated from length frequency tables, where the carapace
length (z; in mm) was converted to weight (w; in g) using the following equation:
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w = α · zβ (1)

Values for the length-to-weight conversion parameters α and β were applied across the time period:
males) α=0.000508, β=3.106409; females) α=0.02065, β=2.27 (Daly et al. 2014). Average weights
(W ) for each category were calculated using the following equation:

W =
∑
wz · nz∑
nz

(2)

where wz is crab weight-at-size z (i.e., carapace length) using Equation 1, and nz is the number of
crabs observed at that size in the category. Finally, estimated total non-retained weights for each
crab fishery were the product of average weight (W ), CPUE based on observer data, and total effort
(pot lifts) in each fishery.

Historical non-retained catch data are available from 1996/97 to present from the snow crab general,
snow crab CDQ, and Tanner crab fisheries (Table 10, Bowers et al. 2011), although data may
be incomplete for some of these fisheries. Prior to 1998/99, limited observer data exists (for
catcher-processor vessels only), so non-retained catch before this date is not included here. For
this assessment, a 20% handling mortality rate was applied to the bycatch estimates to calculate
non-retained crab mortality in these pot fisheries (Table 11). In previous assessments, a handling
mortality rate of 50% was applied to bycatch in the pot fisheries. The revised value used here is
now consistent with the rates used in other king crab assessments (e.g., Zheng et al., 2016).

No bycatch mortality occurred in the crab fisheries in 2016/17. In 2015/16, though, several PIBKC
were incidentally caught in the crab fisheries, yielding an expanded estimate of 0.067 t bycatch
mortality (using a handling mortality rate of 20%; Table 10). Bycatch mortality during 2015/16
was the first non-zero bycatch mortality in the crab fisheries since 2010/11.

Groundfish fisheries

The AKRO estimates of non-retained catch from all groundfish fisheries in 2016/17, as available
through the AKFIN database (accessed Aug. 30, 2017), are included in this report (Tables 10-12).
Updated estimates for 2009/10-2016/17 were obtained through the AKFIN database.

Groundfish bycatch data from before 1999 are available only in INPFC reports and are not included
in this assessment. Non-retained crab catch data in the groundfish fisheries are available from
1991/92 to present. Between 1991 and December 2001, bycatch was estimated using the “blend
method.” From January 2003 to December 2007, bycatch was estimated using the Catch Accounting
System (CAS), based on substantially different methods than the “blend.” Starting in January 2008,
the groundfish observer program changed the method in which they speciate crab to better reflect
their hierarchal sampling method and to account for broken crab that in the past were only identified
to genus. In addition, the haul-level weights collected by observers were used to estimate the crab
weights through CAS instead of applying an annual (global) weight factor to convert numbers to
biomass. Spatial resolution was at the NMFS statistical area. Beginning in January 2009, ADFG
statistical areas (1ˆo$ longitude x 0.5o latitude) were included in groundfish production reports and
allowed an increase in the spatial resolution of bycatch estimates from the NMFS statistical areas
to the state statistical areas. Bycatch estimates (2009-present) based on the state statistical areas
were first provided in the 2013 assessment, and improved methods for aggregating observer data
were used in the 2014 and 2015 assessments (see Stockhausen, 2015). The estimates obtained this
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year are based on the same methods as those used in the 2014-2016 assessments. Detailed results
from this process are presented in Appendix A.

To assess crab mortalities in the groundfish fisheries, an 80% handling mortality rate was applied to
estimates of bycatch in trawl fisheries, and a 20% handling mortality rate was applied to fixed gear
fisheries using pot and hook and line gear (Tables 10-11). As noted above, previous assessments
used a handling mortality rate of 50% for bycatch mortality in the fixed gear fisheries.

In 2016/17, fisheries targeting rock sole (Lepidopsetta spp.) accounted for 68% of the bycatch of
PIBKC in the groundfish fisheries, with fisheries targeting yellowfin sole (Limanda aspera) and
Pacific cod (Gadus microcephalus) accounting for 16% each. In contrast, fisheries targeting Pacific
cod accounted for 48% of the estimated total PIBKC bycatch (by weight) in the groundfish fisheries
in 2015/16, with fisheries targeting yellowfin sole accounting for another 43% (Table 12). In 2013/14
and 2014/15, bycatch of PIBKC occurred almost exclusively in the Pacific cod fisheries (99.4%
by weight, Table 4). The flathead sole (Hippoglossoides elasodon) fishery has also accounted for a
substantial fraction of the bycatch at times.

Since the 2009/10 crab fishing season, Pribilof Islands blue king crab have been taken as bycatch in
the groundfish fisheries only by hook and line and non-pelagic trawl gear (Table 13). Starting in
2015, as a consequence of Amendment 43 to the BSAI Groundfish FMP, the Pribilof Islands Habitat
Conservation Area was formally closed to pot fishing for Pacific cod in order to promote recovery of
the PIBKC stock. In 2016/17, non-pelagic trawl gear accounted for 83% (by weight) of PIBKC
bycatch in the groundfish fisheries. In 2015/16, by contrast, non-pelagic trawl gear accounted
for only 52% the bycatch. In 2013/14 and 2014/15, hook and line gear accounted for the total
bycatch of PIBKC, while in 2012/13, it accounted for only 20% of the bycatch (by weight)–whereas
non-pelagic trawl gear accounted for 80%. Although these appear to be large interannual changes,
the actual bycatch amounts involved are fairly small and interannual variability is consequently
expected to be rather high.

2.c. Catch-at-length

Not applicable.

3. Survey data

The 2017 NMFS EBS bottom trawl survey was conducted between May and August of this year.
Survey results for PIBKC are based on the stock area first defined in the 2013 assessment (Foy,
2013), which includes the Pribilof District and a 20 nm strip adjacent to the eastern edge of the
District (Figure 2). The adjacent area was defined as a result of the new rebuilding plan and the
concern that crab outside the Pribilof District were not being accounted for in the assessment.

In 2017, the survey caught 23 blue king crab in 86 stations across the stock area, while 20, 28, and
33 crab were caught across the same stations in the 2014-2016 surveys, respectively (Table ??).
Four immature males were caught in 2017, similar to numbers caught in 2014-2016 (5, 4 and 5,
respectively). Four mature males (three of which was legal size) were caught in 2017, compared
with 5, 13 and 3 in 2014-2016, respectively. Seven immature females were caught in 2017; only one
was caught in 2014 and none in 2015, but five in 2016. Finally, eight mature females were caught in
2017, compared with only 4 in 2014, 11 in 2015, and 19 in 2016.
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The area-swept estimate of mature male abundance in the stock area at the time of the survey was
91,000 (±89,000), representing an increase from 56,000 (±62,000) in 2016 (Table 15). The abundance
estimate for immature males in 2017 was 68,000 (±103,000), while it was 94,000 (±95,000) in 2016.
The area-swept estimate for immature female abundance in 2017 was 188,000 (±275,000), larger
than in 2016 (132,000 ± 130,000), while that for mature females was only 162,000 (± 169,000),
smaller than that in 2016 (323,000 ±328,000). None of the changes were statistically significant.

The area-swept estimate of mature male biomass in the stock area at the time of the 2017 survey was
253 t (±254 t), while it was 129 t (±154 t) in 2016 (Table 16). The biomass estimate for immature
males in 2017 was 45 t (±68 t) , compared with 70 t (±67 t) in 2016. The area-swept estimate for
immature female biomass in 2017 was 107 t (±170 t); in 2016, it was 49 t (±48 t). For mature
females, the estimated swept-area biomass was 152 t (±166 t); in 2016, it was 352 t (±340 t).

One feature that characterizes survey-based estimates of abundance and biomass for PIBKC is the
large uncertainty (cv’s on the order of 0.5-1) associated with the estimates, which complicates the
interpretation of sometimes large interannual swings in estimates (Tables 15 and 16, Figures 5-8).
Estimated total abundance of male PIBKC from the NMFS EBS bottom trawl survey declined from
~24 million crab in 1975, the first year of the “standardized” survey, to ~150,000 in 2016 (the lowest
estimated abundance since 2004, which was the minimum for the time series; Table 15, Figures 5
and 6). Following a general decline to a low-point in 1985 (~500,000 males), abundance increased
by a factor of 10 in the early1990s, then generally declined (with small amplitude oscillations
superimposed) to the present. Estimated female abundance generally followed a similar trend. It
spiked at 180 million crab in 1980, from ~13 million crab in 1975 and only ~1 million in 1979, then
returned to more typical levels in 1981 (~6 million crab). More recently, abundance has fluctuated
around 200,000 females. Estimated biomass for both males and females have followed similar trends
similar to those in abundance (Table 16, Figures 7 and 8).

Size frequencies for males by shell condition from recent surveys (2012-2017) are illustrated in Figure
9. Size frequencies for all males across the time series are shown in Figure 10. While Figure 10
suggested a recent trend toward larger sizes in 2014-15, this does not appear to have continued in
2016. These plots provide little evidence of recent recruitment.

Size frequencies for females by shell condition are presented in Figure 11 from recent surveys
(2012-2017). Size frequencies for all females are shown in 12. These also provide little indication of
recent recruitment.

The small numbers of crab caught in recent surveys make it difficult to draw firm conclusions
regarding spatial patterns (see figures in Appendix B). That said, the spatial pattern of PIBKC
abundance in recent surveys is generally centered fairly compactly within the Pribilof District to
the east of St. Paul Island (although 2015 is an exception) and north of St. George Island, within a
60 nm radius of St. Paul.

E. Analytic Approach

1. History of modeling approaches

A catch survey analysis has been used for assessing the stock in the past, although it is not currently
in use. In October 2013, the SSC concurred with the CPT that the PIBKC stock falls under Tier 4
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for status determination but it recommended that the OFL be calculated using a Tier 5 approach,
with ABC based on a 10% buffer. Subsequently, a 25% buffer has been used to calculate ABC.

In the 2013 and 2014 assessments (Foy 2013; Stockhausen 2014), “current” MMB-at-mating was
projected from the time of the latest survey using an inverse-variance averaging approach to
smoothing annual survey biomass estimates because the uncertainties associated with the annual
estimates are extremely large. In the 2015 assessment (Stockhausen, 2015), an alternative approach
to smoothing based on a Random Effects model was presented and subsequently adopted by the
CPT and SSC to use in estimating BMSY and “current” MMB-at-mating. The Random Effects
model (Appendix C) is used in this assessment.

2. Model Description

See Appendix C.

3. Model Selection and Evaluation

Not applicable

4. Results

See Appendix C.

F. Calculation of the OFL

1. Tier Level:

Based on available data, the author recommended classification for this stock is Tier 4 for stock
status level determination defined by Amendment 24 to the Fishery Management Plan for the
Bering Sea/Aleutian Islands King and Tanner Crabs (NPFMC 2008a).

In Tier 4, stock status is based on the ratio of “current” spawning stock biomass (B) to BMSY

(or a proxy thereof, BMSYproxy , also referred to as BREF ). MSY (maximum sustained yield) is the
largest long-term average catch or yield that can be taken from a stock or stock complex under
prevailing ecological and environmental conditions. The fishing mortality that, if applied over the
long-term, would result in MSY is FMSY . BMSY is the long-term average stock size when fished at
FMSY, and is based on mature male biomass at the time of mating (MMBmating), which serves
as an approximation for egg production. MMBmating is used as a basis for BMSY because of the
complicated female crab life history, unknown sex ratios, and male only fishery. Although BMSY

cannot be calculated for a Tier 4 stock, a proxy value (BMSYproxy or BREF ) is defined as the average
biomass over a specified time period that satisfies the conditions under which BMSY would occur
(i.e., equilibrium biomass yielding MSY under an applied FMSY ).

The time period for establishing BMSYproxy is assumed to be representative of the stock being fished
at an average rate near FMSY and fluctuating around BMSY . The SSC has endorsed using the
time periods 1980-84 and 1990-97 to calculate BMSYproxy for Pribilof Islands blue king crab to avoid
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time periods of low abundance possibly caused by high fishing pressure. Alternative time periods
(e.g., 1975 to 1979) have also been considered but rejected (Foy 2013). Considerations for choosing
the current time periods included:

A. Production potential

1) Between 2006 and 2013 the stock does appear to be below a threshold for responding to
increased production based on the lack of response of the adult stock biomass to slight
fluctuations in recruitment (male crab 120-134 mm) (Figure 20 in Foy 2013).

2) An estimate of surplus production (ASPt = MMBt+1˘MMBt + totalcatcht) suggested that
only meaningful surplus existed only in the late 1970s and early 1980s while minor surplus
production in the early 1990s may have led to the increases in biomass observed in the late
1990s.

3) Although a climate regime shift where temperature and current structure changes are likely to
impact blue king crab larval dispersal and subsequent juvenile crab distribution, no apparent
trends in production before or after 1978 were observed (Foy 2013). There are few empirical
data to identify trends that may allude to a production shift. However, further analysis is
warranted given the paucity of surplus production and recruitment subsequent to 1981 and
the spikes in recruits (male crab 120-134 mm) /spawner (MMB) observed in the early 1990s
and 2009 (Figure 21 in Foy 2013).

B. Exploitation rates

Exploitation rates fluctuated during the open fishery periods from 1975 to 1987 and 1995 to 1998
(Figure 20 in Foy 2013) while total catch increased until 1980, before the fishery was closed in 1987,
and increased again in 1995 before closing again in 1999 (Figure 22 in Foy 2013). The current
FMSYproxy = M is 0.18, so time periods with greater exploitation rates should not be considered to
represent a period with an average rate of fishery removals.

C. Recruitment

Subsequent to increases in exploitation rates in the late 1980s and 1990s, the quantity
ln(recruits/MMB) dropped, suggesting that exploitation rates at the levels of FMSYproxy = M were
not sustainable.

Thus,MMBmating is the basis for calculatingBMSYproxy . The formulas used to calculateMMBmating
from MMB at the time of the survey (MMBsurvey) are documented in Appendix C. For this stock,
BMSYproxy was calculated using the random effects model-smoothed estimates for MMBsurvey from
the survey time series (Table 17) in the formula for MMBmating. BMSYproxy is the average of
MMBmating for the years 1980/81-1984/85 and 1990/91-1997/98 (Table 18) and was calculated as
4,108 t.

In this assessment, “current B” (B) is the MMBmating projected for 2017/18. Details of this
calculation are also provided in Appendix C. For 2017/18, B = 230 t.
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Overfishing is defined as any amount of fishing in excess of a maximum allowable rate, FOFL, which
would result in a total catch greater than the OFL. For Tier 4 stocks, a minimum stock size threshold
(MSST) is specified as 0.5·BMSYproxy . If B drops below the MSST, the stock is considered to be
overfished.

2. Parameters and stock sizes

• BMSYproxy (BREF ) = 4,108 t • M = 0.18 yrˆ{-1} • B = 230 t

3. OFL specification

3.a. Stock status level

In the Tier 4 OFL-setting approach, the “total catch OFL” and the “retained catch OFL” are
calculated by applying the FOFL to all crab at the time of the fishery (total catch OFL) or to the
mean retained catch determined for a specified period of time (retained catch OFL).

The Tier 4 FOFL is derived using the FOFL Control Rule (Figure 13), where the Stock Status Level
(level a, b or c; equations 3-5) is based on the relationship of B to BMSYproxy .

Stock Status Level FOFL

a. B/BMSYproxy > 1.0 FOFL = γ ·M (3)

b. β < B/BMSYproxy ≤ 1.0 FOFL = γ ·M [(B/BMSYproxy − α)/(1 − α)] (4)

c. B/BMSYproxy ≤ β Fdirected = 0, FOFL ≤ FMSY (5)

When B/BMSYproxy is greater than 1 (Stock Status Level a), FOFLproxy is given by the product
of a scalar (γ=1.0, nominally) and M . When B/BMSYproxy is less than 1 and greater than the
critical threshold β (=0.25) (Stock Status Level b), the scalar α (= 0.1) determines the slope of
the non-constant portion of the control rule for FOFLproxy . Directed fishing mortality is set to zero
when the ratio B/BMSYproxy drops below β (Stock Status Level c). Values for α and β are based on
a sensitivity analysis of the effects on B/BMSYproxy (NPFMC 2008a).

3.b. Basis for MMB-at-mating

The basis for projecting MMB from the survey to the time of mating is discussed in detail in
Appendix C.
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3.c. Specification of FOFL, OFL and other applicable measures

Table 5: Basis for the OFL (Table 3 repeated). All units in metric tons.

Year Tier BMSY

 Current 
MMBmating

B/BMSY 

(MMBmating )
g

Years to define 
BMSY

Natural 
Mortality

P*

2013/14 4c 3,988 278 0.07 1
1980/81-1984/85 

&1990/91-1997/98 0.18 10% 
buffer

2014/15 4c 4,002 218 0.05 1
1980/81-1984/85 

&1990/91-1997/98 0.18 25% 
buffer

2015/16 4c 4,109 361 0.09 1
1980/81-1984/85 

&1990/91-1997/98 0.18 25% 
buffer

2016/17 4c 4,116 232 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

2017/18 4c 4,108 230 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

Table 6: Basis for the OFL (Table 4 repeated). All units in millions lbs.

Year Tier BMSY

 Current 
MMBmating

B/BMSY 

(MMBmating )
g

Years to define 
BMSY

Natural 
Mortality

P*

2013/14 4c 8.79 0.613 0.07 1
1980/81-1984/85 

&1990/91-1997/98 0.18 10% 
buffer

2014/15 4c 8.82 0.481 0.05 1
1980/81-1984/85 

&1990/91-1997/98 0.18 10% 
buffer

2015/16 4c 9.06 0.795 0.09 1
1980/81-1984/85 

&1990/91-1997/98 0.18 25% 
buffer

2016/17 4c 9.07 0.511 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

2017/18 4c 9.06 0.507 0.06 1 1980/81-1984/85 
&1990/91-1997/98 0.18 25% 

buffer

4. Specification of the retained catch portion of the total catch OFL

The retained portion of the catch for this stock is zero (0 t).

5. Recommendations:

For 2017/18, BMSYproxy = 4,108 t, derived as the mean MMBmating from 1980/81 to
1984/85 and 1990/91 to 1997/98 using the random effects model-smoothed survey
time series. The stock demonstrated highly variable levels of MMB during both of these periods,
likely leading to uncertain approximations for BMSY . Crabs were highly concentrated during the
EBS bottom trawl surveys and male biomass estimates were characterized by poor precision due to
limited numbers of tows with crab catches.

MMBmating for 2017/18 was estimated at 230 t. The B/BMSYproxy ratio corresponding to the
biomass reference is 0.06. B/BMSYproxy is < β, therefore the stock status level is c, Fdirected = 0,
and FOFL ≤ FMSY (as determined in the Pribilof Islands District blue king crab rebuilding plan).
Total catch OFL calculations were explored in 2008 to adequately reflect the conservation needs
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with this stock and to acknowledge the existing non-directed catch mortality (NPFMC 2008a).
The preferred method was a total catch OFL equivalent to the average catch mortalities between
1999/2000 and 2005/06. This period was after the targeted fishery was closed and did not include
recent changes to the groundfish fishery that led to increased blue king crab bycatch. The OFL for
2017/18, based on an average catch mortality, is 1.16 t.

G. Calculation of the ABC

To calculate an Annual Catch Limit (ACL) to account for scientific uncertainty in the OFL, an
acceptable biological catch (ABC) control rule was developed such that ACL=ABC. For Tier 3 and
4 stocks, the ABC is set below the OFL by a proportion based a predetermined probability that
the ABC would exceed the OFL (P*). Currently, P* is set at 0.49 and represents a proportion
of the OFL distribution that accounts for within assessment uncertainty (σw) in the OFL to
establish the maximum permissible ABC (ABCmax). Any additional uncertainty to account for
uncertainty outside of the assessment methods (σb) is considered as a recommended ABC below
ABCmax. Additional uncertainty is included in the application of the ABC by adding the uncertainty
components as σtotal =

√
σ2
w + σ2

b . For the PIBKC stock, the CPT has recommended, and the SSC
has approved, a constant buffer of 25% to the OFL (NPFMC, 2014b).

1. Specification of the probability distribution of the OFL used in the ABC

The OFL was set based on a Tier 5 calculation of average catch mortalities between 1999/2000
and 2005/06 to adequately reflect the conservation needs with this stock and to acknowledge the
existing non-directed catch mortality. As such, the OFL does not have an associated probability
distribution.

2. List of variables related to scientific uncertainty considered in the OFL prob-
ability distribution

None. The OFL is based on a Tier 5 calculation and does not have an associated probability
distribution. However, compared to other BSAI crab stocks, the uncertainty associated with the
estimates of stock size and OFL for Pribilof Islands blue king crab is very high due to insufficient
data and the small spatial extent of the stock relative to the survey sampling density. The coefficient
of variation for the estimate of mature male biomass from the surveys for the most recent year is
0.51, and has ranged between 0.17 and 1.00 since the 1980 peak in biomass.

3. List of additional uncertainties considered for alternative σb applications to
the ABC

Several sources of uncertainty are not included in the measures of uncertainty reported as part of
the stock assessment:

• Survey catchability and natural mortality uncertainties are not estimated but rather are pre-
specified.
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• FMSY is assumed to be equal to γ·M when applying the OFL control rule, where the proportionality
constant γ is assumed to be equal to 1 and M is assumed to be known.

• The coefficients of variation for the survey estimates of abundance for this stock are very high.

• BMSY is assumed to be equivalent to average mature male biomass. However, stock biomass has
fluctuated greatly and targeted fisheries only occurred from 1973-1987 and 1995-1998 so considerable
uncertainty exists with this estimate of BMSY .

4. Recommendations:

For 2017/18, Fdirected = 0 and the total catch OFL is based on catch biomass would maintain the
conservation needs with this stock and acknowledge the existing non-directed catch mortality. In
this case, the ABC based on a 25% buffer of the average catch between 1999/2000 and 2005/2006
would be 0.87 t.

Table 7: Management performance (Table). All units in metric tons. The OFL is a total catch OFL
for each year.

Year MSST
Biomass 

(MMBmating ) TAC Retained 
Catch

Total Catch 
Mortality OFL ABC

2013/14 2,001 A 225 A closed 0 0.03 1.16 1.04
2014/15 2,055 A 344 A closed 0 0.07 1.16 0.87
2015/16 2,058 A 361 A closed 0 1.18 1.16 0.87
2016/17 2,054 A 232A closed 0 0.38 1.16 0.87
2017/18 -- 230 B -- -- -- 1.16 0.87

Notes:

A – Based on data available to the Crab Plan Team at the time of the assessment following the end of the crab fishing year.

B – Based on data available to the Crab Plan Team at the time of the assessment for the crab fishing year.

Table 8: Management performance (Table 2 repeated). All units in the table are million pounds.

Year MSST
Biomass 

(MMBmating ) TAC Retained 
Catch

Total Catch 
Mortality OFL ABC

2013/14 4.411 A 0.496 A closed 0 0.0001 0.0026 0.002
2014/15 4.531 A 0.758 A closed 0 0.0002 0.0026 0.002
2015/16 4.537 A 0.796 A closed 0 0.0026 0.0026 0.002
2016/17 4.528 A 0.511 A closed 0 0.0008 0.0026 0.002
2016/17 -- 0.507 A -- -- -- 0.0026 0.002

H. Rebuilding Analyses

Rebuilding analyses results summary: A revised rebuilding plan analysis was submitted to the U.S.
Secretary of Commerce in 2014 because NMFS determined that the stock was not rebuilding in a
timely manner and would not meet the rebuilding horizon of 2014. The Secretary approved the plan
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in 2015, as well as the two amendments that implement it (Amendment 43 to the King and Tanner
Crab Fishery Management Plan and Amendment 103 to the BSAI Groundfish Fishery Management
Plan). These amendments impose a closure to all fishing for Pacific cod with pot gear in the Pribilof
Islands Habitat Conservation Zone. This measure was designed to protect the main concentration
of the stock from the fishery with the highest observed rates of bycatch (NPFMC, 2014a). The area
has been closed to trawling since 1995.

I. Data Gaps and Research Priorities

Given the large CVs associated with the survey abundance and biomass estimates for the Pribilof
Islands blue king crab stock, assessment of this species might benefit from additional surveys using
alternative gear at finer spatial resolution. Jared Weems, a PhD student at University of Alaska,
Fairbanks, is conducting research on alternative survey designs, including visual censuses, drop
camera, and collector traps to better quantify PIBKC in a study funded by NPRB. Other data
gaps include stock-specific natural mortality rates and a lack of understanding regarding processes
apparently preventing successful recruitment to the Pribilof District.
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Tables

Table 9: Total retained catches from directed fisheries for Pribilof Islands District blue king crab
(Bowers et al. 2011; D. Pengilly and J. Webb, ADFG, personal communications).

Avg. CPUE
Abundance Biomass (t) legal crabs/pot

1973/1974 174,420 579 26
1974/1975 908,072 3,224 20
1975/1976 314,931 1,104 19
1976/1977 855,505 2,999 12
1977/1978 807,092 2,929 8
1978/1979 797,364 2,901 8
1979/1980 815,557 2,719 10
1980/1981 1,497,101 4,976 9
1981/1982 1,202,499 4,119 7
1982/1983 587,908 1,998 5
1983/1984 276,364 995 3
1984/1985 40,427 139 3
1985/1986 76,945 240 3
1986/1987 36,988 117 2
1987/1988 95,130 318 2
1988/1989 0 0 --
1989/1990 0 0 --
1990/1991 0 0 --
1991/1992 0 0 --
1992/1993 0 0 --
1993/1994 0 0 --
1994/1995 0 0 --
1995/1996 190,951 628 5
1996/1997 127,712 425 4
1997/1998 68,603 232 3
1998/1999 68,419 234 3

1999/2000 - 
2016/2017

Retained Catch

--0 0

Year
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Table 10: Total bycatch (non-retained catch) from the directed and non-directed fisheries for
Pribilof Islands District blue king crab. Crab fishery bycatch data is not available prior to
1996/1997 (Bowers et al. 2011; D. Pengilly ADFG). Gear-specific groundfish fishery data is not
available prior to 1991/1992 (J. Mondragon, NMFS).

females legal males
sublegal 
males

fixed gear trawl gear

1991/92 -- -- -- 0.067 6.199
1992/93 -- -- -- 0.879 60.791
1993/94 -- -- -- 0.000 34.232
1994/95 -- -- -- 0.035 6.856
1995/96 -- -- -- 0.108 1.284
1996/97 0.000 0.000 0.807 0.031 0.067
1997/98 0.000 0.000 0.000 1.462 0.130
1998/99 3.715 2.295 0.467 19.800 0.079
1999/00 1.969 3.493 4.291 0.795 0.020
2000/01 0.000 0.000 0.000 0.116 0.023
2001/02 0.000 0.000 0.000 0.833 0.029
2002/03 0.000 0.000 0.000 0.071 0.297
2003/04 0.000 0.000 0.000 0.345 0.227
2004/05 0.000 0.000 0.000 0.816 0.002
2005/06 0.050 0.000 0.000 0.353 1.339
2006/07 0.104 0.000 0.000 0.138 0.074
2007/08 0.136 0.000 0.000 3.993 0.132
2008/09 0.000 0.000 0.000 0.141 0.473
2009/10 0.000 0.000 0.000 0.216 0.207
2010/11 0.000 0.000 0.186 0.039 0.056
2011/12 0.000 0.000 0.000 0.112 0.007
2012/13 0.000 0.000 0.000 0.167 0.669
2013/14 0.000 0.000 0.000 0.064 0.000
2014/15 0.000 0.000 0.000 0.144 0.000
2015/16 0.103 0.000 0.230 0.744 0.808
2016/17 0.000 0.000 0.000 0.090 0.455

crab (pot) fisheries (t)fishery 
year

groundfish fisheries (t)
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Table 11: Total bycatch (discard) mortality from directed and non-directed fisheries for Pribilof
Islands District blue king crab. Gear-specific handling mortalities were applied to estimates of
non-retained catch from Table 2 for fixed gear (i.e., pot and hook/line; 0.2) and trawl gear (0.8).

females legal males
sublegal 
males

fixed gear trawl gear

1991/92 -- -- -- 0.013 4.959 4.973
1992/93 -- -- -- 0.176 48.633 48.809
1993/94 -- -- -- 0.000 27.386 27.386
1994/95 -- -- -- 0.007 5.485 5.492
1995/96 -- -- -- 0.022 1.027 1.049
1996/97 0.000 0.000 0.161 0.006 0.054 0.221
1997/98 0.000 0.000 0.000 0.292 0.104 0.396
1998/99 0.743 0.459 0.093 3.960 0.063 5.319
1999/00 0.394 0.699 0.858 0.159 0.016 2.125
2000/01 0.000 0.000 0.000 0.023 0.018 0.042
2001/02 0.000 0.000 0.000 0.167 0.023 0.190
2002/03 0.000 0.000 0.000 0.014 0.238 0.252
2003/04 0.000 0.000 0.000 0.069 0.182 0.251
2004/05 0.000 0.000 0.000 0.163 0.002 0.165
2005/06 0.010 0.000 0.000 0.071 1.071 1.152
2006/07 0.021 0.000 0.000 0.028 0.059 0.108
2007/08 0.027 0.000 0.000 0.799 0.106 0.931
2008/09 0.000 0.000 0.000 0.028 0.378 0.407
2009/10 0.000 0.000 0.000 0.043 0.165 0.209
2010/11 0.000 0.000 0.037 0.008 0.045 0.090
2011/12 0.000 0.000 0.000 0.022 0.006 0.028
2012/13 0.000 0.000 0.000 0.033 0.535 0.568
2013/14 0.000 0.000 0.000 0.013 0.000 0.013
2014/15 0.000 0.000 0.000 0.029 0.000 0.029
2015/16 0.021 0.000 0.046 0.149 0.646 0.861
2016/17 0.000 0.000 0.000 0.018 0.364 0.382

total bycatch 
mortality (t)

fishery year crab (pot) fisheries (t) groundfish fisheries (t)
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Table 12: Bycatch (in kg) of PIBKC in the groundfish fisheries, by target type.

yellowfin 
sole

Pacific cod
flathead 

sole
rock sole

% % % %
2003/04 47 22 31 < 1 252
2004/05 < 1 100 < 1 < 1 259
2005/06 < 1 97 3 < 1 757
2006/07 54 20 < 1 26 96
2007/08 3 96 1 < 1 2,950
2008/09 77 23 < 1 < 1 295
2009/10 31 51 17 < 1 281
2010/11 < 1 39 59 < 1 48
2011/12  < 1 100 < 1 < 1 62
2012/13 77 20 3 < 1 410
2013/14 < 1 99 < 1 < 1 39
2014/15 < 1 99 < 1 < 1 64
2015/16 43 48 9 < 1 609
2016/17 16 16 <1 68 580

Crab 
Fishery Year

total 
bycatch        
(# crabs)

% bycatch (biomass) by trip target

1019



Table 13: Bycatch (in kg) of PIBKC in the groundfish fisheries, by gear type.

non-pelagic 
trawl 

pelagic 
trawl

hook 
and line

pot

% % % %
2003/04 79 0 21 0 252
2004/05 1 0 99 0 259
2005/06 3 0 18 79 757
2006/07 20 0 20 0 96
2007/08 3 0 1 95 2,950
2008/09 77 0 23 0 295
2009/10 49 0 7 44 281
2010/11 59 0 41 0 48
2011/12 6 0 94 0 62
2012/13 80 0 20 0 410
2013/14 0 0 100 0 39
2014/15 0 0 100 0 64
2015/16 52 0 48 0 609
2016/17 83 0 17 0 580

% bycatch (biomass) by gear type
Crab 

Fishery 
Year

total 
bycatch        

(# crabs)
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Table 14: Summary of recent NMFS annual EBS bottom trawl surveys for the Pribilof Islands
District blue king crab by stock component.

2017

estimate 95% CI estimate 95% CI

2017 Immature male 86 2 4 0.068 0.103 45 68
Mature male 86 4 4 0.091 0.089 253 254
Legal male 86 3 3 0.072 0.083 223 250
Immature female 86 3 7 0.188 0.275 107 170
Mature female 86 4 8 0.162 0.169 152 166

2016 Immature male 86 4 5 0.094 0.095 70 67
Mature male 86 3 3 0.056 0.062 129 154
Legal male 86 1 1 0.019 0.038 68 133
Immature female 86 4 5 0.132 0.130 49 48
Mature female 86 7 19 0.323 0.328 352 340

2015 Immature male 86 2 4 0.076 0.113 82 120
Mature male 86 8 13 0.234 0.168 622 480
Legal male 86 5 7 0.125 0.109 428 385
Immature female 86 0 0 0.000 0.000 0 0
Mature female 86 4 11 0.202 0.260 160 207

2014 Immature male 86 3 5 0.091 0.105 83 102
Mature male 86 2 5 0.092 0.128 233 320
Legal male 86 2 5 0.092 0.128 233 320
Immature female 86 1 1 0.028 0.054 16 32
Mature female 86 3 4 0.074 0.088 91 108

year
Abundance (millions) Biomass (mt)Stock 

Component
Number of 

tows in District
Tows with 

crab
 Number of 

crab measured
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Table 15: Abundance time series for Pribilof Islands blue king crab from the NMFS annual EBS
bottom trawl survey.

abundance cv abundance cv abundance cv abundance cv abundance cv
1975 8,475,781 0.57 15,288,169 0.50 9,051,486 0.50 23,763,950 0.47 13,147,587 0.61
1976 4,959,559 0.95 4,782,105 0.45 4,012,289 0.47 9,741,664 0.59 8,138,538 0.91
1977 4,215,865 0.46 13,043,983 0.74 11,768,927 0.77 17,259,848 0.63 14,731,651 0.86
1978 2,421,458 0.50 6,140,638 0.50 3,922,874 0.62 8,562,096 0.43 5,987,437 0.66
1979 79,355 0.70 4,107,868 0.33 3,017,119 0.31 4,187,222 0.32 1,311,351 0.77
1980 2,732,728 0.47 7,842,342 0.41 6,244,058 0.42 10,575,070 0.40 183,684,143 0.98
1981 2,099,475 0.32 3,834,431 0.18 3,245,951 0.18 5,933,906 0.21 6,260,015 0.42
1982 1,371,283 0.28 2,353,813 0.18 2,071,468 0.19 3,725,096 0.17 8,713,260 0.63
1983 1,030,732 0.36 1,851,301 0.19 1,321,395 0.17 2,882,033 0.22 9,771,695 0.76
1984 517,574 0.40 770,643 0.22 558,226 0.25 1,288,217 0.21 3,234,663 0.37
1985 67,765 0.60 428,076 0.28 270,242 0.29 495,841 0.27 746,266 0.36
1986 18,904 1.00 480,198 0.31 460,311 0.31 499,102 0.30 2,138,616 0.88
1987 621,541 0.83 903,180 0.41 830,151 0.42 1,524,721 0.43 1,072,008 0.48
1988 1,238,053 0.84 237,868 0.51 237,868 0.51 1,475,921 0.71 1,363,093 0.64
1989 3,514,764 0.59 239,948 0.62 239,948 0.62 3,754,712 0.58 3,777,855 0.58
1990 2,449,864 0.60 1,470,419 0.63 571,708 0.54 3,920,283 0.58 4,223,169 0.56
1991 1,920,443 0.37 2,014,086 0.36 1,237,558 0.44 3,934,529 0.34 3,572,899 0.35
1992 2,435,796 0.59 1,935,278 0.42 1,154,465 0.45 4,371,074 0.48 3,946,863 0.52
1993 1,483,524 0.52 1,875,500 0.31 1,114,301 0.30 3,359,024 0.34 2,663,329 0.38
1994 638,520 0.37 1,294,263 0.34 935,269 0.34 1,932,783 0.33 5,191,978 0.44
1995 1,146,803 0.89 3,101,712 0.60 2,186,409 0.62 4,248,514 0.67 4,697,035 0.49
1996 719,430 0.63 1,712,015 0.28 1,269,275 0.26 2,431,445 0.33 5,321,557 0.46
1997 467,234 0.53 1,201,296 0.29 932,852 0.28 1,668,530 0.34 2,934,717 0.39
1998 949,447 0.46 967,098 0.25 797,187 0.25 1,916,545 0.31 2,329,750 0.37
1999 159,536 0.37 617,258 0.33 452,740 0.34 776,794 0.33 2,755,976 0.49
2000 163,835 0.56 725,051 0.30 527,589 0.30 888,885 0.31 1,363,070 0.46
2001 92,918 0.65 522,239 0.71 445,863 0.74 615,157 0.69 1,715,981 0.74
2002 0 0.00 225,476 0.47 207,146 0.49 225,476 0.47 1,240,582 0.78
2003 45,271 0.72 228,897 0.39 213,572 0.40 274,168 0.34 1,187,583 0.72
2004 87,651 0.59 47,905 0.56 15,584 1.00 135,556 0.42 168,094 0.51
2005 1,981,338 0.96 91,932 0.71 91,932 0.71 2,073,270 0.92 2,557,310 0.89
2006 138,118 0.49 55,579 0.56 38,242 0.70 193,697 0.42 542,588 0.62
2007 246,165 0.72 110,080 0.85 54,403 0.75 356,245 0.64 288,245 0.59
2008 233,919 0.93 18,256 1.00 18,256 1.00 252,174 0.86 779,488 0.75
2009 267,717 0.63 248,626 0.73 68,117 0.59 516,343 0.68 629,385 0.76
2010 101,151 0.84 130,465 0.49 64,703 0.48 231,616 0.61 414,660 0.62
2011 0 0.00 165,525 0.79 129,098 0.87 165,525 0.79 54,601 0.56
2012 194,522 1.00 272,233 0.80 164,165 0.68 466,755 0.88 346,777 0.70
2013 76,351 1.00 104,361 0.86 68,726 0.80 180,712 0.64 195,644 0.53
2014 90,990 0.59 91,856 0.71 91,856 0.71 182,846 0.57 102,088 0.51
2015 75,575 0.77 233,630 0.37 124,592 0.45 309,205 0.41 202,464 0.65
2016 94,022 0.52 55,852 0.56 19,345 1.00 149,874 0.49 454,450 0.50
2017 68,238 0.77 90,645 0.50 71,937 0.59 158,884 0.46 349,659 0.54

Females
totalYear immature mature legal total

Males
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Table 16: Biomass time series for Pribilof Islands blue king crab from the NMFS annual EBS
bottom trawl survey.

biomass (t) cv biomass (t) cv biomass (t) cv biomass (t) cv biomass (t) cv
1975 8,341 0.52 38,054 0.50 27,016 0.50 46,395 0.47 12,442 0.64
1976 4,129 0.94 14,059 0.45 12,649 0.47 18,188 0.45 5,792 0.89
1977 3,713 0.44 42,618 0.77 40,366 0.78 46,332 0.73 13,572 0.87
1978 2,765 0.51 17,370 0.56 13,517 0.64 20,135 0.51 6,492 0.72
1979 61 0.79 10,959 0.32 9,040 0.31 11,021 0.31 1,189 0.76
1980 2,084 0.49 23,553 0.43 20,679 0.45 25,637 0.42 212,303 0.98
1981 1,704 0.30 11,628 0.17 10,554 0.17 13,332 0.18 6,484 0.46
1982 1,152 0.23 7,389 0.19 6,893 0.19 8,541 0.17 9,377 0.67
1983 962 0.36 5,409 0.18 4,474 0.17 6,371 0.19 10,248 0.78
1984 130 0.36 2,216 0.23 1,824 0.25 2,345 0.22 3,085 0.38
1985 39 0.73 1,055 0.27 756 0.28 1,094 0.26 525 0.44
1986 4 1.00 1,505 0.30 1,473 0.31 1,508 0.30 2,431 0.90
1987 191 0.78 2,923 0.41 2,781 0.41 3,115 0.40 913 0.53
1988 170 0.71 842 0.53 842 0.53 1,012 0.46 718 0.47
1989 1,275 0.62 828 0.64 828 0.64 2,102 0.55 1,746 0.50
1990 2,004 0.66 3,078 0.60 1,514 0.52 5,082 0.61 2,929 0.49
1991 1,377 0.39 4,690 0.39 3,326 0.45 6,067 0.37 2,776 0.38
1992 1,801 0.51 4,391 0.42 3,035 0.45 6,192 0.43 2,649 0.46
1993 1,089 0.54 4,556 0.31 3,203 0.30 5,644 0.30 2,092 0.40
1994 619 0.39 3,410 0.34 2,806 0.35 4,029 0.34 4,893 0.44
1995 968 0.86 8,360 0.60 6,787 0.62 9,328 0.63 4,279 0.50
1996 745 0.61 4,641 0.27 3,873 0.27 5,386 0.28 5,585 0.49
1997 381 0.55 3,233 0.28 2,765 0.27 3,614 0.29 3,028 0.41
1998 692 0.41 2,798 0.25 2,510 0.25 3,490 0.25 2,182 0.39
1999 161 0.40 1,729 0.34 1,426 0.35 1,890 0.33 2,868 0.47
2000 113 0.68 2,091 0.30 1,746 0.31 2,205 0.30 1,462 0.46
2001 87 0.76 1,599 0.73 1,461 0.76 1,686 0.73 1,817 0.72
2002 0 0.00 680 0.51 647 0.52 680 0.51 1,401 0.78
2003 19 0.98 702 0.40 671 0.41 721 0.39 1,307 0.73
2004 36 0.65 107 0.58 48 1.00 143 0.46 123 0.50
2005 326 0.94 344 0.71 344 0.71 670 0.59 847 0.61
2006 87 0.58 166 0.60 139 0.70 253 0.46 576 0.71
2007 197 0.74 306 0.80 206 0.73 503 0.66 282 0.71
2008 212 0.95 46 1.00 46 1.00 258 0.80 672 0.70
2009 254 0.68 497 0.71 187 0.60 751 0.70 625 0.82
2010 92 0.85 303 0.46 190 0.48 395 0.52 394 0.63
2011 0 0.00 461 0.84 399 0.89 461 0.84 37 0.67
2012 165 1.00 644 0.74 459 0.64 809 0.79 237 0.64
2013 15 1.00 250 0.80 190 0.75 265 0.75 166 0.65
2014 83 0.62 233 0.70 233 0.70 317 0.57 108 0.53
2015 82 0.75 622 0.39 428 0.46 703 0.39 160 0.66
2016 70 0.49 129 0.61 68 1.00 199 0.52 401 0.48
2017 45 0.77 253 0.51 223 0.57 298 0.47 259 0.53

Year
Males Females

immature mature legal total total
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Table 17: Smoothed mature male biomass (MMB) at the time of the survey for Pribilof Islands
blue king crab using using the Random Effects Model.

biomass (t) lower CI (t) upper CI (t) biomass (t) lower CI (t) upper CI (t)
1975 38,054         20,760         69,754         26,901         16,826         43,010         
1976 14,059         8,104           24,391         19,927         13,389         29,657         
1977 42,618         17,814         101,958       21,265         13,591         33,271         
1978 17,370         8,912           33,852         16,975         11,333         25,424         
1979 10,959         7,386           16,262         13,329         9,743           18,236         
1980 23,553         13,894         39,925         15,605         11,032         22,074         
1981 11,628         9,321           14,507         11,423         9,355           13,947         
1982 7,389           5,825           9,374           7,449           6,052           9,168           
1983 5,409           4,316           6,778           5,081           4,155           6,213           
1984 2,216           1,659           2,959           2,347           1,841           2,993           
1985 1,055           754              1,476           1,350           1,020           1,786           
1986 1,505           1,030           2,199           1,555           1,157           2,091           
1987 2,923           1,761           4,853           1,928           1,352           2,749           
1988 842              446              1,591           1,427           946              2,153           
1989 828              392              1,749           1,599           1,027           2,488           
1990 3,078           1,513           6,261           2,603           1,718           3,944           
1991 4,690           2,910           7,556           3,812           2,677           5,428           
1992 4,391           2,612           7,382           4,181           2,940           5,947           
1993 4,556           3,100           6,694           4,329           3,200           5,856           
1994 3,410           2,220           5,240           4,017           2,907           5,551           
1995 8,360           4,091           17,086         4,942           3,336           7,322           
1996 4,641           3,309           6,509           4,384           3,316           5,796           
1997 3,233           2,284           4,575           3,322           2,523           4,373           
1998 2,798           2,043           3,833           2,705           2,085           3,508           
1999 1,729           1,136           2,631           1,976           1,451           2,691           
2000 2,091           1,443           3,031           1,836           1,358           2,483           
2001 1,599           689              3,710           1,265           830              1,927           
2002 680              369              1,254           784              528              1,163           
2003 702              428              1,150           549              382              788              
2004 107              53                214              278              179              432              
2005 344              152              780              266              169              419              
2006 166              81                339              225              143              354              
2007 306              125              753              230              142              374              
2008 46                16                134              210              126              351              
2009 497              219              1,130           294              186              466              
2010 303              173              532              321              214              482              
2011 461              180              1,180           372              232              596              
2012 644              277              1,496           399              248              642              
2013 250              102              615              345              215              555              
2014 233              104              524              339              217              529              
2015 622              382              1,011           399              275              579              
2016 129              62                265              258              167              400              
2017 253              136              470              256              158              414              

RE-smoothedrawyear

1024



Table 18: Estimates of mature male biomass (MMB) at the time of mating for Pribilof Islands blue
king crab using: (1) the “raw” survey biomass time series and (2) the survey biomass time series
smoothed using the Random Effects Model. Shaded rows signify averaging time period for
BMSY /MSST. The 2017/18 estimates are projected values (see Appendix C).

1975/76 33,223 23,182
1976/77 9,834 15,117
1977/78 35,611 16,386
1978/79 12,904 12,549
1979/80 7,304 9,438
1980/81 16,519 9,364
1981/82 6,590 6,406
1982/83 4,769 4,822
1983/84 3,934 3,639
1984/85 1,862 1,981
1985/86 723 989
1986/87 1,244 1,289
1987/88 2,333 1,436
1988/89 758 1,285
1989/90 745 1,439
1990/91 2,771 2,343
1991/92 4,220 3,430
1992/93 3,930 3,741
1993/94 4,089 3,885
1994/95 3,068 3,614
1995/96 6,937 3,859
1996/97 3,776 3,546
1997/98 2,692 2,773
1998/99 2,291 2,207
1999/00 1,555 1,777
2000/01 1,883 1,653
2001/02 1,439 1,138
2002/03 612 706
2003/04 632 494
2004/05 96 250
2005/06 309 239
2006/07 149 203
2007/08 275 206
2008/09 41 189
2009/10 447 265
2010/11 273 289
2011/12 415 335
2012/13 579 359
2013/14 225 311
2014/15 210 305
2015/16 559 359
2016/17 116 232

2017/18* 227 230

year
"Raw" Survey 

Biomass (t)
Random Effects 

Model (t)
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Figures

Figure 1: Distribution of blue king crab, *Paralithodes platypus*, in Alaskan waters.
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Figure 2: Map of the ADFG King Crab Registration Area Q (Bering Sea), showing (among others)
the Pribilof District, which constitutes the stock boundary for PIBKC. The figure also indicates the
additional 20nm strip (red dotted line) added in 2013 for calculating biomass and catch data in the
Pribilof District.
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Figure 3: Historical harvests and Guideline Harvest Levels (GHLs) for Pribilof Islands red and blue
king crab (from Bowers et al., 2011).
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Figure 4: The shaded area shows the Pribilof Islands Habitat Conservation Zone (PIHCZ). Trawl
fishing is prohibited year-round in this zone (as of 1995), as is pot fishing for Pacific cod (as of
2015). Also shown is a portion of the NMFS annual EBS bottom trawl survey grid.
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Figure 5: Time series of survey abundance for females (immature, mature, and total).
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Figure 6: Time series of survey abundance for males in several categories (immature, mature,
sublegal, legal and total).
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Figure 7: Time series of survey abundance for females (immature, mature, and total).

1032



m
ales

1980 1990 2000 2010
0

20

40

60

80

B
io

m
as

s 
(1

00
0'

s 
t)

m
ales

2000 2005 2010 2015
0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
io

m
as

s 
(1

00
0'

s 
t)

all males immature males legal males mature males sublegal males

Figure 8: Time series of survey biomass for males in several categories (immature, mature, sublegal,
legal and total).

1033



0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
ab
	A
bu
nd
an
ce Th

ou
sa
nd
s

Size	(mm	CL)

2013 Molting	&	Soft

New	&	Hard

Old

Very	old

Very,	very	old

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
ab
	A
bu
nd
an
ce Th

ou
sa
nd
s

Size	(mm	CL)

2014 Molting	&	Soft

New	&	Hard

Old

Very	old

Very,	very	old

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
ab
	A
bu
nd
an
ce Th

ou
sa
nd
s

Size	(mm	CL)

2015 Molting	&	Soft

New	&	Hard

Old

Very	old

Very,	very	old

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
ab
	A
bu
nd
an
ce Th

ou
sa
nd
s

Size	(mm	CL)

2016 Molting	&	Soft

New	&	Hard

Old

Very	old

Very,	very	old

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
ab
	A
bu
nd
an
ce Th

ou
sa
nd
s

Size	(mm	CL)

2017 Molting	&	Soft

New	&	Hard

Old

Very	old

Very,	very	old

Figure 9: Size frequencies by shell condition for male Pribilof Island blue king crab in 5 mm length
bins from recent NMFS EBS bottom trawl surveys.
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Figure 10: Size frequencies from the annual NMSF bottom trawl survey for male Pribilof Islands
blue king crab by 5 mm length bins. The top row shows the entire time series, the bottom shows
the size compositions since 1995.
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Figure 11: Size frequencies by shell condition for male Pribilof Island blue king crab in 5 mm length
bins from recent NMFS EBS bottom trawl surveys.
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Figure 12: Size frequencies from the annual NMSF bottom trawl survey for male Pribilof Islands
blue king crab by 5 mm length bins. The top row shows the entire time series, the bottom shows
the size compositions since 1995.
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Figure 13: FOFL Control Rule for Tier 4 stocks under Amendment 24 to the BSAI King and
Tanner Crabs fishery management plan. Directed fishing mortality is set to 0 below β (= 0.25).
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Appendix A: PIBKC Bycatch in the Groundfish
Fisheries: 2009/10-2016/17
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Introduction

Bycatch of PIBKC in the groundfish fisheries during 2009/10-2016/17 was downloaded from AKFIN
on Aug. 30, 2017 as file (“FromAKFIN.PIBKC.BycatchEstimates.2009-2016.csv”).
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Bycatch by gear type

The bycatch of PIBKC by gear type (trawl or fixed) are presented in the following table. Catches
using pelagic and non-pelagic trawl gear have been aggregated as “trawl” gear, while catches using
hook-and-line (longline) and pot gear have been aggregated as “fixed” gear.

Table 1: Bycatch of PIBKC in the groundfish fisheries, by gear type. Biomass is in kilograms.

fixed trawl
year vessel count haul count biomass number vessel count haul count biomass number
2009 4228 431820 216 87 2051 90347 207 193
2010 5415 609789 44 16 1858 38463 56 35
2011 4611 397979 112 54 1098 22300 7 8
2012 5024 502872 170 72 3785 69175 669 340
2013 8277 2172175 65 41 2247 35730 0 0
2014 8155 2026114 144 65 1899 58843 0 0
2015 7892 1470800 744 352 3198 68219 808 257
2016 5304 1189582 90 57 3280 53174 455 524
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Figure 1: Bycatch of PIBKC in the groundfish fisheries by gear type.
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Bycatch by target type

Bycatch of PIBKC in the groundfish fisheries is presented by groundfish target type in this section.
Groundfish targets with less than 10 kg bycatch over the 2009-2016 period have been dropped from
the table and figure.

Table 2: Bycatch of PIBKC in the groundfish fisheries by target type. Biomass is in kilograms.

Flathead Sole Pacific Cod Rock Sole - BSAI Yellowfin Sole - BSAI
year biomass number biomass number biomass number biomass number
2009 71 54 216 87 0 0 129 119
2010 56 35 42 14 0 0 0 0
2011 0 0 119 62 0 0 0 0
2012 24 12 170 72 0 0 645 328
2013 0 0 64 41 0 0 0 0
2014 0 0 143 64 0 0 0 0
2015 147 58 742 351 0 0 661 199
2016 0 0 89 56 368 432 87 92
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Figure 2: Bycatch of PIBKC in the groundfish fisheries, by target type.
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Spatial patterns of bycatch

Spatial patterns of PIBKC bycatch, by ADFG stat area, in the groundfish fisheries are illustrated
by gear type in Figures 4-5. All plots are on the same scale.

Figure 3: Basemap for subsequent maps, with EBS bathymetry (blue lines), ADFG stat areas
(black rectangles), and the Pribilof Islands Habitat Conservation Area (orange outline).
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Figure 4: (1 of 4). Bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries.
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Figure 5: (2 of 4). Bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries.
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Figure 6: (3 of 4). Bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries.
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Figure 7: (4 of 4). Bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries.
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Figure 8: (1 of 4). Bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish fisheries.
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Figure 9: (2 of 4). Bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish fisheries.
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Figure 10: (3 of 4). Bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish fisheries.
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Figure 11: (4 of 4). Bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish fisheries.
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Introduction

This report presents results from time series of aggregate abundance, biomass and size compositions
from the annual NMFS EBS bottom trawl survey for Pribilof Islands blue king crab (PIBKC),
i.e. blue king crab in the Pribilof District of the eastern Bering Sea (Figure 1), based on haul data
and survey strata files downloaded from AKFIN on Aug. 30, 2017.

Figure 1: Map of the Pribilof District, which defines the stock area for the Pribilof Islands blue king
crab stock. The grid indicates the locations of NMFS EBS survey stations.

Aggregate (abundance, biomass) time series were calculated for different components of the PIBKC
stock, including immature and mature females and immature, mature, sublegal, and legal male crab
based of the following size-based criteria:

Table 1: Size groupings for various components of the PIBKC stock used in this report.

sex size.range category
female < 100 mm CL immature female
male < 120 mm CL immature male
female > 99 mm CL mature female
male > 119 mm CL mature male
male < 135 mm CL sublegal male
male > 134 mm CL legal male
female all all females
male all all males

Annual survey abundance and biomass

Annual survey abundance and biomass for PIBKC were calculated from the survey haul data as if
the survey were conducted using a random-stratified sampling design (it uses a fixed grid).
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The following plots illustrate time series trends in Tanner crab survey abundance and biomass by
sex and area.
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Figure 2: NMFS survey abundance time series for female PIBKC. Upper plot is entire time series,
lower plot since 2001.
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Figure 3: NMFS survey abundance time series for male PIBKC. Upper plot is entire time series,
lower plot since 2001.
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Figure 4: NMFS survey biomass time series for female PIBKC. Upper plot is entire time series,
lower plot since 2001.
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Figure 5: NMFS survey biomass time series for male PIBKC. Upper plot is entire time series, lower
plot since 2001.

The following two tables document the annual sampling effort (the number of survey hauls, the
number of survey hauls with non-zero catch, and the number of crab caught) by the NMFS bottom
trawl survey in the Pribilof District by PIBKC population category.
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Table 2: Sample sizes (number of survey hauls, number hauls where crab were caught, number of
crab caught) for the NMFS EBS trawl survey in the Pribilof District each year, for female
population components.

survey immature females mature females all females
number non-0 no. non-0 no. non-0 no.

year of hauls hauls crab hauls crab hauls crab
1975 45 6 72 7 193 9 265
1976 59 2 55 5 37 5 92
1977 58 3 45 5 100 5 145
1978 58 4 11 8 97 8 108
1979 58 3 4 3 21 5 25
1980 70 8 17 10 326 11 343
1981 84 16 49 19 184 23 233
1982 84 11 49 22 250 24 299
1983 86 8 23 16 280 18 303
1984 86 7 27 14 142 15 169
1985 86 7 15 8 28 12 43
1986 86 2 2 8 106 10 108
1987 86 5 23 7 35 11 58
1988 85 6 41 7 17 9 58
1989 86 8 144 9 27 13 171
1990 86 7 88 9 77 10 165
1991 85 10 57 12 105 15 162
1992 86 6 83 9 59 11 142
1993 85 8 46 13 88 15 134
1994 86 6 25 12 254 13 279
1995 86 5 43 11 215 12 258
1996 86 6 13 10 213 12 226
1997 86 4 17 11 137 13 154
1998 85 9 44 11 92 15 136
1999 86 3 10 10 145 10 155
2000 85 2 2 13 72 13 74
2001 86 1 1 9 93 10 94
2002 86 1 1 6 66 7 67
2003 86 4 4 7 69 9 73
2004 85 2 4 4 5 5 9
2005 84 1 43 5 15 6 58
2006 86 4 6 3 22 6 28
2007 86 2 6 3 10 5 16
2008 86 3 16 4 27 6 43
2009 86 3 5 3 33 4 38
2010 86 5 9 4 15 7 24
2011 86 2 2 1 1 3 3
2012 86 2 11 5 5 6 16
2013 86 3 4 2 6 5 10
2014 86 1 1 3 4 4 5
2015 86 2 2 4 9 4 11
2016 86 5 7 7 17 8 24
2017 86 3 7 4 8 6 15
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Table 3: Sample sizes (number of survey hauls, number hauls where crab were caught, number of
crab caught) for the NMFS EBS trawl survey in the Pribilof District each year, for male population
components.

survey immature males mature males sublegal males legal males all males
number non-0 no. non-0 no. non-0 no. non-0 no. non-0 no.

year of hauls hauls crab hauls crab hauls crab hauls crab hauls crab
1975 45 11 305 13 553 11 530 13 328 13 858
1976 59 3 105 11 91 9 122 10 74 12 196
1977 58 7 56 10 129 9 73 9 112 10 185
1978 58 8 60 11 130 10 112 10 78 12 190
1979 58 2 2 14 90 8 25 13 67 14 92
1980 70 10 41 21 133 12 64 21 110 21 174
1981 84 19 99 36 184 23 128 36 155 38 283
1982 84 19 70 35 114 21 84 31 100 38 184
1983 86 15 47 32 93 18 74 29 66 35 140
1984 86 10 27 20 37 17 37 16 27 25 64
1985 86 3 4 14 24 8 13 11 15 14 28
1986 86 1 1 13 26 2 2 13 25 13 27
1987 86 5 34 15 50 6 38 14 46 16 84
1988 85 5 52 5 12 5 52 5 12 9 64
1989 86 8 160 4 11 8 160 4 11 10 171
1990 86 8 90 10 59 11 126 7 23 14 149
1991 85 16 92 19 103 20 129 14 66 22 195
1992 86 12 89 14 73 13 119 12 43 17 162
1993 85 12 75 19 96 15 115 17 56 21 171
1994 86 8 32 18 68 12 51 18 49 19 100
1995 86 7 66 18 177 15 118 14 125 19 243
1996 86 7 32 19 87 11 54 19 65 20 119
1997 86 7 25 17 65 10 39 16 51 19 90
1998 85 12 56 20 56 15 66 17 46 21 112
1999 86 7 9 13 34 9 18 11 25 15 43
2000 85 4 9 16 40 9 20 13 29 16 49
2001 86 3 5 6 28 4 9 5 24 7 33
2002 86 0 0 6 12 1 1 6 11 6 12
2003 86 2 2 7 14 3 3 7 13 9 16
2004 85 3 5 3 3 5 7 1 1 6 8
2005 84 3 54 2 5 3 54 2 5 4 59
2006 86 4 7 3 3 4 8 2 2 6 10
2007 86 4 14 2 6 4 17 2 3 4 20
2008 86 2 13 1 1 2 13 1 1 3 14
2009 86 5 16 3 15 5 27 3 4 5 31
2010 86 2 6 5 8 3 10 4 4 5 14
2011 86 0 0 3 9 2 2 2 7 3 9
2012 86 1 9 4 13 1 14 4 8 4 22
2013 86 1 3 2 6 2 5 2 4 3 9
2014 86 3 5 2 5 3 5 2 5 4 10
2015 86 2 4 8 13 6 10 5 7 9 17
2016 86 4 5 3 3 5 7 1 1 5 8
2017 86 2 4 4 4 3 5 3 3 5 8
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The following two tables document the estimated annual PIBKC abundance and associated un-
certainty (as the coefficient of variation) in the NMFS bottom trawl survey by PIBKC populaton
category. The estimated abundance and uncertainity for each category is calculated using a swept-
area approach as if the EBS trawl survey were conducted using a stratified-random sampling
design, rather than as a grid-based design. While re-calculated from the “raw” survey data using a
completely independent approach, the estimates are the same (to 4 or 5 decimal places) as those
provided in the annual survey Technical Memoranda.
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Table 4: Estimated annual abundance of female PIBKC population components from the NMFS
EBS trawl survey.

immature females mature females all females
abundance cv abundance cv abundance cv

year millions millions millions
1975 2.127 0.740 11.020 0.687 13.148 0.608
1976 5.001 0.956 3.138 0.838 8.139 0.910
1977 4.064 0.786 10.667 0.890 14.732 0.857
1978 0.494 0.603 5.493 0.684 5.987 0.656
1979 0.178 0.604 1.133 0.838 1.311 0.767
1980 1.498 0.477 182.186 0.981 183.684 0.976
1981 1.176 0.296 5.084 0.482 6.260 0.423
1982 1.162 0.415 7.551 0.671 8.713 0.626
1983 0.691 0.673 9.080 0.771 9.772 0.763
1984 0.522 0.467 2.713 0.382 3.235 0.366
1985 0.260 0.541 0.486 0.437 0.746 0.360
1986 0.037 0.698 2.102 0.898 2.139 0.882
1987 0.420 0.754 0.652 0.599 1.072 0.478
1988 0.972 0.804 0.391 0.471 1.363 0.642
1989 2.991 0.669 0.787 0.533 3.778 0.576
1990 2.502 0.775 1.721 0.474 4.223 0.555
1991 1.343 0.455 2.230 0.389 3.573 0.353
1992 2.277 0.758 1.670 0.459 3.947 0.521
1993 0.911 0.567 1.752 0.441 2.663 0.378
1994 0.503 0.681 4.689 0.448 5.192 0.437
1995 0.751 0.808 3.946 0.521 4.697 0.491
1996 0.289 0.460 5.033 0.486 5.322 0.463
1997 0.320 0.669 2.614 0.423 2.935 0.388
1998 0.747 0.428 1.583 0.473 2.330 0.365
1999 0.172 0.789 2.584 0.477 2.756 0.490
2000 0.035 0.698 1.328 0.465 1.363 0.463
2001 0.019 1.000 1.697 0.753 1.716 0.745
2002 0.019 1.000 1.222 0.794 1.241 0.782
2003 0.067 0.483 1.120 0.764 1.188 0.721
2004 0.081 0.740 0.087 0.517 0.168 0.510
2005 2.268 1.000 0.289 0.565 2.557 0.886
2006 0.113 0.548 0.430 0.766 0.543 0.617
2007 0.104 0.842 0.184 0.813 0.288 0.592
2008 0.287 0.881 0.492 0.688 0.779 0.748
2009 0.086 0.585 0.543 0.811 0.629 0.755
2010 0.166 0.558 0.249 0.691 0.415 0.622
2011 0.037 0.698 0.018 1.000 0.055 0.563
2012 0.251 0.873 0.096 0.426 0.347 0.695
2013 0.089 0.637 0.107 0.846 0.196 0.534
2014 0.028 1.000 0.074 0.604 0.102 0.507
2015 0.035 0.699 0.167 0.671 0.202 0.655
2016 0.132 0.504 0.323 0.519 0.454 0.504
2017 0.188 0.746 0.162 0.533 0.350 0.535
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Table 5: Estimated annual abundance of male PIBKC population components from the NMFS EBS
trawl survey.

immature males mature males sublegal males legal males all males
abundance cv abundance cv abundance cv abundance cv abundance cv

year millions millions millions millions millions
1975 8.476 0.567 15.288 0.502 14.712 0.479 9.051 0.501 23.764 0.466
1976 4.960 0.954 4.782 0.445 5.729 0.882 4.012 0.471 9.742 0.589
1977 4.216 0.457 13.044 0.743 5.491 0.440 11.769 0.771 17.260 0.625
1978 2.421 0.502 6.141 0.496 4.639 0.419 3.923 0.616 8.562 0.428
1979 0.079 0.704 4.108 0.326 1.170 0.449 3.017 0.310 4.187 0.324
1980 2.733 0.466 7.842 0.408 4.331 0.458 6.244 0.420 10.575 0.400
1981 2.099 0.324 3.834 0.180 2.688 0.317 3.246 0.177 5.934 0.207
1982 1.371 0.281 2.354 0.181 1.654 0.255 2.071 0.188 3.725 0.172
1983 1.031 0.357 1.851 0.186 1.561 0.309 1.321 0.170 2.882 0.220
1984 0.518 0.397 0.771 0.225 0.730 0.290 0.558 0.247 1.288 0.212
1985 0.068 0.598 0.428 0.281 0.226 0.340 0.270 0.294 0.496 0.269
1986 0.019 1.000 0.480 0.305 0.039 0.698 0.460 0.313 0.499 0.298
1987 0.622 0.834 0.903 0.414 0.695 0.748 0.830 0.416 1.525 0.434
1988 1.238 0.842 0.238 0.509 1.238 0.842 0.238 0.509 1.476 0.708
1989 3.515 0.588 0.240 0.624 3.515 0.588 0.240 0.624 3.755 0.585
1990 2.450 0.596 1.470 0.626 3.349 0.596 0.572 0.538 3.920 0.578
1991 1.920 0.373 2.014 0.363 2.697 0.332 1.238 0.444 3.935 0.343
1992 2.436 0.588 1.935 0.420 3.217 0.520 1.154 0.453 4.371 0.475
1993 1.484 0.520 1.876 0.310 2.245 0.432 1.114 0.300 3.359 0.339
1994 0.639 0.374 1.294 0.341 0.998 0.343 0.935 0.345 1.933 0.332
1995 1.147 0.889 3.102 0.600 2.062 0.744 2.186 0.615 4.249 0.675
1996 0.719 0.625 1.712 0.281 1.162 0.547 1.269 0.263 2.431 0.334
1997 0.467 0.525 1.201 0.294 0.736 0.464 0.933 0.284 1.669 0.342
1998 0.949 0.458 0.967 0.246 1.119 0.414 0.797 0.253 1.917 0.309
1999 0.160 0.373 0.617 0.334 0.324 0.388 0.453 0.345 0.777 0.327
2000 0.164 0.563 0.725 0.296 0.361 0.385 0.528 0.297 0.889 0.312
2001 0.093 0.645 0.522 0.710 0.169 0.595 0.446 0.744 0.615 0.690
2002 0.000 0.000 0.225 0.473 0.018 1.000 0.207 0.495 0.225 0.473
2003 0.045 0.717 0.229 0.389 0.061 0.589 0.214 0.402 0.274 0.341
2004 0.088 0.590 0.048 0.563 0.120 0.460 0.016 1.000 0.136 0.417
2005 1.981 0.964 0.092 0.712 1.981 0.964 0.092 0.712 2.073 0.921
2006 0.138 0.495 0.056 0.564 0.155 0.503 0.038 0.699 0.194 0.419
2007 0.246 0.717 0.110 0.854 0.302 0.644 0.054 0.745 0.356 0.639
2008 0.234 0.928 0.018 1.000 0.234 0.928 0.018 1.000 0.252 0.862
2009 0.268 0.631 0.249 0.732 0.448 0.697 0.068 0.588 0.516 0.676
2010 0.101 0.841 0.130 0.486 0.167 0.728 0.065 0.482 0.232 0.608
2011 0.000 0.000 0.166 0.792 0.036 0.698 0.129 0.868 0.166 0.792
2012 0.195 1.000 0.272 0.797 0.303 1.000 0.164 0.678 0.467 0.879
2013 0.076 1.000 0.104 0.862 0.112 0.745 0.069 0.804 0.181 0.644
2014 0.091 0.591 0.092 0.710 0.091 0.591 0.092 0.710 0.183 0.566
2015 0.076 0.766 0.234 0.367 0.185 0.525 0.125 0.446 0.309 0.408
2016 0.094 0.517 0.056 0.563 0.131 0.458 0.019 1.000 0.150 0.488
2017 0.068 0.773 0.091 0.503 0.087 0.637 0.072 0.589 0.159 0.456
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Table 6: Estimated annual abundance of female PIBKC population components from the NMFS
EBS trawl survey.

immature females mature females all females
biomass cv biomass cv biomass cv

year 1000’s t 1000’s t 1000’s t
1975 1.270 0.730 11.172 0.691 12.442 0.636
1976 3.178 0.963 2.613 0.807 5.792 0.891
1977 2.313 0.784 11.259 0.896 13.572 0.874
1978 0.321 0.611 6.171 0.738 6.492 0.717
1979 0.108 0.634 1.081 0.805 1.189 0.760
1980 0.728 0.446 211.575 0.986 212.303 0.983
1981 0.687 0.297 5.797 0.496 6.484 0.458
1982 0.613 0.406 8.764 0.694 9.377 0.669
1983 0.384 0.722 9.864 0.784 10.248 0.781
1984 0.054 0.698 3.031 0.382 3.085 0.380
1985 0.005 0.457 0.520 0.448 0.525 0.445
1986 0.011 0.727 2.420 0.901 2.431 0.896
1987 0.128 0.866 0.785 0.590 0.913 0.526
1988 0.240 0.645 0.478 0.490 0.718 0.473
1989 1.032 0.601 0.714 0.470 1.746 0.497
1990 1.314 0.764 1.615 0.454 2.929 0.491
1991 0.659 0.493 2.117 0.397 2.776 0.376
1992 1.106 0.740 1.543 0.463 2.649 0.463
1993 0.455 0.573 1.636 0.457 2.092 0.399
1994 0.320 0.703 4.573 0.454 4.893 0.443
1995 0.386 0.764 3.893 0.518 4.279 0.496
1996 0.166 0.486 5.418 0.504 5.585 0.491
1997 0.189 0.670 2.839 0.429 3.028 0.407
1998 0.420 0.431 1.761 0.460 2.182 0.392
1999 0.113 0.797 2.755 0.459 2.868 0.467
2000 0.023 0.699 1.439 0.462 1.462 0.460
2001 0.000 1.000 1.816 0.722 1.817 0.722
2002 0.000 1.000 1.401 0.776 1.401 0.775
2003 0.021 0.667 1.286 0.745 1.307 0.734
2004 0.005 0.711 0.118 0.516 0.123 0.504
2005 0.477 1.000 0.370 0.570 0.847 0.606
2006 0.038 0.602 0.538 0.760 0.576 0.712
2007 0.045 0.995 0.237 0.826 0.282 0.707
2008 0.178 0.882 0.493 0.659 0.672 0.705
2009 0.030 0.576 0.595 0.840 0.625 0.818
2010 0.083 0.575 0.311 0.660 0.394 0.634
2011 0.015 0.836 0.022 1.000 0.037 0.674
2012 0.131 0.936 0.106 0.436 0.237 0.637
2013 0.035 0.657 0.131 0.816 0.166 0.654
2014 0.016 1.000 0.091 0.605 0.108 0.529
2015 0.020 0.708 0.139 0.687 0.160 0.662
2016 0.073 0.468 0.331 0.496 0.405 0.478
2017 0.108 0.811 0.153 0.558 0.262 0.533
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Table 7: Estimated annual abundance of male PIBKC population components from the NMFS EBS
trawl survey.

immature males mature males sublegal males legal males all males
biomass cv biomass cv biomass cv biomass cv biomass cv

year 1000’s t 1000’s t 1000’s t 1000’s t 1000’s t
1975 8.341 0.525 38.054 0.501 19.378 0.466 27.016 0.499 46.395 0.475
1976 4.129 0.944 14.059 0.451 5.539 0.811 12.649 0.468 18.188 0.452
1977 3.713 0.443 42.618 0.768 5.966 0.463 40.366 0.784 46.332 0.729
1978 2.765 0.509 17.370 0.558 6.618 0.412 13.517 0.642 20.135 0.506
1979 0.061 0.785 10.959 0.315 1.981 0.452 9.040 0.311 11.021 0.315
1980 2.084 0.492 23.553 0.430 4.958 0.464 20.679 0.446 25.637 0.417
1981 1.704 0.299 11.628 0.174 2.779 0.297 10.554 0.175 13.332 0.175
1982 1.152 0.232 7.389 0.187 1.647 0.217 6.893 0.192 8.541 0.175
1983 0.962 0.357 5.409 0.178 1.897 0.297 4.474 0.175 6.371 0.187
1984 0.130 0.362 2.216 0.229 0.521 0.268 1.824 0.247 2.345 0.222
1985 0.039 0.733 1.055 0.267 0.338 0.374 0.755 0.283 1.094 0.263
1986 0.004 1.000 1.505 0.303 0.035 0.897 1.473 0.307 1.508 0.302
1987 0.191 0.783 2.923 0.411 0.334 0.536 2.781 0.414 3.115 0.397
1988 0.170 0.707 0.842 0.529 0.170 0.707 0.842 0.529 1.012 0.457
1989 1.275 0.620 0.827 0.637 1.275 0.620 0.827 0.637 2.102 0.551
1990 2.004 0.661 3.078 0.600 3.567 0.665 1.514 0.515 5.082 0.610
1991 1.377 0.386 4.690 0.386 2.741 0.336 3.326 0.450 6.067 0.373
1992 1.801 0.512 4.391 0.423 3.157 0.446 3.035 0.446 6.192 0.432
1993 1.088 0.545 4.556 0.307 2.442 0.409 3.203 0.301 5.644 0.305
1994 0.619 0.388 3.410 0.345 1.224 0.350 2.806 0.351 4.029 0.343
1995 0.968 0.863 8.360 0.604 2.541 0.673 6.787 0.615 9.328 0.629
1996 0.745 0.605 4.641 0.269 1.512 0.524 3.873 0.265 5.386 0.279
1997 0.381 0.545 3.233 0.276 0.849 0.451 2.765 0.271 3.614 0.294
1998 0.692 0.413 2.798 0.249 0.980 0.354 2.510 0.255 3.490 0.252
1999 0.161 0.402 1.729 0.337 0.464 0.414 1.426 0.347 1.890 0.333
2000 0.113 0.679 2.091 0.296 0.459 0.373 1.746 0.305 2.205 0.304
2001 0.087 0.764 1.599 0.735 0.225 0.628 1.461 0.759 1.686 0.733
2002 0.000 0.000 0.680 0.506 0.033 1.000 0.647 0.525 0.680 0.506
2003 0.019 0.984 0.702 0.400 0.050 0.723 0.671 0.411 0.721 0.390
2004 0.036 0.649 0.107 0.583 0.094 0.487 0.048 1.000 0.143 0.455
2005 0.326 0.942 0.344 0.710 0.326 0.942 0.344 0.710 0.670 0.589
2006 0.087 0.585 0.166 0.603 0.114 0.616 0.139 0.699 0.253 0.462
2007 0.197 0.737 0.306 0.798 0.298 0.632 0.206 0.734 0.503 0.661
2008 0.212 0.952 0.046 1.000 0.212 0.952 0.046 1.000 0.258 0.797
2009 0.254 0.680 0.497 0.713 0.565 0.740 0.187 0.604 0.751 0.698
2010 0.092 0.853 0.303 0.461 0.205 0.702 0.190 0.483 0.395 0.522
2011 0.000 0.000 0.461 0.843 0.062 0.705 0.399 0.886 0.461 0.843
2012 0.165 1.000 0.644 0.735 0.350 1.000 0.459 0.643 0.809 0.786
2013 0.015 1.000 0.250 0.797 0.075 0.824 0.190 0.752 0.265 0.754
2014 0.083 0.623 0.233 0.699 0.083 0.623 0.233 0.699 0.317 0.567
2015 0.082 0.747 0.622 0.394 0.275 0.494 0.428 0.458 0.703 0.395
2016 0.071 0.486 0.130 0.613 0.133 0.495 0.068 1.000 0.201 0.515
2017 0.046 0.767 0.255 0.514 0.076 0.599 0.224 0.573 0.300 0.470
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Size compositions

Annual size compositions for PIBKC in the NMFS EBS trawl survey were calculated by sex, shell
condition, and 5mm size (carapace width) bin, accumulating individuals > 200 mm CL in the last
size bin (195-200 mm CL). There is no need here to distinguish among the population components
used above to present abundance and biomass trends (e.g., immature females) in the following size
compositions because those components were based on size ranges that can be extracted from the
size compositions.

By sex

Size compositions for PIBKC from the NMFS EBS trawl survey are presented here by sex for the
entire survey time period (1975-present) and for 2001-present.

By sex and shell condition

Size compositions for PIBKC from the NMFS EBS trawl survey are presented here by sex for the
entire survey time period (1975-present) and for 2001-present.

Spatial patterns

Figure 10: Basemap for future maps, with EBS bathymetry (blue lines), NMFS EBS trawl survey
station grid (black) lines, and the Pribilof Islands Habitat Conservation Area (orange outline).
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Figure 6: Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, over the
entire survey period.
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Figure 7: Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, since 2001.
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Figure 8: Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex and shell
condition, for entire survey period.
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Figure 9: Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex and shell
condition, since 2000.
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Figure 11: Survey CPUE (biomass) for females PIBKC. Page 1 of 11
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Figure 12: Survey CPUE (biomass) for females PIBKC. Page 2 of 11
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Figure 13: Survey CPUE (biomass) for females PIBKC. Page 3 of 11
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Figure 14: Survey CPUE (biomass) for females PIBKC. Page 4 of 11
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Figure 15: Survey CPUE (biomass) for females PIBKC. Page 5 of 11
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Figure 16: Survey CPUE (biomass) for females PIBKC. Page 6 of 11
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Figure 17: Survey CPUE (biomass) for females PIBKC. Page 7 of 11
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Figure 18: Survey CPUE (biomass) for females PIBKC. Page 8 of 11
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Figure 19: Survey CPUE (biomass) for females PIBKC. Page 9 of 11
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Figure 20: Survey CPUE (biomass) for females PIBKC. Page 10 of 11
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Figure 21: Survey CPUE (biomass) for females PIBKC. Page 11 of 11
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Figure 22: Survey CPUE (biomass) for males PIBKC. Page 1 of 11
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Figure 23: Survey CPUE (biomass) for males PIBKC. Page 2 of 11
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Figure 24: Survey CPUE (biomass) for males PIBKC. Page 3 of 11
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Figure 25: Survey CPUE (biomass) for males PIBKC. Page 4 of 11
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Figure 26: Survey CPUE (biomass) for males PIBKC. Page 5 of 11
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Figure 28: Survey CPUE (biomass) for males PIBKC. Page 7 of 11
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Figure 29: Survey CPUE (biomass) for males PIBKC. Page 8 of 11
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Introduction

This is an appendix to the 2017 stock assessment chapter for the Pribilof Islands blue king crab
stock (PIBKC). It presents results for status determination (is overfishing occurring?, is the stock
overfished?) for the current year using the “rPIBKC”" R package developed by the assessment
author. The rPIBKC package (source code and R package) is available under version control at
https://github.com/wStockhausen/rPIBKC.git.

Status Determination and OFL calculations

For all crab stocks managed by the NPFMC, overfishing is evaluated by comparing the previous
year’s catch mortality (retained + discard mortality) to the previous year’s OFL: if the former is
greater than the latter, then overfishing is occurring. Overfished status is assessed with respect to
MSST, the Minimum Stock Size Threshold. If stock biomass drops below the MSST, the stock is
considered to be overfished. For crab stocks, MSST is one-half BMSY , where BMSY is the longterm
spawning stock biomass when the stock is fished at maximum sustainable yield (MSY). Thus,
the stock is overfished if B/BMSY < 0.5, where B is the “current”" spawning stock biomass. In
general, the overfishing limit (OFL) for the subsequent year is based on B/BMSY and an “FOFL”
harvest control rule, where FOFL is the fishing mortality rate that yields the OFL. Furthermore, if
B/BMSY < β(= 0.25), directed fishing on the stock is prohibited. For PIBKC, the OFL is based on
average historic catch mortality over a specified time period (a Tier 5 approach) and is consequently
fixed at 1.16 t.

PIBKC falls into Tier 4 for status determination. For Tier 4 stocks, it is not possible to determine
BMSY and MSST directly. Instead, average mature male biomass (MMB) at the time of mating
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(“MMB at mating”“) is used as a proxy for BMSY , where the averaging is over some time period
assumed to be representative of the stock being fished at an average rate near FMSY and is thus
fluctuating around BMSY . For PIBKC, the NPFMC’s Science and Statistical Committee (SSC)
has endorsed using the disjoint time periods [1980-84, 1990-97] to calculate BMSYproxy to avoid
time periods of low abundance possibly caused by high fishing pressure. Alternative time periods
(e.g., 1975 to 1979) have also been considered but rejected. Once BMSYproxy has been calculated,
overfished status is then determined by the ratio B/BMSYproxy : the stock is overfished if the ratio is
less than 0.5, where B is taken as”current" MMB-at-mating.

MMB-at-mating

MMB-at-mating (MMBm) is calculated from MMB at the time of the annual NMFS EBS bottom
trawl survey (MMBs) by accounting for natural and fishing mortality from the time of the survey
to mating. MMB at the time of the survey in year y is calculated from survey data using:

MMBsy =
∑
z

wz · Pz · nz,y

where wz is male weight at size z (mm CL), Pz is the probability of maturity at size z, and nz,y is
survey-estimated male abundance at size z in year y.

For a year y prior to the assessment year, MMBmy is given by

1. MMBfy = MMBsy · e−M ·tsf

2. MMBmy =
[
MMBfy −RMy −DMy

]
· e−M ·tfm

where MMBfy is the MMB in year y just prior to the fishery, M is natural mortality, RMy is
retained mortality on MMB in the directed fishery in year y, DMy is discard mortality on MMB
(not on all crab) in all fisheries in year y, tsf is the time between the survey and the fishery, and
tfm is the time between the fishery and mating.

For the assessment year, the fishery has not yet occurred so RM and DM are unknown. The
amount of fishing mortality presumably depends on the (as yet-to-be-determined) overfishing limit,
so an iterative procedure is used to estimate MMB-at-mating for the fishery year. This procedure
involves:

1. “guess” a value for FOFL, the directed fishing mortality rate that yields OFL (FOFLmax = γ ·M
is used)

2. determine the OFL corresponding to fishing at FOFL using the following equations:
• MMBf = MMBs · e−M ·tsf

• RMOFL =
(

1 − e−FOF L

)
·MMBs · e−M ·tsf

• DMOFL = θ · MMBf

pmale

• OFL = RMOFL +DMOFL

3. project MMB-at-mating from the “current” survey MMB and the OFL:
• MMBm =

[
MMBfy −

(
RMOFL + pmale ·DMOFL

)]
· e−M ·tfm

4. use the harvest control rule to determine the FOFL corresponding to the projected MMB-at-
mating.
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5. update the “guess” in 1. for the result in 4.
6. repeat steps 2-5 until the process has converged, yielding self-consistent values for FOFL and

MMB-at-mating.

where pmale is the assumed fraction of discard mortality on males. Note that this procedure
determines the OFL for the assessment year as well as the current MMB-at-mating. Also note
that, while the retained mortality RMOFL is based on the FOFL, the discard mortality DMOFL is
assumed to be proportional to the MMB at the time of the fishery, with proportionality constant
θ

pmale
. The constant θ is determined by the average ratio of discard mortality on MMB (DMMMB)

to MMB at the time of the fishery (MMBf ) over a recent time interval:

θ = 1
N

∑
y

DMMMBy

MMBfy

where the sum is over the last N years. In addition, DMMMB is assumed to be proprtional to total
discard mortality, with that proportionality given by the percenatge of males in the stock.

Data

Data from the following files were used in this assessment:

• fishery data: ./Data2017AM.Fisheries.csv
• survey data : ./Data2017AM.Surveys.csv

The following figures illustrate the time series of retained PIBKC in the directed fishery and PIBKC
incidentally taken in the crab and groundfish fisheries (i.e., bycatch):
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Figure 1: Time series of retained PIBKC catch in the directed fishery.
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Figure 2: Time series of retained PIBKC catch in the directed fishery (recent time period).

discard

crab fisheries
groundfish fisheries

1990 2000 2010

0

1

2

3

4

0

20

40

60

year

F
is

he
ry

 C
at

ch
 (

t)

gear

pot

trawl

category

legal

sublegal

females

all

Figure 3: Time series of PIBKC bycatch in the crab and groundfish fisheries.
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Figure 4: Time series of PIBKC bycatch in the crab and groundfish fisheries (recent time period).

The following figures illustrate the time series of PIBKC survey biomass in the NMFS EBS bottom
trawl survey:
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Figure 5: Time series of NMFS EBS bottom trawl survey biomass for PIBKC. Confidence intervals
shown are 80% CI’s, assuming lognormal error distributions.
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Figure 6: Time series of NMFS EBS bottom trawl survey biomass for PIBKC (recent time period).
Confidence intervals shown are 80% CI’s, assuming lognormal error distributions.
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Figure 7: Log10-scale time series for the NMFS EBS bottom trawl survey biomass for PIBKC.
Confidence intervals shown are 80% CI’s, assuming lognormal error distributions.

Survey smoothing

For PIBKC, the variances associated with annual survey estimates of MMB are so large that, prior
to estimating BMSY and “current” MMB-at-mating, the survey MMB time series is first smoothed
to reduce overall variability. Starting with the 2015 assessment (Stockhausen, 2015), a random
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effects (RE) model based on code developed by Jim Ianelli (NOAA/NMFS/AFSC) has been used
to perform the smoothing. This is a statistical approach which models annual log-scale changes in
“true” survey MMB as a random walk process using

< ln(MMBs) >y=< ln(MMBs) >y−1 +εy, where εy ∼ N(0, φ2)

as the state equation and

ln(MMBsy ) =< ln(MMBs) >y +ηy, where ηy ∼ N(0, σ2
sy

)

as the observation equation, where < ln(MMBs) >y is the estimated “true” log-scale survey
MMB in year y, εy represents normally-distributed process error in year y with standard deviation
φ, MMBsy is the observed survey MMB in year y, ηy represents normally-distributed ln-scale
observation error, and σsy is the log-scale survey MMB standard deviation in year y. The MMBs’s
and σs’s are observed quantities, the < ln(MMBs) >’s and φ are estimated parameters, and the ε’s
are random effects (essentially nuisance parameters) that are integrated out in the solution.

Parameter estimates are obtained by minimizing the objective function

Λ =
∑
y

[
ln(2πφ)+

(
< ln(MMBs) >y − < ln(MMBs) >y−1

φ

)2]
+
∑
y

(
ln(MMBsy )− < ln(MMBs) >y

σsy

)2

The model is coded in C++ and uses AD Model Builder C++ libraries (Fournier et al., 2012) to
minimize the objective function.

Smoothing results

For comparison, the raw and RE-smoothed survey MMB time series are shown below in Figures
8-10, on both arithmetic and natural log scales:
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Figure 8: Arithmetic-scale raw and smoothed survey MMB time series. Confidence intervals shown
are 80% CIs, assuming lognormal error distributions.
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Figure 9: Arithmetic-scale raw and smoothed survey MMB time series, since 2000. Confidence
intervals shown are 80% CIs, assuming lognormal error distributions.
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Figure 10: Log-scale raw and smoothed survey MMB time series. Confidence intervals shown are
80% CIs, assuming lognormalerror distributions.

Status determination

Overfishing status

For PIBKC, the total fishing mortality in 2016/17 was 0.3820875 t while the OFL was 1.16 t. Thus,
overfishing did not occur in 2016/17.

Overfished status

As discussed previously, overfished status is determined by the ratio B/BMSYproxy : the stock
is overfished if the ratio is less than 0.5, where B is taken as “current” MMB-at-mating. For
PIBKC, BMSYproxy is obtained by averaging estimated MMB-at-mating over the period [1980/81-
1984/85,1990/91-1997/98]. Following recommendations made by the CPT and SSC in 2015 (CPT,
2015; SSC, 2015), B and BMSYproxy are based on MMB-at-mating calculated using the RE-smoothed
time series of survey biomass projected forward to mating time.

MMB-at-mating

For comparison, time series for MMB-at-mating using both the raw (unsmoothed) survey MMB
time series and the RE-smoothed survey MMB time series were calculated. The results are shown
below in Figures 12 and 13:
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Figure 11: Estimated time series for MMB at the time of the survey (no smoothing), at the time of
the fishery, and at the time of mating.
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Figure 12: Estimated time series for MMB using the RE method at the time of the survey (the
random effects time series), at the time of the fishery, and at the time of mating.

Values for BMSYproxy and the estimated current (2017) MMB at the time of the survey from the raw
survey data and the RE-smoothed results are:
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Table 1: Estimated BMSYproxy and current MMB at the time of the survey, using the raw survey
data and the RE-smoothed data.

Estimation Type Current survey MMB (t) BMSYproxy (t)
raw data 253 5, 012
RE-smoothed 256 4, 108

The value above for BMSYproxy using the raw data is shown for illustration only. As noted previously,
BMSYproxy for this assessment is based on averaging the MMB-at-mating calculated from the
RE-smoothed survey MMB (i.e., 4107.8663144 t).

Values for θ, used in the projected MMB calculations, based on averaging over the last three years,
are:

Table 2: Estimated values for the heta coefficient.

Estimation Type $\theta$
1 raw data 0.0007627
2 RE-smoothed 0.0006203

Results from the calculations for B (“current” MMB), overfished status, and an illustrative Tier
4-based OFL for 2017/18 (not used for PIBKC) are:

Table 3: More results from the OFL determination.

quantity units raw.data RE.smoothed
1 B ("current" MMB) t 227.41 230.21
2 BMSY t 5,012.14 4,107.87
3 stock status – overfished overfished
4 FOFL year−1 0.00 0.00
5 RMOFL t 0.00 0.00
6 DMOFL t 0.37 0.30
7 OFL t 0.37 0.30

Because B/BMSY using RE-smoothed MMB-at-mating from the Table above is 0.056, the stock is
overfished. Furthermore, because B/BMSY < β(= 0.25), directed fishing on PIBKC is prohibited.
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Tables

Fishery data

Table 4: Annual retained catch biomass and bycatch (not mortality; in t), as available, in the
directed fishery, the other crab fisheries, and the groundfish fisheries.

crab fisheries directed fishery groundfish fisheries
pot pot pot trawl

discard retained discard discard
females legal sublegal legal all all

year t t t t t t
1966 0.0000 NA NA 0.0000 0.0000 NA
1967 NA NA NA 1, 097.6928 NA NA
1968 NA NA NA 725.7473 NA NA
1969 NA NA NA 2, 485.6846 NA NA
1970 NA NA NA 580.5979 NA NA
1971 NA NA NA 557.9183 NA NA
1972 NA NA NA 136.0776 NA NA
1973 NA NA NA 580.5979 NA NA
1974 NA NA NA 3, 225.0397 NA NA
1975 NA NA NA 1, 102.2288 NA NA
1976 NA NA NA 2, 998.2437 NA NA
1977 NA NA NA 2, 930.2049 NA NA
1978 NA NA NA 2, 902.9894 NA NA
1979 NA NA NA 2, 721.5525 NA NA
1980 NA NA NA 4, 975.9052 NA NA
1981 NA NA NA 4, 118.6161 NA NA
1982 NA NA NA 2, 000.3411 NA NA
1983 NA NA NA 993.3667 NA NA
1984 NA NA NA 140.6135 NA NA
1985 NA NA NA 240.4038 NA NA
1986 NA NA NA 117.9339 NA NA
1987 NA NA NA 317.5145 NA NA
1988 NA NA NA 0.0000 NA NA
1989 NA NA NA 0.0000 NA NA
1990 NA NA NA 0.0000 NA NA
1991 NA NA NA 0.0000 0.0670 6.1990
1992 NA NA NA 0.0000 0.8790 60.7910
1993 NA NA NA 0.0000 0.0000 34.2320
1994 NA NA NA 0.0000 0.0350 6.8560
1995 NA NA NA 625.9571 0.1080 1.2840
1996 0.0000 0.0000 0.8074 426.3766 0.0310 0.0670
1997 0.0000 0.0000 0.0000 231.3320 1.4620 0.1300
1998 3.7149 2.2952 0.4672 235.8679 19.8000 0.0790
1999 1.9686 3.4927 4.2910 0.0000 0.7950 0.0200
2000 0.0000 0.0000 0.0000 0.0000 0.1160 0.0230
2001 0.0000 0.0000 0.0000 0.0000 0.8330 0.0290
2002 0.0000 0.0000 0.0000 0.0000 0.0710 0.2970
2003 0.0000 0.0000 0.0000 0.0000 0.3450 0.2270
2004 0.0000 0.0000 0.0000 0.0000 0.8160 0.0020
2005 0.0499 0.0000 0.0000 0.0000 0.3530 1.3390
2006 0.1043 0.0000 0.0000 0.0000 0.1380 0.0740
2007 0.1361 0.0000 0.0000 0.0000 3.9930 0.1320
2008 0.0000 0.0000 0.0000 0.0000 0.1410 0.4730
2009 0.0000 0.0000 0.0000 0.0000 0.2156 0.2068
2010 0.0000 0.0000 0.1860 0.0000 0.0443 0.0563
2011 0.0000 0.0000 0.0000 0.0000 0.1117 0.0071
2012 0.0000 0.0000 0.0000 0.0000 0.1699 0.6688
2013 0.0000 0.0000 0.0000 0.0000 0.0646 0.0000
2014 0.0000 0.0000 0.0000 0.0000 0.1443 0.0001
2015 0.1028 0.0000 0.2301 0.0000 0.7443 0.8078
2016 0.0000 0.0000 0.0000 0.0000 0.0904 0.4550
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Survey data

Table 5: Input (’raw’) male survey abundance data (numbers of crab).
immature legal mature total

year value cv value cv value cv value cv
1975 8, 475, 780.89 0.57 9, 051, 485.73 0.50 28, 435, 755.89 1.11 36, 911, 536.79 1.07
1976 12, 328, 947.42 1.92 4, 012, 289.16 0.47 5, 551, 254.42 0.96 17, 880, 201.84 1.50
1977 5, 067, 465.88 1.28 11, 768, 927.37 0.77 26, 924, 033.45 1.60 31, 991, 499.33 1.48
1978 2, 482, 381.42 1.50 3, 922, 873.85 0.62 12, 067, 151.89 1.16 14, 549, 533.30 1.08
1979 221, 771.00 1.42 3, 017, 118.91 0.31 5, 276, 802.27 1.14 5, 498, 573.27 1.09
1980 3, 513, 951.44 1.24 6, 244, 057.67 0.42 190, 745, 260.90 1.39 194, 259, 212.34 1.38
1981 2, 925, 999.23 0.73 3, 245, 951.07 0.18 9, 267, 921.40 0.62 12, 193, 920.63 0.63
1982 2, 247, 538.58 0.80 2, 071, 467.90 0.19 10, 190, 817.25 0.83 12, 438, 355.84 0.80
1983 1, 494, 458.75 0.90 1, 321, 394.69 0.17 11, 159, 269.86 0.97 12, 653, 728.61 0.98
1984 983, 046.34 0.91 558, 226.46 0.25 3, 539, 833.29 0.60 4, 522, 879.63 0.58
1985 327, 846.69 1.14 270, 241.72 0.29 914, 260.33 0.72 1, 242, 107.02 0.63
1986 55, 588.48 1.70 460, 310.63 0.31 2, 582, 129.95 1.20 2, 637, 718.43 1.18
1987 1, 023, 070.70 1.58 830, 150.65 0.42 1, 573, 658.67 1.00 2, 596, 729.37 0.91
1988 2, 135, 682.52 1.71 237, 867.82 0.51 703, 331.18 0.99 2, 839, 013.70 1.35
1989 6, 150, 862.84 1.33 239, 947.52 0.62 1, 381, 703.37 1.28 7, 532, 566.21 1.16
1990 4, 627, 193.67 1.51 571, 708.33 0.54 3, 516, 258.12 1.17 8, 143, 451.79 1.13
1991 2, 725, 893.73 0.84 1, 237, 558.37 0.44 4, 781, 533.72 0.78 7, 507, 427.45 0.70
1992 4, 233, 139.11 1.51 1, 154, 465.28 0.45 4, 084, 797.20 0.91 8, 317, 936.31 1.00
1993 2, 364, 196.25 1.13 1, 114, 300.52 0.30 3, 658, 157.09 0.76 6, 022, 353.33 0.72
1994 783, 283.02 0.95 935, 268.63 0.34 6, 341, 478.39 0.78 7, 124, 761.41 0.77
1995 1, 805, 281.89 1.81 2, 186, 408.91 0.62 7, 140, 267.33 1.12 8, 945, 549.23 1.17
1996 995, 165.22 1.04 1, 269, 274.66 0.26 6, 757, 837.30 0.77 7, 753, 002.53 0.80
1997 787, 577.26 1.19 932, 852.28 0.28 3, 815, 669.55 0.72 4, 603, 246.80 0.73
1998 1, 449, 688.57 0.89 797, 187.26 0.25 2, 796, 606.53 0.69 4, 246, 295.10 0.67
1999 159, 535.74 0.37 452, 740.30 0.34 3, 373, 234.05 0.82 3, 532, 769.79 0.82
2000 163, 834.62 0.56 527, 589.35 0.30 2, 088, 120.40 0.76 2, 251, 955.02 0.77
2001 111, 434.07 1.65 445, 863.41 0.74 2, 219, 704.16 1.46 2, 331, 138.23 1.43
2002 18, 729.46 1.00 207, 145.98 0.49 1, 447, 328.02 1.27 1, 466, 057.48 1.25
2003 112, 599.69 1.20 213, 572.37 0.40 1, 349, 151.10 1.15 1, 461, 750.78 1.06
2004 185, 710.36 1.22 15, 583.88 1.00 117, 939.32 1.17 303, 649.68 0.93
2005 4, 249, 450.99 1.96 91, 932.30 0.71 381, 129.58 1.28 4, 630, 580.58 1.81
2006 251, 165.41 1.04 38, 242.00 0.70 485, 119.46 1.33 736, 284.87 1.04
2007 368, 647.45 1.45 54, 402.91 0.75 275, 842.91 1.75 644, 490.36 1.23
2008 576, 037.92 1.83 18, 255.62 1.00 455, 624.48 1.66 1, 031, 662.41 1.61
2009 420, 006.90 1.24 68, 117.04 0.59 725, 721.22 1.55 1, 145, 728.13 1.43
2010 266, 783.19 1.40 64, 702.83 0.48 379, 492.70 1.18 646, 275.89 1.23
2011 18, 089.34 1.00 129, 097.71 0.87 202, 037.20 1.49 220, 126.54 1.36
2012 229, 204.82 2.00 164, 164.90 0.68 584, 327.37 1.56 813, 532.19 1.57
2013 121, 694.76 1.70 68, 726.09 0.80 254, 660.86 1.49 376, 355.62 1.18
2014 118, 710.86 1.59 91, 855.85 0.71 166, 223.38 1.31 284, 934.24 1.07
2015 75, 575.44 0.77 124, 591.54 0.45 436, 094.37 1.02 511, 669.81 1.06
2016 225, 711.04 1.02 19, 344.90 1.00 378, 612.24 1.08 604, 323.27 0.99
2017 256, 098.21 1.52 71, 937.24 0.59 252, 444.72 1.04 508, 542.93 0.99
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Table 6: Input (’raw’) male survey biomass data, in t.
immature legal mature total

year value cv value cv value cv value cv
1975 8, 340.95 0.52 27, 016.47 0.50 38, 053.59 0.50 46, 394.54 0.47
1976 4, 128.67 0.94 12, 648.94 0.47 14, 058.93 0.45 18, 187.61 0.45
1977 3, 713.34 0.44 40, 365.94 0.78 42, 618.32 0.77 46, 331.66 0.73
1978 2, 765.31 0.51 13, 516.82 0.64 17, 369.71 0.56 20, 135.02 0.51
1979 61.27 0.79 9, 039.95 0.31 10, 959.38 0.32 11, 020.66 0.31
1980 2, 083.76 0.49 20, 678.62 0.45 23, 552.92 0.43 25, 636.68 0.42
1981 1, 704.25 0.30 10, 553.54 0.17 11, 628.25 0.17 13, 332.49 0.18
1982 1, 151.96 0.23 6, 893.43 0.19 7, 388.96 0.19 8, 540.92 0.17
1983 962.34 0.36 4, 474.40 0.17 5, 408.73 0.18 6, 371.08 0.19
1984 129.72 0.36 1, 824.02 0.25 2, 215.66 0.23 2, 345.38 0.22
1985 39.02 0.73 755.50 0.28 1, 054.79 0.27 1, 093.81 0.26
1986 3.73 1.00 1, 473.32 0.31 1, 504.69 0.30 1, 508.43 0.30
1987 191.45 0.78 2, 781.34 0.41 2, 923.38 0.41 3, 114.84 0.40
1988 170.05 0.71 842.43 0.53 842.43 0.53 1, 012.48 0.46
1989 1, 274.88 0.62 827.50 0.64 827.50 0.64 2, 102.37 0.55
1990 2, 004.14 0.66 1, 514.33 0.52 3, 077.51 0.60 5, 081.65 0.61
1991 1, 377.43 0.39 3, 325.77 0.45 4, 689.67 0.39 6, 067.10 0.37
1992 1, 800.51 0.51 3, 034.80 0.45 4, 391.01 0.42 6, 191.52 0.43
1993 1, 088.50 0.54 3, 202.55 0.30 4, 555.60 0.31 5, 644.10 0.30
1994 618.98 0.39 2, 805.73 0.35 3, 410.36 0.34 4, 029.34 0.34
1995 967.73 0.86 6, 786.93 0.62 8, 360.23 0.60 9, 327.96 0.63
1996 744.89 0.61 3, 873.06 0.27 4, 640.62 0.27 5, 385.51 0.28
1997 381.39 0.55 2, 765.39 0.27 3, 232.58 0.28 3, 613.97 0.29
1998 692.25 0.41 2, 509.92 0.25 2, 797.93 0.25 3, 490.19 0.25
1999 160.65 0.40 1, 426.16 0.35 1, 729.24 0.34 1, 889.89 0.33
2000 113.32 0.68 1, 745.75 0.31 2, 091.34 0.30 2, 204.66 0.30
2001 87.07 0.76 1, 460.92 0.76 1, 598.74 0.73 1, 685.81 0.73
2002 0.00 0.00 647.07 0.52 679.80 0.51 679.80 0.51
2003 19.06 0.98 671.20 0.41 702.01 0.40 721.07 0.39
2004 36.01 0.65 48.43 1.00 106.88 0.58 142.89 0.46
2005 325.78 0.94 344.06 0.71 344.06 0.71 669.84 0.59
2006 86.89 0.58 139.22 0.70 165.89 0.60 252.77 0.46
2007 196.77 0.74 205.56 0.73 306.46 0.80 503.23 0.66
2008 211.71 0.95 45.98 1.00 45.98 1.00 257.69 0.80
2009 254.30 0.68 186.51 0.60 497.11 0.71 751.41 0.70
2010 91.64 0.85 190.05 0.48 302.93 0.46 394.57 0.52
2011 0.00 0.00 398.98 0.89 461.36 0.84 461.36 0.84
2012 164.71 1.00 458.98 0.64 643.94 0.74 808.65 0.79
2013 14.53 1.00 189.92 0.75 250.14 0.80 264.66 0.75
2014 83.15 0.62 233.39 0.70 233.39 0.70 316.54 0.57
2015 81.69 0.75 428.26 0.46 621.71 0.39 703.40 0.39
2016 70.34 0.49 67.74 1.00 128.55 0.61 198.89 0.52
2017 45.20 0.77 222.52 0.57 252.78 0.51 297.98 0.47
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Table 7: Input (’raw’) female survey abundance data (numbers of crab).

immature mature total
year value cv value cv value cv
1975 0.00 0.00 13, 147, 586.68 0.61 13, 147, 586.68 0.61
1976 7, 369, 388.06 0.97 769, 149.65 0.51 8, 138, 537.71 0.91
1977 851, 600.68 0.82 13, 880, 050.65 0.86 14, 731, 651.34 0.86
1978 60, 923.05 1.00 5, 926, 514.32 0.66 5, 987, 437.37 0.66
1979 142, 416.25 0.72 1, 168, 934.53 0.81 1, 311, 350.78 0.77
1980 781, 223.69 0.77 182, 902, 918.90 0.98 183, 684, 142.60 0.98
1981 826, 523.82 0.41 5, 433, 490.77 0.44 6, 260, 014.59 0.42
1982 876, 255.79 0.51 7, 837, 003.99 0.65 8, 713, 259.78 0.63
1983 463, 726.39 0.54 9, 307, 968.75 0.78 9, 771, 695.14 0.76
1984 465, 472.58 0.52 2, 769, 190.35 0.38 3, 234, 662.94 0.37
1985 260, 081.29 0.54 486, 184.43 0.44 746, 265.72 0.36
1986 36, 684.23 0.70 2, 101, 931.80 0.90 2, 138, 616.03 0.88
1987 401, 529.77 0.74 670, 478.72 0.58 1, 072, 008.49 0.48
1988 897, 629.21 0.87 465, 463.37 0.48 1, 363, 092.58 0.64
1989 2, 636, 098.81 0.74 1, 141, 755.85 0.66 3, 777, 854.65 0.58
1990 2, 177, 329.21 0.91 2, 045, 839.41 0.55 4, 223, 168.62 0.56
1991 805, 450.59 0.46 2, 767, 448.02 0.42 3, 572, 898.61 0.35
1992 1, 797, 343.33 0.93 2, 149, 519.20 0.49 3, 946, 862.54 0.52
1993 880, 672.33 0.61 1, 782, 656.74 0.45 2, 663, 329.07 0.38
1994 144, 763.08 0.57 5, 047, 215.18 0.44 5, 191, 978.25 0.44
1995 658, 479.28 0.92 4, 038, 555.59 0.52 4, 697, 034.87 0.49
1996 275, 735.14 0.42 5, 045, 822.06 0.48 5, 321, 557.20 0.46
1997 320, 343.56 0.67 2, 614, 373.74 0.42 2, 934, 717.30 0.39
1998 500, 241.34 0.43 1, 829, 509.02 0.44 2, 329, 750.36 0.37
1999 0.00 0.00 2, 755, 975.76 0.49 2, 755, 975.76 0.49
2000 0.00 0.00 1, 363, 069.69 0.46 1, 363, 069.69 0.46
2001 18, 516.37 1.00 1, 697, 465.09 0.75 1, 715, 981.46 0.74
2002 18, 729.46 1.00 1, 221, 852.43 0.79 1, 240, 581.89 0.78
2003 67, 328.63 0.48 1, 120, 254.01 0.76 1, 187, 582.64 0.72
2004 98, 059.03 0.63 70, 034.56 0.60 168, 093.59 0.51
2005 2, 268, 112.83 1.00 289, 197.28 0.56 2, 557, 310.11 0.89
2006 113, 047.12 0.55 429, 540.72 0.77 542, 587.84 0.62
2007 122, 482.70 0.73 165, 762.60 0.90 288, 245.30 0.59
2008 342, 119.25 0.90 437, 368.86 0.66 779, 488.11 0.75
2009 152, 290.08 0.61 477, 095.11 0.82 629, 385.19 0.76
2010 165, 632.29 0.56 249, 027.32 0.69 414, 659.61 0.62
2011 18, 089.34 1.00 36, 511.72 0.70 54, 601.06 0.56
2012 34, 682.61 1.00 312, 094.57 0.76 346, 777.18 0.70
2013 45, 343.64 0.70 150, 299.88 0.63 195, 643.52 0.53
2014 27, 720.50 1.00 74, 367.54 0.60 102, 088.04 0.51
2015 0.00 0.00 202, 464.39 0.65 202, 464.39 0.65
2016 131, 689.04 0.50 322, 760.45 0.52 454, 449.50 0.50
2017 187, 859.97 0.75 161, 799.38 0.53 349, 659.35 0.54
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Table 8: Input (’raw’) female survey biomass data, in t.

immature mature total
year value cv value cv value cv
1975 0.00 0.00 12, 442.27 0.64 12, 442.27 0.64
1976 4, 967.70 0.97 823.80 0.53 5, 791.50 0.89
1977 418.58 0.83 13, 153.87 0.88 13, 572.45 0.87
1978 76.40 1.00 6, 415.74 0.72 6, 492.14 0.72
1979 91.67 0.73 1, 097.29 0.79 1, 188.96 0.76
1980 699.46 0.86 211, 603.71 0.98 212, 303.16 0.98
1981 497.16 0.41 5, 986.82 0.47 6, 483.97 0.46
1982 553.17 0.57 8, 823.72 0.68 9, 376.89 0.67
1983 258.05 0.61 9, 989.87 0.79 10, 247.93 0.78
1984 15.35 0.69 3, 069.56 0.38 3, 084.90 0.38
1985 4.87 0.46 519.81 0.45 524.67 0.44
1986 11.02 0.73 2, 419.78 0.90 2, 430.80 0.90
1987 118.72 0.86 794.61 0.58 913.33 0.53
1988 190.14 0.79 527.64 0.49 717.78 0.47
1989 800.78 0.67 944.75 0.58 1, 745.53 0.50
1990 1, 118.45 0.93 1, 810.45 0.51 2, 928.89 0.49
1991 342.70 0.48 2, 433.24 0.41 2, 775.93 0.38
1992 801.57 0.96 1, 847.65 0.48 2, 649.23 0.46
1993 444.39 0.62 1, 647.13 0.46 2, 091.51 0.40
1994 87.01 0.57 4, 805.95 0.45 4, 892.96 0.44
1995 331.03 0.90 3, 947.94 0.52 4, 278.97 0.50
1996 176.52 0.42 5, 408.25 0.50 5, 584.77 0.49
1997 193.64 0.66 2, 834.78 0.43 3, 028.42 0.41
1998 267.35 0.42 1, 914.46 0.44 2, 181.81 0.39
1999 0.00 0.00 2, 868.27 0.47 2, 868.27 0.47
2000 0.00 0.00 1, 461.82 0.46 1, 461.82 0.46
2001 0.34 1.00 1, 816.35 0.72 1, 816.69 0.72
2002 0.24 1.00 1, 400.74 0.78 1, 400.98 0.78
2003 20.94 0.67 1, 286.42 0.75 1, 307.36 0.73
2004 25.20 0.82 97.71 0.60 122.91 0.50
2005 477.27 1.00 369.83 0.57 847.10 0.61
2006 38.16 0.60 537.85 0.76 576.01 0.71
2007 58.77 0.79 223.43 0.88 282.19 0.71
2008 222.03 0.90 449.54 0.64 671.57 0.70
2009 80.22 0.66 544.69 0.85 624.91 0.82
2010 84.08 0.58 310.16 0.66 394.24 0.63
2011 2.69 1.00 34.14 0.73 36.83 0.67
2012 8.70 1.00 228.76 0.66 237.46 0.64
2013 12.06 0.72 153.85 0.70 165.91 0.65
2014 16.43 1.00 91.11 0.60 107.54 0.53
2015 0.00 0.00 159.65 0.66 159.65 0.66
2016 72.47 0.47 328.67 0.50 401.14 0.48
2017 106.89 0.81 152.11 0.56 259.01 0.53
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Table 9: A comparison of estimates for MMB (in t) at the time of the survey.

raw RE
year value lci uci value lci uci
1975 38, 053.59 20, 759.61 69, 754.48 26, 901.00 16, 825.61 43, 009.66
1976 14, 058.93 8, 103.53 24, 391.05 19, 926.60 13, 388.82 29, 656.78
1977 42, 618.32 17, 814.39 101, 958.08 21, 264.90 13, 591.30 33, 270.99
1978 17, 369.71 8, 912.49 33, 852.16 16, 974.60 11, 333.27 25, 424.00
1979 10, 959.38 7, 385.67 16, 262.32 13, 329.30 9, 743.03 18, 235.63
1980 23, 552.92 13, 894.39 39, 925.46 15, 605.10 11, 032.07 22, 073.75
1981 11, 628.25 9, 320.75 14, 507.00 11, 423.00 9, 355.46 13, 947.47
1982 7, 388.96 5, 824.58 9, 373.50 7, 448.55 6, 051.74 9, 167.76
1983 5, 408.73 4, 315.80 6, 778.45 5, 081.02 4, 155.14 6, 213.21
1984 2, 215.66 1, 659.01 2, 959.08 2, 347.24 1, 840.91 2, 992.84
1985 1, 054.79 753.94 1, 475.68 1, 349.79 1, 020.02 1, 786.18
1986 1, 504.69 1, 029.62 2, 198.96 1, 555.26 1, 156.67 2, 091.20
1987 2, 923.38 1, 761.10 4, 852.75 1, 927.64 1, 351.62 2, 749.15
1988 842.43 445.93 1, 591.49 1, 427.29 946.09 2, 153.24
1989 827.50 391.56 1, 748.76 1, 598.80 1, 027.48 2, 487.79
1990 3, 077.51 1, 512.59 6, 261.49 2, 602.58 1, 717.52 3, 943.72
1991 4, 689.67 2, 910.49 7, 556.46 3, 812.12 2, 677.47 5, 427.61
1992 4, 391.01 2, 612.05 7, 381.55 4, 181.16 2, 939.68 5, 946.94
1993 4, 555.60 3, 100.43 6, 693.73 4, 328.92 3, 200.20 5, 855.75
1994 3, 410.36 2, 219.61 5, 239.91 4, 017.00 2, 906.92 5, 551.00
1995 8, 360.23 4, 090.73 17, 085.84 4, 941.99 3, 335.75 7, 321.67
1996 4, 640.62 3, 308.54 6, 509.03 4, 384.30 3, 316.32 5, 796.22
1997 3, 232.58 2, 284.30 4, 574.53 3, 322.05 2, 523.45 4, 373.38
1998 2, 797.93 2, 042.57 3, 832.65 2, 704.95 2, 085.48 3, 508.43
1999 1, 729.24 1, 136.48 2, 631.17 1, 976.11 1, 450.90 2, 691.44
2000 2, 091.34 1, 442.89 3, 031.19 1, 836.48 1, 358.21 2, 483.16
2001 1, 598.74 688.93 3, 710.05 1, 264.67 829.84 1, 927.36
2002 679.80 368.60 1, 253.75 784.02 528.41 1, 163.28
2003 702.01 428.47 1, 150.19 548.55 381.89 787.92
2004 106.88 53.46 213.67 278.26 179.24 432.00
2005 344.06 151.76 780.00 265.97 168.64 419.46
2006 165.89 81.25 338.67 224.99 142.84 354.39
2007 306.46 124.64 753.49 230.18 141.64 374.08
2008 45.98 15.82 133.66 210.46 126.20 350.98
2009 497.11 218.63 1, 130.34 294.20 185.57 466.43
2010 302.93 172.57 531.78 321.26 214.21 481.79
2011 461.36 180.34 1, 180.27 372.10 232.13 596.46
2012 643.94 277.26 1, 495.58 398.87 247.63 642.49
2013 250.14 101.79 614.66 345.09 214.61 554.90
2014 233.39 103.97 523.89 338.82 217.04 528.91
2015 621.71 382.23 1, 011.25 398.72 274.64 578.88
2016 128.55 62.34 265.09 258.43 166.93 400.10
2017 252.78 135.99 469.85 255.86 158.16 413.90
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Executive Summary

1. Stock: Blue king crab, Paralithodes platypus, Saint Matthew Island (SMBKC), Alaska.

2. Catches: Peak historical harvest was 4288 t (9.454 million pounds) in 1983/841. The fishery was
closed for 10 years after the stock was declared overfished in 1999. Fishing resumed in 2009/10 with a
fishery-reported retained catch of 209 t (0.461 million pounds), less than half the 529.3 t (1.167 million
pound) TAC. Following three more years of modest harvests supported by a fishery catch per unit
effort (CPUE) of around 10 crab per pot lift, the fishery was again closed in 2013/14 due to declining
trawl-survey estimates of abundance and concerns about the health of the stock. The directed fishery
resumed again in 2014/15 with a TAC of 300 t (0.655 million pounds), but the fishery performance was
relatively poor with a retained catch of 140 t (0.309 million pounds). The retained catch in 2015/16
was even lower at 48 t (0.105 million pounds) and in 2016/2017 the fishery was closed.

3. Stock biomass: The 1978-2017 NMFS trawl survey mean biomass is 5,762 t with the 8th lowest value
occurring in 2017 (the fourth lowest since 2000) with a biomass of ≥ 90 mm carapace length (CL) and
larger male crab of just under 1,800 t (~31% of the long term mean; 6.12 million lbs with a CV of
60%). The most recent 3-year average of the NMFS survey is 65% of the mean value, suggesting a
general decline in biomass compared to the survey estimates in 2010 and 2011 that were nearly twice
the current average. The assessment model estimates dampen the interannual variability observed in
the survey biomass and suggest that the stock (in survey biomass units) is presently at about 45% of
the long term model-predicted survey biomass average. The trend from these values suggests a slight
decline.

4. Recruitment: Recruitment is based on estimated number of male crab within the 90-104 mm CL size
class in each year. The 2017 trawl-survey area-swept estimate of 0.073 million male SMBKC in this
size class is the lowest in the 40 years since 1978 and caps a six-year (2012 - 2017) average recruitment
that is only 54% of this mean. In the pot-survey, the abundance of this size group in 2017 was also the
second-lowest in the time series (22% of the mean for the available pot-survey data).

5. Management performance: In this assessment estimated total male catch is the sum of fishery-
reported retained catch, estimated male discard mortality in the directed fishery, and estimated male
bycatch mortality in the groundfish fisheries. Based on the reference model for SMBKC, the stock was
above the minimum stock-size threshold (MSST) in 2016/17 and is hence not overfished. Overfishing
did not occur in this year as the directed fishery was closed (Tables 1 and 2). Nonetheless, the low
survey values and paucity of crabs in the region, as indicated by the surveys, remains a concern.

11983/84 refers to a fishing year that extends from 1 July 1983 to 30 June 1984.
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Table 1: Status and catch specifications (1000 t) for the reference model. Notes: A - calculated from the
assessment reviewed by the Crab Plan Team in September 2013, B - calculated from the assessment reviewed
by the Crab Plan Team in September 2014, C - calculated from the assessment reviewed by the Crab Plan
Team in September 2015, D - calculated from the assessment reviewed by the Crab Plan Team in September
2016, E - calculated from the assessment reviewed by the Crab Plan Team in September 2017.

Biomass Retained Total
Year MSST (MMBmating) TAC catch male catch OFL ABC
2012/13 1.80A 2.85A 0.74 0.73 0.82 1.02 0.92
2013/14 1.50B 3.01B 0.00 0.00 0.00 0.56 0.45
2014/15 1.86C 2.48C 0.30 0.14 0.15 0.43 0.34
2015/16 1.84D 2.11D 0.19 0.05 0.05 0.28 0.22
2016/17 1.97E 2.12E 0.00 0.00 0.05 0.28 0.22
2017/18 2.18E 0.12 0.1

Table 2: Status and catch specifications (million pounds) for the reference model.
Biomass Retained Total

Year MSST (MMBmating) TAC catch male catch OFL ABC
2012/13 4.0A 6.29A 1.630 1.616 1.81 2.24 2.02
2013/14 3.4B 6.64B 0.000 0.000 0.0006 1.24 0.99
2014/15 4.1C 5.47C 0.655 0.309 0.329 0.94 0.75
2015/16 4.1D 4.65D 0.419 0.110 0.110 0.62 0.49
2016/17 4.3E 4.68E 0.41 0.000 0.000 0.62 0.49
2017/18 4.81E 0.27 0.22

6. Basis for the OFL: Estimated mature-male biomass (MMB) on 15 February is used as the measure
of biomass for this Tier 4 stock, with males measuring 105 mm CL or more considered mature. The
BMSY proxy is obtained by averaging estimated MMB over a specific reference time period, and current
CPT/SSC guidance recommends using the full assessment time frame as the default reference period
(Table 3).

Table 3: Basis for the OFL (1000 t) from the reference model.
Biomass Natural

Year Tier BMSY (MMBmating) B/BMSY FOFL γ Basis for BMSY mortality
2012/13 4a 3.56 5.63 1.56 0.18 1 1978-2012 0.18
2013/14 4b 3.06 3.01 0.98 0.18 1 1978-2013 0.18
2014/15 4b 3.28 2.71 0.82 0.14 1 1978-2014 0.18
2015/16 4b 3.71 2.45 0.66 0.11 1 1978-2015 0.18
2016/17 4b 3.67 2.23 0.61 0.09 1 1978-2016 0.18
2017/18 4b 3.93 2.18 0.55 0.09 1 1978-2016 0.18

A. Summary of Major Changes

Changes in Management of the Fishery

There are no new changes in management of the fishery.
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Changes to the Input Data

Data used in this assessment have been updated to include the most recently available fishery and survey
numbers. This assessment makes use of two new survey data points including the 2017 NMFS trawl-survey
estimate of abudance, and the 2017 ADF&G pot survey CPUE. Both of these surveys have associated size
compositon data. The assessment also uses updated 2010-2016 groundfish and fixed gear bycatch estimates
based on NMFS Alaska Regional Office (AKRO) data. There was no directed fishery data due to the 2016/17
closure.

Changes in Assessment Methodology

As with 2016, this assessment is done using the General model for Alasks crab stocks (Gmacs) framework.
The model is configured to track three stages of length categories and was first presented in May 2011 by Bill
Gaeuman and accepted by the CPT in May 2012. A difference from the original approach and that used here
is that natural and fishing mortality are continuous within 5 discrete seasons (using the appropriate catch
equation rather than assuming an applied pulse removal). Season length in Gmacs is controlled by changing
the proportion of natural mortality that is applied each season. An added diagnostic output is provided to
include estimates of the “dynamic B0.” This simply computes the ratio of the spawning biomass as estimated
relative to the spawning biomass that would have occurred had there been no historical fishing mortality.
Details of this implementation are provided in Appendix A.

Changes in Assessment Results

Both surveys indicate a decline over the past few years. The “reference” model is that selected for use in 2016.
The addition of new data introduced this year area are presented sequentially. Two alternative models are
presented for sensitivity. One involves a re-analysis of the NMFS trawl survey data using a spatio-temporal
Delta-GLMM approach (VAST model, Thorson and Barnett 2017) and the other configuration (named “Fit
survey”) simply adds emphasis on the survey data (assumes a lower input variance). In all cases, the model
tends to moderate the declines observed in the surveys.

B. Responses to SSC and CPT Comments

CPT and SSC Comments on Assessments in General

Comment: Regarding general code development, the CPT had the following requests:

1. specify priors (e.g., gamma) using mean and variance/standard deviation for all parameters to ease
specifying priors
This was completed.

2. include an option to calculate dynamic BMSY

This was completed.

3. add the ability to “jitter” initial parameter values
The framework for conducting this research has been added but has yet to be fully tested.

4. add the ability to conduct retrospective analyses
Incomplete.
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5. add ability to estimate bycatch fishing mortality rates when observer data are missing but effort data is
available
This was completed.

6. Continued exploration of data weighting (Francis and other approaches) and evaluation of models with
and without the 1998 natural mortality spike. The authors are encouraged to bring other models forward
for CPT and SSC consideration
We introduced an alternative time-series estimated from the NMFS trawl survey using the VAST
spatio-temporal Delta GLMM model and continued with the iterative re-weighting for composition
data.

C. Introduction

Scientific Name

The blue king crab is a lithodid crab, Paralithodes platypus (Brant 1850).

Distribution

Blue king crab are sporadically distributed throughout the North Pacific Ocean from Hokkaido, Japan,
to southeastern Alaska (Figure 1). In the eastern Bering Sea small populations are distributed around
St. Matthew Island, the Pribilof Islands, St. Lawrence Island, and Nunivak Island. Isolated populations
also exist in some other cold water areas of the Gulf of Alaska (NPFMC 1998). The St. Matthew Island
Section for blue king crab is within Area Q2 (Figure 2), which is the Northern District of the Bering Sea king
crab registration area and includes the waters north of Cape Newenham (58°39’ N. lat.) and south of Cape
Romanzof (61°49’ N. lat.).

Stock Structure

The Alaska Department of Fish and Game (ADF&G) Gene Conservation Laboratory division, has detected
regional population differences between blue king crab collected from St. Matthew Island and the Pribilof
Islands2. NMFS tag-return data from studies on blue king crab in the Pribilof Islands and St. Matthew
Island support the idea that legal-sized males do not migrate between the two areas (Otto and Cummiskey
1990). St. Matthew Island blue king crab tend to be smaller than their Pribilof conspecifics, and the two
stocks are managed separately.

Life History

Like the red king crab, Paralithodes camtshaticus, the blue king crab is considered a shallow water species by
comparison with other lithodids such as golden king crab, Lithodes aequispinus, and the scarlet king crab,
Lithodes couesi (Donaldson and Byersdorfer 2005). Adult male blue king crab are found at an average depth
of 70 m (NPFMC 1998). The reproductive cycle appears to be annual for the first two reproductive cycles
and biennial thereafter (Jensen and Armstrong 1989) and mature crab seasonally migrate inshore where they
molt and mate. Unlike red king crab, juvenile blue king crab do not form pods, but instead rely on cryptic
coloration for protection from predators and require suitable habitat such as cobble and shell hash. Somerton
and MacIntosh (1983) estimated SMBKC male size at sexual maturity to be 77 mm carapace length (CL).
Paul et al. (1991) found that spermatophores were present in the vas deferens of 50% of the St. Matthew
Island blue king crab males examined with sizes of 40-49 mm CL and in 100% of the males at least 100 mm

2NOAA grant Bering Sea Crab Research II, NA16FN2621, 1997.
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CL. Spermataphore diameter also increased with increasing CL with an asymptote at ~ 100 mm CL. They
noted, however, that although spermataphore presence indicates physiological sexual maturity, it may not be
an indicator of functional sexual maturity. For purposes of management of the St. Matthew Island blue king
crab fishery, the State of Alaska uses 105 mm CL to define the lower size bound of functionally mature males
(Pengilly and Schmidt 1995). Otto and Cummiskey (1990) report an average growth increment of 14.1 mm
CL for adult SMBKC males.

Management History

The SMBKC fishery developed subsequent to baseline ecological studies associated with oil exploration (Otto
1990). Ten U.S. vessels harvested 545 t (1.202 million pounds) in 1977, and harvests peaked in 1983 when
164 vessels landed 4288 t (9.454 million pounds) (Fitch et al. 2012; Table 7).

The fishing seasons were generally short, often lasting only a few days. The fishery was declared overfished
and closed in 1999 when the stock biomass estimate was below the minimum stock-size threshold (MSST) of
4,990 t (11.0 million pounds) as defined by the Fishery Management Plan (FMP) for the Bering Sea/Aleutian
Islands King and Tanner crabs (NPFMC 1999). Zheng and Kruse (2002) hypothesized a high level of SMBKC
natural mortality from 1998 to 1999 as an explanation for the low catch per unit effort (CPUE) in the
1998/99 commercial fishery and the low numbers across all male crab size groups caught in the annual
NMFS eastern Bering Sea trawl survey from 1999 to 2005 (see survey data in next section). In November
2000, Amendment 15 to the FMP for Bering Sea/Aleutian Islands king and Tanner crabs was approved to
implement a rebuilding plan for the SMBKC stock (NPFMC 2000). The rebuilding plan included a State
of Alaska regulatory harvest strategy (5 AAC 34.917), area closures, and gear modifications. In addition,
commercial crab fisheries near St. Matthew Island were scheduled in fall and early winter to reduce the
potential for bycatch mortality of vulnerable molting and mating crab.

NMFS declared the stock rebuilt on 21 September 2009, and the fishery was reopened after a 10-year closure
on 15 October 2009 with a TAC of 529 t (1.167 million pounds), closing again by regulation on 1 February
2010. Seven participating vessels landed a catch of 209 t (460,859 pounds) with a reported effort of 10,697
pot lifts and an estimated CPUE of 9.9 retained individual crab per pot lift. The fishery remained open
the next three years with modest harvests and similar CPUE, but large declines in the NMFS trawl-survey
estimate of stock abundance raised concerns about the health of the stock. This prompted ADF&G to close
the fishery again for the 2013/14 season. The fishery was reopened for the 2014/15 season with a low TAC of
297 t (0.655 million pounds) and in 2015/16 the TAC was further reduced to 186 t (0.411 million pounds)
then completely closed during the 2016/17 season.

Although historical observer data are limited due to low sampling effort, bycatch of female and sublegal male
crab from the directed blue king crab fishery off St. Matthew Island was relatively high historically, with
estimated total bycatch in terms of number of crab captured sometimes more than twice as high as the catch
of legal crab (Moore et al. 2000; ADF&G Crab Observer Database). Pot-lift sampling by ADF&G crab
observers (Gaeuman 2013; ADF&G Crab Observer Database) indicates similar bycatch rates of discarded
male crab since the reopening of the fishery (Table 5), with total male discard mortality in the 2012/13
directed fishery estimated at about 12% (88 t or 0.193 million pounds) of the reported retained catch weight,
assuming 20% handling mortality.

These data suggest a reduction in the bycatch of females, which may be attributable to the later timing of
the contemporary fishery and the more offshore distribution of fishery effort since reopening in 2009/103.
Some bycatch of discarded blue king crab has also been observed historically in the eastern Bering Sea snow
crab fishery, but in recent years it has generally been negligible. The St. Matthew Island golden king crab
fishery, the third commercial crab fishery to have taken place in the area, typically occurred in areas with
depths exceeding blue king crab distribution. NMFS observer data suggest that variable but mostly limited
SMBKC bycatch has also occurred in the eastern Bering Sea groundfish fisheries (Table 6).

3D. Pengilly, ADF&G, pers. comm.
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D. Data

Summary of New Information

Data used in this assessment were updated to include the most recently available fishery and survey numbers.
This assessment makes use of two new survey data points including the 2017 NMFS trawl-survey estimate of
abudance, and the 2017 ADF&G pot survey CPUE. Both of these surveys have associated size compositon
data. The assessment also uses updated 1993-2016 groundfish and fixed gear bycatch estimates based on
AKRO data. The fishery was closed in 2016/17 so no directed fishery catch data were available. The data
used in each of the new models is shown in Figure 3.

Major Data Sources

Major data sources used in this assessment include annual directed-fishery retained-catch statistics from
fish tickets (1978/79-1998/99, 2009/10-2012/13, and 2014/15-2015/16; Table 7); results from the annual
NMFS eastern Bering Sea trawl survey (1978-2017; Table 8); results from the ADF&G SMBKC pot survey
(every third year during 1995-2013, then 2015-2017; Table 9); mean somatic mass given length category by
year (Table 10); size-frequency information from ADF&G crab-observer pot-lift sampling (1990/91-1998/99,
2009/10-2012/13, and 2014/15-2016/17; Table 5); and NMFS groundfish-observer bycatch biomass estimates
(1992/93-2016/17; Table 6).

Figure 4 maps stations from which SMBKC trawl-survey and pot-survey data were obtained. Further
information concerning the NMFS trawl survey as it relates to commercial crab species is available in
Daly et al. (2014); see Gish et al. (2012) for a description of ADF&G SMBKC pot-survey methods. It
should be noted that the two surveys cover different geographic regions and that each has in some years
encountered proportionally large numbers of male blue king crab in areas not covered by the other survey
(Figure 5). Crab-observer sampling protocols are detailed in the crab-observer training manual (ADF&G
2013). Groundfish SMBKC bycatch data come from NMFS Bering Sea reporting areas 521 and 524 (Figure
6).

Other Data Sources

The growth transition matrix used is based on Otto and Cummiskey (1990), as in the past. Other relevant
data sources, including assumed population and fishery parameters, are presented in Appendix A, which also
provides a detailed description of the model configuration used for this assessment.

E. Analytic Approach

History of Modeling Approaches for this Stock

A four-stage catch-survey-analysis (CSA) assessment model was used before 2011 to estimate abundance
and biomass and prescribe fishery quotas for the SMBKC stock (Zheng et al. 1997). The four-stage CSA
is similar to a full length-based analysis, the major difference being coarser length groups, which are more
suited to a small stock with consistently low survey catches. In this approach, the abundance of male crab
with a CL ≥ 90 mm is modeled in terms of four crab stages: stage 1: 90-104 mm CL; stage 2: 105-119 mm
CL; stage 3: newshell 120-133 mm CL; and stage 4: oldshell ≥ 120 mm CL and newshell ≥ 134 mm CL.
Motivation for these stage definitions comes from the fact that for management of the SMBKC stock, male
crab measuring ≥ 105 mm CL are considered mature, whereas 120 mm CL is considered a proxy for the legal
size of 5.5in carapace width, including spines. Additional motivation for these stage definitions comes from
an estimated average growth increment of about 14 mm per molt for SMBKC (Otto and Cummiskey 1990).
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Concerns about the pre-2011 assessment model led to the CPT and SSC recommendations that included
development of an alternative model with provisional assessment based on survey biomass or some other
index of abundance. An alternative 3-stage model was proposed to the CPT in May 2011, but a survey-based
approach was requested for the Fall 2011 assessment. In May 2012 the CPT approved a slightly revised and
better documented version of the alternative model for assessment. Subsequently the model developed and
used since 2012, was a variant of the previous four-stage SMBKC CSA model and similar in complexity to
that described by Collie et al. (2005). Like the earlier model, it considered only male crab ≥ 90 mm in CL,
but combined stages 3 and 4 of the earlier model resulting in just three stages (male size classes) determined
by CL measurements of (1) 90-104 mm, (2) 105-119 mm, and (3) 120 mm+ (i.e., 120 mm and above). This
consolidation was driven by concern about the accuracy and consistency of shell-condition information, which
had been used in distinguishing stages 3 and 4 of the earlier model.

In 2016 the accepted SMBKC assessment model made use of the modeling framework Gmacs (Webber et al.
2016). In that assessment, an effort was made to match the 2015 SMBKC stock assessment model to bridge a
framework which provided greater flexibility and opportunity to evaluate model assumptions more fully.

Assessment Methodology

This assessment model again uses the modeling framework Gmacs and is detailed in Appendix A.

Model Selection and Evaluation

Five models were presented in the previous assessment. This year, four models are presented with the
reference model being the same configuration as last year, three sensitivities are considered, one with a
different treatment of NMFS bottom trawl survey (BTS) data using a geo-spatial model (VAST; Thorson
and Barnett 2017), another which weights the survey data more heavily, and a third which weights the size
composition data according to Francis’ (2011) approach. In addition to these sensitivities, we also evaluated
the impact of adding new data to the reference model. In summary, the following lists the models presented
and the naming convention used:

1. 2016 Model: the 2016 recommended model without any new data

2. BTS: adds in the 2017 bottom trawl survey (BTS) data

3. BTS and pot: as with previous but including the 2017 ADFG pot survey data (Model 16.0 or
“reference case”)

4. VAST: applies a geo-spatial delta-GLMM model (Thorson and Barnett 2017) to the BTS data which
provides a different BTS index. See appendix B for details and diagnostics. This is a preliminary exam-
ination as more work is needed to ensure options for the BTS CPUE data were specified appropriately.

5. Fit survey: an exploratory scenario that’s the same as the reference model except the NMFS trawl
survey is up-weighted by λNMFS = 1.5 and the ADF&G pot survey is up-weighted by λADFG = 2.

6. Francis weights: is similar to the reference model except that it also uses the Francis iterative
re-weighting method (Francis 2011), to re-weight the size-composition data relative to the abundance
indices. The trawl survey and pot survey weights were unchanged. In this scenario the multinomial
distribution was used instead as the theory underpinning the Francis weighting method is based on this
distribution.

Note that SSC convention would label these (item 3 above) as model 16.0 (the model used last year). Since so
few models are presented here, for simplicity model 16.0 is labeled “reference” and for the others, the naming
convention above was used to make it easier to remember the main characteristic of the model configuration.
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Results

a. Sensitivity to new data

Results for scenarios are provided with comparisons to the 2016 model and sensitivity new data are shown
in Figures 7 and 8 with recruitment and spawning biomass shown in Figures 9 and 10, respectively. The
fits to survey CPUEs and spawning biomass show that the addition of new data results in more of a decline
than in the 2016 assessment, especially with the addition of the pot survey. The model with all new data is
henceforth referred to as the “reference model.”

b. Alternative NMFS bottom-trawl survey index

Results comparing model fits between the “VAST” spatio-temporal index and the reference case show different
time-series of data and a different model fit (Figure 11). The effect on spawning biomass suggests estimates
were consistently higher since 1990 compared to the reference model (Figure 12).

c. Effective sample sizes and weighting factors

Observed and estimated effective sample sizes are compared in Table 11. Data weighting factors, standard
deviation of normalized residuals (SDNRs), and mean absolute residual (MAR) are presented in Table 17.
The SDNR for the trawl survey is acceptable at 1.45 in the reference model, and improves to 1.36 in the
Francis weight model (since size composition data are re-weighted). The SDNRs for the pot surveys show
much the same pattern between each of the scenarios, but are much higher values (ranging from 3.72 to 5.45).
These values are very high, and whilst they can be improved by down-weighting the pot survey, we chose
to retain the values as the pot survey considered important to include (down-weighting the data further
would effectively exclude the signal from this series). The MAR for the trawl and pot surveys shows the
same pattern among each of the scenarios as the SDNR. The SDNR (and MAR) values for the trawl survey
and pot survey size compositions were excellent, ranging from 0.49 to 0.78. The SDNRs for the directed pot
fishery and other size compositions were all accepatable.

d. Parameter estimates

Model parameter estimates for each of the Gmacs scenarios are summarized in Tables 12, 13, 15, and 16. These
parameter estimates are compared in Table 16. Negative log-likelihood values and management measures for
each of the model configurations are compared in Tables 4 through 18.

There are some differences in parameter estimates among models as reflected in the log-likelihood components
and the management quantities. The parameter estimates in the “fit survey” scenario differ the most, as
expected, particularly the estimate of the ADF&G pot survey catchability (q) (see Table 16).

c. Graphs of estimates.

Selectivity estimates show some variability between models (Figure 13). Estimated recruitment is variable
over time for all models and in recent years is well below average (Figure 14). Estimated mature male biomass
on 15 February also fluctuates considerably (Figure 15). Estimated natural mortality each year (Mt) is
presented in Figure 16.

d. Evaluation of the fit to the data.

The model fits to total male (≥ 90 mm CL) trawl survey biomass tend to miss the recent peak around 2010
and is slightly above the 2017 value for the key sensitivities (Figures 17). All of the models fit the pot survey
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CPUE poorly (Figure 18. For both surveys the standardized residuals tend to have similar patterns with
some improvement (generally) for the VAST model (Figures 19 and 20).

Fits to the size compositions for trawl survey, pot survey, and commercial observer data are reasonable but
miss the largest size category in some years (Figures 21, 22, and 23) for all scenarios. Representative residual
plots of the composition data fits are generally poor (Figures 24 and 25). The model fits to different types of
retained and discarded catch values performed as expected given the assumed levels of uncertainty on the
input data (Figure 26 ).

The contrast between the reference model and the “Francis weighted” model show minor differences (Figures
17 and 18). Unsurprisingly, the fit surveys model configuration fits the the NMFS survey biomass and
ADF&G pot survey CPUE data better but still has a similar residual pattern (note that that this scenario
was only included for exploratory purposes and forcing these weights resulted in worse SDNR and MAR
values for the two abundance indices).

e. Retrospective and historic analyses.

The ability to conduct retrospective analyses with this software remains under development.

f. Uncertainty and sensitivity analyses.

Estimated standard deviations of parameters and selected management measures for the four models are
summarized in Tables 12, 13, 14, and 15 (and compiled together in Table 16. Probabilities for mature male
biomass and OFL in 2017 are presented in Section F.

g. Comparison of alternative model scenarios.

The estimates of mature male biomass (Figure 15), for the fit surveys sensitivity stands out as being quite
different from the other models due to a low value for pot survey catchability being estimated (which tends
to scale the population). This scenario results in a lower MMB from the mid-1980s through to the late-1990s,
and is again lower in the most recent 5 years. This scenario upweights both the trawl survey and the pot
survey abundance indices (it upweights the pot survey more than the trawl survey) and represents a model
run that places greater trust in the abundance indices, particularly the pot survey, than other data sources.

In summary, the use of the reference model for management purposes is preferred since it provides the best fit
to the data and is consistent with previous model specifications. Research on alternative model specifications
(e.g., natural mortality variability) was limited this year. The model using the “VAST” time series may take
better account of spatial processes but requires more research to ensure it has been appropriately applied and
the assumptions are reasonable. Consequently, the reference model appears reasonable and appropriate for
ACL and OFL determinations for this stock in 2017. Nonetheless, the Fit surveys model, while difficult to
statistically justify, portends a more dire stock status (see below) and should highlight the caution needed in
managing this resource.

F. Calculation of the OFL and ABC

The overfishing level (OFL) is the fishery-related mortality biomass associated with fishing mortality FOFL.
The SMBKC stock is currently managed as Tier 4 (2013 SAFE), and only a Tier 4 analysis is presented
here. Thus given stock estimates or suitable proxy values of BMSY and FMSY , along with two additional
parameters α and β, FOFL is determined by the control rule
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FOFL =
{
FMSY , when B/BMSY > 1
FMSY

(B/BMSY−α)
(1−α) , when β < B/BMSY ≤ 1

(1)

FOFL < FMSY with directed fishery F = 0 when B/BMSY ≤ β

where B is quantified as mature-male biomass (MMB) at mating with time of mating assigned a nominal
date of 15 February. Note that as B itself is a function of the fishing mortality FOFL (therefore numerical
approximation of FOFL is required). As implemented for this assessment, all calculations proceed according to
the model equations given in Appendix A. FOFL is taken to be full-selection fishing mortality in the directed
pot fishery and groundfish trawl and fixed-gear fishing mortalities set at their model geometric mean values
over years for which there are data-based estimates of bycatch-mortality biomass.

The currently recommended Tier 4 convention is to use the full assessment period, currently 1978- 2016, to
define a BMSY proxy in terms of average estimated MMB and to set γ = 1.0 with assumed stock natural
mortality M = 0.18 yr−1 in setting the FMSY proxy value γM . The parameters α and β are assigned their
default values α = 0.10 and β = 0.25. The FOFL, OFL, ABC, and MMB in 2017 for all scenarios are
summarized in Table 4. ABC is 80% of the OFL.

Table 4: Comparisons of management measures for the four model scenarios. Biomass and OFL are in tons.
Component Reference VAST Fit surveys Francis weights
MMB2017 2179.720 3010.644 5674.035 2085.382
BMSY 3930.576 4360.343 9828.733 3861.300
FOFL 0.079 0.103 0.083 0.076
OFL2017 123.613 220.403 367.946 117.651
ABC2017 98.891 176.323 294.357 94.121

G. Rebuilding Analysis

This stock is not currently subject to a rebuilding plan.

H. Data Gaps and Research Priorities

The following topics have been listed as areas where more research on SMBKC is needed:

1. Growth increments and molting probabilities as a function of size.

2. Trawl survey catchability and selectivities.

3. Temporal changes in spatial distributions near the island.

4. Natural mortality.

I. Projections and Future Outlook

The outlook for recruitment looks relatively pessimistic. The dynamic-B0 analysis, which removes historical
fishing and projects the population based on estimated recruitments, indicates that the effect of fishing has
reduced the stock to about 68%. The other aspects of depletion (ignoring stock-recruit relationship) may
reflect variable survival rates due to environmental conditions and range shifts.
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Tables

Table 5: Observed proportion of crab by size class during the ADF&G crab observer pot-lift sampling. Source:
ADF&G Crab Observer Database.
Year Total pot lifts Pot lifts sampled Number of crab (90 mm+ CL) Stage 1 Stage 2 Stage 3
1990/91 26,264 10 150 0.113 0.393 0.493
1991/92 37,104 125 3,393 0.133 0.177 0.690
1992/93 56,630 71 1,606 0.191 0.268 0.542
1993/94 58,647 84 2,241 0.281 0.210 0.510
1994/95 60,860 203 4,735 0.294 0.271 0.434
1995/96 48,560 47 663 0.148 0.212 0.640
1996/97 91,085 96 489 0.160 0.223 0.618
1997/98 81,117 133 3,195 0.182 0.205 0.613
1998/99 91,826 135 1.322 0.193 0.216 0.591
1999/00 - 2008/09 FISHERY CLOSED
2009/10 10,484 989 19,802 0.141 0.324 0.535
2010/11 29,356 2,419 45,466 0.131 0.315 0.553
2011/12 48,554 3,359 58,666 0.131 0.305 0.564
2012/13 37,065 2,841 57,298 0.141 0.318 0.541
2013/14 FISHERY CLOSED
2014/15 10,133 895 9,906 0.094 0.228 0.679
2015/16 5,475 419 3,248 0.115 0.252 0.633
2016/17 FISHERY CLOSED

1115



Table 6: Groundfish SMBKC male bycatch biomass (t) estimates. Trawl includes pelagic trawl and non-pelagic
trawl types. Source: J. Zheng, ADF&G, and author estimates based on data from R. Foy, NMFS. Estimates
used after 2008/09 are from NMFS Alaska Regional Office.

Year Trawl bycatch Fixed gear bycatch
1978 0.000 0.000
1979 0.000 0.000
1980 0.000 0.000
1981 0.000 0.000
1982 0.000 0.000
1983 0.000 0.000
1984 0.000 0.000
1985 0.000 0.000
1986 0.000 0.000
1987 0.000 0.000
1988 0.000 0.000
1989 0.000 0.000
1990 0.000 0.000
1991 3.538 0.045
1992 1.996 2.268
1993 1.542 0.500
1994 0.318 0.091
1995 0.635 0.136
1996 0.500 0.045
1997 0.500 0.181
1998 0.500 0.907
1999 0.500 1.361
2000 0.500 0.500
2001 0.500 0.862
2002 0.726 0.408
2003 0.998 1.134
2004 0.091 0.635
2005 0.500 0.590
2006 2.812 1.451
2007 0.045 69.717
2008 0.272 6.622
2009 0.635 7.530
2010 0.363 9.571
2011 0.181 1.800
2012 0.100 1.600
2013 0.400 0.800
2014 0.100 1.100
2015 0.100 1.600
2016 0.500 3.600
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Table 7: The 1978/79 to 2015/16 directed St. Matthew Island blue king crab pot fishery. The Guideline
Harvest Level (GHL) and Total Allowable Catch (TAC) are in millions of pounds. Harvest includes deadloss.
Catch per unit effort (CPUE) in this table is simply the harvest number / pot lifts. The average weight is
the harvest weight / harvest number in pounds. The average CL is the average of retained crab in mm from
dockside sampling of delivered crab. Source: Fitch et al 2012; ADF&G Dutch Harbor staff, pers. comm.
Note that management (GHL) units are in pounds, for conserving space, convertion to tons is ommitted.

Harvest
Year Dates GHL/TAC Crab Pounds Pot lifts CPUE avg wt avg CL
1978/79 07/15 - 09/03 436,126 1,984,251 43,754 10 4.5 132.2
1979/80 07/15 - 08/24 52,966 210,819 9,877 5 4.0 128.8
1980/81 07/15 - 09/03 CONFIDENTIAL
1981/82 07/15 - 08/21 1,045,619 4,627,761 58,550 18 4.4 NA
1982/83 08/01 - 08/16 1,935,886 8,844,789 165,618 12 4.6 135.1
1983/84 08/20 - 09/06 8.0 1,931,990 9,454,323 133,944 14 4.9 137.2
1984/85 09/01 - 09/08 2.0-4.0 841,017 3,764,592 73,320 11 4.5 135.5
1985/86 09/01 - 09/06 0.9-1.9 436,021 2,175,087 46,988 9 5.0 139.0
1986/87 09/01 - 09/06 0.2-0.5 219,548 1,003,162 22,073 10 4.6 134.3
1987/88 09/01 - 09/05 0.6-1.3 227,447 1,039,779 28,230 8 4.6 134.1
1988/89 09/01 - 09/05 0.7-1.5 280,401 1,236,462 21,678 13 4.4 133.3
1989/90 09/01 - 09/04 1.7 247,641 1,166,258 30,803 8 4.7 134.6
1990/91 09/01 - 09/07 1.9 391,405 1,725,349 26,264 15 4.4 134.3
1991/92 09/16 - 09/20 3.2 726,519 3,372,066 37,104 20 4.6 134.1
1992/93 09/04 - 09/07 3.1 545,222 2,475,916 56,630 10 4.5 134.1
1993/94 09/15 - 09/21 4.4 630,353 3,003,089 58,647 11 4.8 135.4
1994/95 09/15 - 09/22 3.0 827,015 3,764,262 60,860 14 4.9 133.3
1995/96 09/15 - 09/20 2.4 666,905 3,166,093 48,560 14 4.7 135.0
1996/97 09/15 - 09/23 4.3 660,665 3,078,959 91,085 7 4.7 134.6
1997/98 09/15 - 09/22 5.0 939,822 4,649,660 81,117 12 4.9 139.5
1998/99 09/15 - 09/26 4.0 635,370 2,968,573 91,826 7 4.7 135.8
1999/00 - 2008/09 FISHERY CLOSED
2009/10 10/15 - 02/01 1.17 103,376 460,859 10,697 10 4.5 134.9
2010/11 10/15 - 02/01 1.60 298,669 1,263,982 29,344 10 4.2 129.3
2011/12 10/15 - 02/01 2.54 437,862 1,881,322 48,554 9 4.3 130.0
2012/13 10/15 - 02/01 1.63 379,386 1,616,054 37,065 10 4.3 129.8
2013/14 FISHERY CLOSED
2014/15 10/15 - 02/05 0.66 69,109 308,582 10,133 7 4.5 132.3
2015/16 10/19 - 11/28 0.41 24,076 105,010 5,475 4 4.4 132.6
2016/17 FISHERY CLOSED
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Table 8: NMFS EBS trawl-survey area-swept estimates of male crab abundance (106 crab) and male (≥ 90
mm CL) biomass (106 lbs). Total number of captured male crab ≥ 90 mm CL is also given. Source: R. Foy,
NMFS. The "+" refer to plus group.

Abundance Biomass
Stage-1 Stage-2 Stage-3 Total Number

Year (90-104 mm) (105-119 mm) (120+ mm) Total CV (90+ mm CL) CV of crabs
1978 2.213 1.991 1.521 5.726 0.411 15.064 0.394 157
1979 3.061 2.281 1.808 7.150 0.472 17.615 0.463 178
1980 2.856 2.563 2.541 7.959 0.572 22.017 0.507 185
1981 0.483 1.213 2.263 3.960 0.368 14.443 0.402 140
1982 1.669 2.431 5.884 9.984 0.401 35.763 0.344 271
1983 1.061 1.651 3.345 6.057 0.332 21.240 0.298 231
1984 0.435 0.497 1.452 2.383 0.175 8.976 0.179 105
1985 0.379 0.376 1.117 1.872 0.216 6.858 0.210 93
1986 0.203 0.447 0.374 1.025 0.428 3.124 0.388 46
1987 0.325 0.631 0.715 1.671 0.302 5.024 0.291 71
1988 0.410 0.816 0.957 2.183 0.285 6.963 0.252 81
1989 2.169 1.154 1.786 5.109 0.314 13.974 0.271 208
1990 1.053 1.031 2.338 4.422 0.302 14.837 0.274 170
1991 1.147 1.665 2.233 5.046 0.259 15.318 0.248 197
1992 1.074 1.382 2.291 4.746 0.206 15.638 0.201 220
1993 1.521 1.828 3.276 6.626 0.185 21.051 0.169 324
1994 0.883 1.298 2.257 4.438 0.187 14.416 0.176 211
1995 1.025 1.188 1.741 3.953 0.187 12.574 0.178 178
1996 1.238 1.891 3.064 6.193 0.263 20.746 0.241 285
1997 1.165 2.228 3.789 7.182 0.367 24.084 0.337 296
1998 0.660 1.661 2.849 5.170 0.373 17.586 0.355 243
1998 0.223 0.222 0.558 1.003 0.192 3.515 0.182 52
2000 0.282 0.285 0.740 1.307 0.303 4.623 0.310 61
2001 0.419 0.502 0.938 1.859 0.243 6.242 0.245 91
2002 0.111 0.230 0.640 0.981 0.311 3.820 0.320 38
2003 0.449 0.280 0.465 1.194 0.399 3.454 0.336 65
2004 0.247 0.184 0.562 0.993 0.369 3.360 0.305 48
2005 0.319 0.310 0.501 1.130 0.403 3.620 0.371 42
2006 0.917 0.642 1.240 2.798 0.339 8.585 0.334 126
2007 2.518 2.020 1.193 5.730 0.420 14.266 0.385 250
2008 1.352 0.801 1.457 3.609 0.289 10.261 0.284 167
2009 1.573 2.161 1.410 5.144 0.263 13.892 0.256 251
2010 3.937 3.253 2.458 9.648 0.544 24.539 0.466 388
2011 1.800 3.255 3.207 8.263 0.587 24.099 0.558 318
2012 0.705 1.970 1.808 4.483 0.361 13.669 0.339 193
2013 0.335 0.452 0.807 1.593 0.215 5.043 0.217 74
2014 0.723 1.627 1.809 4.160 0.503 13.292 0.449 181
2015 0.992 1.269 1.979 4.240 0.774 12.958 0.770 153
2016 0.535 0.660 1.178 2.373 0.447 7.685 0.393 108
2017 0.091 0.323 0.663 1.077 0.657 3.955 0.600 42
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Table 9: Size-class and total CPUE (90+ mm CL) with estimated CV and total number of captured crab (90+
mm CL) from the 96 common stations surveyed during the ADF&G SMBKC pot surveys. Source: ADF&G.

Stage-1 Stage-2 Stage-3
Year (90-104 mm) (105-119 mm) (120+ mm) Total CPUE CV Number of crabs
1995 1.919 3.198 6.922 12.042 0.13 4624
1998 0.964 2.763 8.804 12.531 0.06 4812
2001 1.266 1.737 5.487 8.477 0.08 3255
2004 0.112 0.414 1.141 1.667 0.15 640
2007 1.086 2.721 4.836 8.643 0.09 3319
2010 1.326 3.276 5.607 10.209 0.13 3920
2013 0.878 1.398 3.367 5.643 0.19 2167
2015 0.198 0.682 1.924 2.805 0.18 1077
2016 0.198 0.456 1.724 2.378 0.19 777
2017 0.177 0.429 1.083 1.689 0.25 643
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Table 10: Mean weight (kg) by stage in used in all of the models (provided as a vector of weights at length
each year to Gmacs).

Year Stage-1 Stage-2 Stage-3
1978 0.7 1.2 1.9
1979 0.7 1.2 1.7
1980 0.7 1.2 1.9
1981 0.7 1.2 1.9
1982 0.7 1.2 1.9
1983 0.7 1.2 2.1
1984 0.7 1.2 1.9
1985 0.7 1.2 2.1
1986 0.7 1.2 1.9
1987 0.7 1.2 1.9
1988 0.7 1.2 1.9
1989 0.7 1.2 2.0
1990 0.7 1.2 1.9
1991 0.7 1.2 2.0
1992 0.7 1.2 1.9
1993 0.7 1.2 2.0
1994 0.7 1.2 1.9
1995 0.7 1.2 2.0
1996 0.7 1.2 2.0
1997 0.7 1.2 2.1
1998 0.7 1.2 2.0
1999 0.7 1.2 1.9
2000 0.7 1.2 1.9
2001 0.7 1.2 1.9
2002 0.7 1.2 1.9
2003 0.7 1.2 1.9
2004 0.7 1.2 1.9
2005 0.7 1.2 1.9
2006 0.7 1.2 1.9
2007 0.7 1.2 1.9
2008 0.7 1.2 1.9
2009 0.7 1.2 1.9
2010 0.7 1.2 1.8
2011 0.7 1.2 1.8
2012 0.7 1.2 1.8
2013 0.7 1.2 1.9
2014 0.7 1.2 1.9
2015 0.7 1.2 1.9
2016 0.7 1.2 1.9
2017 0.7 1.2 1.9
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Table 11: Observed and input sample sizes for observer data from the directed pot fishery, the NMFS trawl
survey, and the ADF&G pot survey.

Number measured Input sample sizes
Year Observer pot NMFS trawl ADF&G pot Observer pot NMFS trawl ADF&G pot
1978 157 50
1979 178 50
1980 185 50
1981 140 50
1982 271 50
1983 231 50
1984 105 50
1985 93 46.5
1986 46 23
1987 71 35.5
1988 81 40.5
1989 208 50
1990 150 170 15 50
1991 3393 197 25 50
1992 1606 220 25 50
1993 2241 324 25 50
1994 4735 211 25 50
1995 663 178 4624 25 50 100
1996 489 285 25 50
1997 3195 296 25 50
1998 1323 243 4812 25 50 100
1999 52 26
2000 61 30.5
2001 91 3255 45.5 100
2002 38 19
2003 65 32.5
2004 48 640 24 100
2005 42 21
2006 126 50
2007 250 3319 50 100
2008 167 50
2009 19802 251 50 50
2010 45466 388 3920 50 50 100
2011 58667 318 50 50
2012 57282 193 50 50
2013 74 2167 37 100
2014 9906 181 50 50
2015 3248 153 1077 50 50 100
2016 108 777 50 100
2017 42 643 50 100
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Table 12: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the
reference model.

Parameter Estimate SD
Natural mortality deviation in 1998/99 (δM1998) 1.652 0.127
log(R̄) 14.064 0.060
log(n0

1) 14.922 0.171
log(n0

2) 14.551 0.201
log(n0

3) 14.360 0.206
qpot 3.644 0.280
log(F̄ df) -1.923 0.053
log(F̄ tb) -9.019 0.082
log(F̄ fb) -8.217 0.082
log Stage-1 directed pot selectivity 1978-2008 -0.654 0.174
log Stage-2 directed pot selectivity 1978-2008 -0.315 0.126
log Stage-1 directed pot selectivity 2009-2017 -0.463 0.154
log Stage-2 directed pot selectivity 2009-2017 -0.000 0.000
log Stage-1 NMFS trawl selectivity -0.243 0.066
log Stage-2 NMFS trawl selectivity -0.000 0.000
log Stage-1 ADF&G pot selectivity -0.852 0.127
log Stage-2 ADF&G pot selectivity -0.026 0.078
FOFL 0.079 0.010
OFL 123.610 28.638

Table 13: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the
VAST model.

Parameter Estimate SD
Natural mortality deviation in 1998/99 (δM1998) 1.710 0.108
log(R̄) 14.205 0.050
log(n0

1) 14.952 0.168
log(n0

2) 14.592 0.193
log(n0

3) 14.424 0.192
qpot 2.926 0.166
log(F̄ df) -2.037 0.042
log(F̄ tb) -9.220 0.070
log(F̄ fb) -8.419 0.070
log Stage-1 directed pot selectivity 1978-2008 -0.701 0.171
log Stage-2 directed pot selectivity 1978-2008 -0.331 0.124
log Stage-1 directed pot selectivity 2009-2017 -0.319 0.145
log Stage-2 directed pot selectivity 2009-2017 -0.000 0.000
log Stage-1 NMFS trawl selectivity -0.241 0.062
log Stage-2 NMFS trawl selectivity -0.000 0.000
log Stage-1 ADF&G pot selectivity -0.798 0.123
log Stage-2 ADF&G pot selectivity -0.000 0.000
FOFL 0.103 0.009
OFL 220.400 32.463
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Table 14: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the
"Fit survey" model.

Parameter Estimate SD
Natural mortality deviation in 1998/99 (δM1998) 2.160 0.107
log(R̄) 14.583 0.065
log(n0

1) 15.456 0.417
log(n0

2) 15.288 0.438
log(n0

3) 15.120 0.418
qpot 1.010 0.052
log(F̄ df) -2.901 0.045
log(F̄ tb) -10.043 0.071
log(F̄ fb) -9.243 0.071
log Stage-1 directed pot selectivity 1978-2008 -0.343 0.141
log Stage-2 directed pot selectivity 1978-2008 -0.082 0.119
log Stage-1 directed pot selectivity 2009-2017 -0.000 0.000
log Stage-2 directed pot selectivity 2009-2017 -0.000 0.000
log Stage-1 NMFS trawl selectivity -0.000 0.000
log Stage-2 NMFS trawl selectivity -0.000 0.000
log Stage-1 ADF&G pot selectivity -0.000 0.000
log Stage-2 ADF&G pot selectivity -0.000 0.000
FOFL 0.083 0.006
OFL 367.950 44.694

Table 15: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the
"Francis weights" model.

Parameter Estimate SD
Natural mortality deviation in 1998/99 (δM1998) 1.634 0.136
log(R̄) 14.033 0.064
log(n0

1) 14.885 0.285
log(n0

2) 14.561 0.318
log(n0

3) 14.361 0.317
qpot 3.526 0.248
log(F̄ df) -1.884 0.060
log(F̄ tb) -9.044 0.081
log(F̄ fb) -8.243 0.081
log Stage-1 directed pot selectivity 1978-2008 -0.514 0.157
log Stage-2 directed pot selectivity 1978-2008 -0.319 0.128
log Stage-1 directed pot selectivity 2009-2017 -0.420 0.141
log Stage-2 directed pot selectivity 2009-2017 -0.000 0.000
log Stage-1 NMFS trawl selectivity -0.181 0.083
log Stage-2 NMFS trawl selectivity -0.000 0.000
log Stage-1 ADF&G pot selectivity -0.799 0.092
log Stage-2 ADF&G pot selectivity -0.000 0.000
FOFL 0.076 0.010
OFL 117.650 26.963
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Table 16: Comparisons of parameter estimates for the four model scenarios.
Parameter Ref VAST FitSurvey Francis
log(F̄ df) -1.923 -2.037 -2.901 -1.884
log(F̄ fb) -8.217 -8.419 -9.243 -8.243
log(F̄ tb) -9.019 -9.220 -10.043 -9.044
log(R̄) 14.064 14.205 14.583 14.033
log(n0

1) 14.922 14.952 15.456 14.885
log(n0

2) 14.551 14.592 15.288 14.561
log(n0

3) 14.360 14.424 15.120 14.361
FOFL 0.079 0.103 0.083 0.076
qpot 0.004 0.003 0.001 0.004
log Stage-1 ADF&G pot selectivity -0.852 -0.798 -0.000 -0.799
log Stage-1 directed pot selectivity 1978-2008 -0.654 -0.701 -0.343 -0.514
log Stage-1 directed pot selectivity 2009-2017 -0.463 -0.319 -0.000 -0.420
log Stage-1 NMFS trawl selectivity -0.243 -0.241 -0.000 -0.181
log Stage-2 ADF&G pot selectivity -0.026 -0.000 -0.000 -0.000
log Stage-2 directed pot selectivity 1978-2008 -0.315 -0.331 -0.082 -0.319
log Stage-2 directed pot selectivity 2009-2017 -0.000 -0.000 -0.000 -0.000
log Stage-2 NMFS trawl selectivity -0.000 -0.000 -0.000 -0.000
Natural mortality deviation in 1998/99 (δM1998) 1.652 1.710 2.160 1.634
OFL 123.610 220.400 367.950 117.650

Table 17: Comparisons of data weights, Francis LF weights (i.e. the new weights that should be applied to
the LFs), SDNR values, and MAR values for the four model scenarios.

Component Reference VAST Fit survey Francis
NMFS trawl survey weight 1.00 1.00 1.50 1.00
ADF&G pot survey weight 1.00 1.00 2.00 1.00
Directed pot LF weight 1.00 1.00 1.95 1.61
NMFS trawl survey LF weight 1.00 1.00 0.22 0.50
ADF&G pot survey LF weight 1.00 1.00 0.10 3.72
Francis weight for directed pot LF 1.69 1.57 1.96 1.55
Francis weight for NMFS trawl survey LF 0.57 0.53 0.22 0.50
Francis weight for ADF&G pot survey LF 2.08 1.20 0.10 4.13
SDNR NMFS trawl survey 1.45 1.85 1.83 1.36
SDNR ADF&G pot survey 3.78 3.88 5.45 3.72
SDNR directed pot LF 0.71 0.78 1.39 0.91
SDNR NMFS trawl survey LF 1.23 1.28 1.06 0.94
SDNR ADF&G pot survey LF 0.80 0.92 0.96 1.01
MAR NMFS trawl survey 1.18 1.13 1.52 1.12
MAR ADF&G pot survey 2.96 2.63 4.57 2.97
MAR directed pot LF 0.59 0.66 0.66 0.76
MAR NMFS trawl survey LF 0.52 0.62 0.69 0.53
MAR ADF&G pot survey LF 0.49 0.78 0.55 0.59
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Table 18: Comparisons of negative log-likelihood values for the four model scenarios. It is important to note
that some of these models cannot be compared since the input sample size (or variances) are modified by
re-weighting (e.g., Francis model).

Component Ref VAST FitSurvey Francis
Pot Retained Catch -71.53 -71.15 -70.53 -71.50
Pot Discarded Catch 8.98 11.73 43.00 12.74
Trawl bycatch Discarded Catch -7.16 -7.16 -7.16 -7.16
Fixed bycatch Discarded Catch -7.13 -7.14 -7.15 -7.14
NMFS Trawl Survey -3.93 2.28 6.96 -8.93
ADF&G Pot Survey CPUE 57.07 62.32 130.07 54.50
Directed Pot LF -11.31 -9.15 22.78 9.96
NMFS Trawl LF 18.24 26.27 92.24 55.53
ADF&G Pot LF -7.40 -4.61 32.83 -6.46
Recruitment deviations 52.94 51.61 59.96 53.48
F penalty 14.49 14.49 14.49 14.49
M penalty 6.47 6.47 6.49 6.47
Prior 12.66 12.62 13.61 12.66
Total 62.39 88.59 337.59 118.65
Total estimated parameters 138.00 138.00 138.00 138.00
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Table 19: Population abundances (n) by crab stage in numbers of crab at the time of the survey and mature
male biomass (MMB) in tons on 15 February for the 2016 model.

Year n1 n2 n3 MMB
1978 2816497 1960202 1444270 4173
1979 4054755 2248354 2097572 6008
1980 3581771 3047062 3228875 9573
1981 1366446 3042808 4547965 10026
1982 1495157 1783152 4587146 7110
1983 767497 1439252 3248511 4291
1984 639352 912111 1887891 2987
1985 880391 664957 1390828 2716
1986 1321656 720083 1212765 2692
1987 1279302 988951 1316950 3180
1988 1176369 1053889 1528925 3471
1989 2659962 1016938 1684431 3951
1990 1669442 1847273 1965108 4964
1991 1760684 1559550 2402885 4938
1992 1877628 1515489 2346712 5093
1993 2138081 1567357 2441780 5294
1994 1523681 1732752 2499174 5062
1995 1713019 1438756 2407204 5007
1996 1594900 1448944 2338286 4834
1997 890940 1385339 2278762 4267
1998 638656 964438 1894686 2951
1999 384630 309673 705797 1668
2000 423856 320841 782180 1824
2001 387023 346925 855630 1991
2002 136630 334576 926440 2109
2003 323258 188283 955265 1997
2004 215940 245764 923187 2003
2005 507624 203958 915516 1941
2006 763229 355768 915955 2111
2007 485177 550620 1016300 2489
2008 938121 451958 1157900 2672
2009 785462 681685 1283392 2784
2010 753813 670916 1398376 2516
2011 648139 649192 1313310 2130
2012 376523 582847 1099116 1794
2013 469549 406668 913357 2067
2014 426762 401241 1012730 2079
2015 356241 375162 1028792 2119
2016 355336 326462 1061000 2244
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Table 20: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July,
season 1) and mature male biomass (MMB) in tons on 15 February for the reference model.

Year n1 n2 n3 MMB
1978 3024941 2086744 1724025 4852
1979 4239965 2408632 2414987 6724
1980 3596344 3205302 3592526 10446
1981 1349025 3103464 4932899 10813
1982 1475780 1793338 4937657 7792
1983 781016 1431623 3544534 4882
1984 666738 917278 2131823 3448
1985 933667 682228 1599710 3167
1986 1410067 756061 1401082 3088
1987 1349409 1051073 1500841 3599
1988 1231932 1114269 1720553 3889
1989 2800176 1068482 1880245 4391
1990 1751534 1943967 2168052 5444
1991 1814448 1638180 2629043 5458
1992 1939805 1572076 2580522 5597
1993 2184235 1621426 2671609 5805
1994 1553370 1776820 2722837 5530
1995 1770998 1470210 2619081 5455
1996 1600408 1492289 2536543 5262
1997 912973 1402738 2466495 4667
1998 660074 982653 2061868 3267
1999 394430 327571 798265 1861
2000 442239 332277 869216 1999
2001 405731 361052 935595 2156
2002 144740 349823 1001982 2267
2003 341000 197937 1026826 2142
2004 227177 259039 989524 2142
2005 505715 214734 978693 2071
2006 763531 358196 973818 2222
2007 521970 551619 1065877 2583
2008 935990 473156 1203369 2781
2009 760273 687508 1331849 2875
2010 729826 658570 1439363 2570
2011 600893 631520 1338699 2152
2012 345261 550063 1105742 1768
2013 442426 377975 898271 2009
2014 367920 376271 982889 1999
2015 352930 333413 985388 1999
2016 379414 310688 1003127 2122
2017 186468 318041 1029878 2180
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Table 21: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July,
season 1) and mature male biomass (MMB) in tons on 15 February for the Francis weights model.

Year n1 n2 n3 MMB
1978 2914158 2107534 1724626 4878
1979 4110549 2352595 2415404 6660
1980 3272000 3113252 3552247 10263
1981 1255767 2888789 4821836 10358
1982 1252747 1669317 4727728 7247
1983 752019 1263907 3284909 4156
1984 589896 845294 1824879 2791
1985 797309 614749 1298973 2469
1986 1195843 656276 1102745 2411
1987 1416960 896378 1180842 2818
1988 1481565 1101427 1381697 3256
1989 3404588 1206002 1614487 4029
1990 1438930 2332738 2073038 5713
1991 1815552 1589318 2715817 5567
1992 2022514 1556550 2627746 5667
1993 2472885 1663260 2710930 5929
1994 1478514 1954580 2804465 5885
1995 1775538 1486535 2770349 5768
1996 1693651 1500281 2671388 5530
1997 769965 1458341 2592267 4987
1998 664628 919851 2182322 3417
1999 413378 324515 845070 1945
2000 389302 342029 908581 2084
2001 464065 334225 968329 2187
2002 151330 374068 1021377 2331
2003 403096 209704 1055881 2209
2004 204945 298185 1025667 2254
2005 428497 215067 1026496 2161
2006 847860 314466 1006528 2234
2007 564417 585018 1079224 2646
2008 889231 508147 1235657 2881
2009 860820 672564 1371981 2929
2010 707726 710694 1475014 2687
2011 538185 636243 1393311 2249
2012 344859 516030 1147911 1801
2013 471797 366494 915902 2028
2014 369039 389149 994635 2033
2015 286665 338310 1001843 2033
2016 297822 274688 1012976 2101
2017 175628 259829 1012138 2085
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Table 22: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July,
season 1) and mature male biomass (MMB) in tons on 15 February for the model that uses the VAST BTS
index.

Year n1 n2 n3 MMB
1978 3115215 2172899 1838086 5169
1979 4165349 2488423 2562202 7061
1980 3502187 3189337 3748592 10724
1981 1366561 3044705 5046205 10957
1982 1475664 1783853 5004687 7901
1983 742837 1428422 3591786 4964
1984 631179 894542 2161933 3474
1985 858312 654510 1608409 3152
1986 1248013 704090 1386589 3002
1987 1360239 941837 1447079 3373
1988 1246057 1084264 1621642 3675
1989 2985149 1066574 1783972 4201
1990 1870987 2048386 2104422 5447
1991 1939133 1740581 2640145 5596
1992 2122333 1676762 2653809 5854
1993 2412369 1759724 2803232 6218
1994 1718543 1952155 2924306 6104
1995 1977307 1622056 2891334 6157
1996 1908447 1659726 2859846 6069
1997 1131105 1633109 2850023 5704
1998 803062 1182797 2518291 4178
1999 464910 375024 972746 2241
2000 511519 388018 1045620 2392
2001 473002 418852 1117669 2561
2002 165752 407162 1189639 2683
2003 401411 228852 1214492 2527
2004 269011 303583 1167639 2525
2005 715254 253240 1153927 2442
2006 979145 489934 1159636 2718
2007 703674 717650 1308132 3224
2008 1182362 631080 1507167 3527
2009 919542 879699 1688787 3706
2010 874752 812665 1849739 3416
2011 738581 764892 1772676 3022
2012 445923 672431 1546550 2629
2013 551092 475675 1334636 2893
2014 473134 470339 1407020 2842
2015 447580 424314 1396981 2801
2016 547678 394543 1401765 2924
2017 311774 441360 1421219 3011

1129



Table 23: Population abundances (n) by crab) stage in numbers of crab at the time of the survey (1 July,
season 1) and mature male biomass (MMB) in tons on 15 February for the fit surveys model.

Year n1 n2 n3 MMB
1978 5159537 4361084 3687283 11213
1979 6210267 4373769 5405672 13986
1980 3673747 4974775 7269812 19463
1981 1540288 3733146 8904090 18930
1982 1435675 2110417 8589692 15134
1983 924987 1513838 6744725 11444
1984 759383 1026332 4845730 8627
1985 888512 770974 3926869 8069
1986 1169500 759806 3384557 6842
1987 2073978 915706 3136254 6538
1988 3432758 1480998 3087326 6799
1989 7016427 2439826 3416727 8943
1990 2176388 4792406 4545548 13018
1991 3012152 2822327 6091388 13390
1992 3410492 2644416 6181631 13578
1993 4658345 2811786 6359402 14361
1994 3595317 3576027 6638067 14873
1995 2415186 3225465 6988280 15949
1996 3767773 2439220 7129303 15116
1997 3507563 2947152 6984231 15576
1998 2577269 2967449 6856068 11783
1999 935872 614530 1723836 3915
2000 1680050 734770 1838776 4266
2001 2898966 1197252 2066729 5214
2002 560274 2042480 2606795 7177
2003 183891 994184 3260530 7216
2004 104651 433447 3241730 6549
2005 981856 202910 2936121 5717
2006 1923313 624740 2648339 5653
2007 3575445 1298593 2709815 6506
2008 1607754 2450926 3247373 8834
2009 1497545 1723791 4100573 8829
2010 1772043 1420514 4344790 8209
2011 1093878 1475839 4248690 7957
2012 687238 1109613 4006465 7204
2013 763979 757501 3630856 7292
2014 799080 684574 3487434 6713
2015 589916 680368 3273389 6284
2016 429463 560172 3111618 6152
2017 190561 429189 2921581 5674
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Figures

Figure 1: Distribution of blue king crab (Paralithodes platypus) in the Gulf of Alaska, Bering Sea, and
Aleutian Islands waters (shown in blue).
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Figure 2: King crab Registration Area Q (Bering Sea).

Figure 3: Data extent for the SMBKC assessment (with the 2017 Pot survey included).
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Figure 4: Trawl and pot-survey stations used in the SMBKC stock assessment.
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Figure 5: Catches (in numbers) of male blue king crab measuring 90 mm CL from the 2012-2017 NMFS
trawl-survey at the 56 stations used to assess the SMBKC stock. Note that the area north of St. Matthew
Island, which often shows large catches of crab at station R-24 is not covered in the ADF&G pot-survey data
used in the assessment.
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Figure 6: NFMS Bering Sea reporting areas. Estimates of SMBKC bycatch in the groundfish fisheries are
based on NMFS observer data from reporting areas 524 and 521.
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Figure 7: Fits to NMFS area-swept trawl estimates of total (>90mm) male survey biomass with the addition
of new data. Error bars are plus and minus 2 standard deviations.

Figure 8: Comparisons of fits to CPUE from the ADF&G pot surveys with the addition of new data. Error
bars are plus and minus 2 standard deviations.
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Figure 9: Sensitivity of new data in 2017 on estimated recruitment ; 1978-2017.

Figure 10: Sensitivity of new data in 2017 on estimated mature male biomass (MMB); 1978-2017.
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Figure 11: Comparisons of fits to area-swept estimates of total (>90mm) male survey biomass (t) for the
standard design-based estimate and for estimates derived from the VAST spatio-temporal model of Thorson
and Barnett (2017). Error bars are plus and minus 2 standard deviations.
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Figure 12: Sensitivity of new data in 2017 on estimated mature male biomass (MMB); 1978-2017 comparing
the reference model with that fitted to the VAST BTS estimates.
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Figure 13: Comparisons of the estimated stage-1 and stage-2 selectivities for the different model scenarios
(the stage-3 selectivities are all fixed at 1). Estimated selectivities are shown for the directed pot fishery, the
trawl bycatch fishery, the fixed bycatch fishery, the NMFS trawl survey, and the ADF&G pot survey. Two
selectivity periods are estimated in the directed pot fishery, from 1978-2008 and 2009-2017.
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Figure 14: Estimated recruitment 1979-2017 comparing model alternatives. The solid horizontal lines in the
background represent the estimate of the average recruitment parameter (R̄) in each model scenario.
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Figure 15: Comparisons of estimated mature male biomass (MMB) time series on 15 February during
1978-2017 for each of the model scenarios.
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Figure 16: Time-varying natural mortality (Mt). Estimated pulse period occurs in 1998/99 (i.e. M1998).
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Figure 17: Comparisons of area-swept estimates of total (90+ mm CL) male survey biomass (tons) and model
predictions for the model scenarios. The error bars are plus and minus 2 standard deviations.
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Figure 18: Comparisons of total (90+ mm CL) male pot survey CPUEs and model predictions for the model
scenarios. The error bars are plus and minus 2 standard deviations.
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Figure 19: Standardized residuals for area-swept estimates of total male survey biomass for the model
scenarios.
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Figure 20: Standardized residuals for total male pot survey CPUEs for each of the Gmacs model scenarios.
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Figure 21: Observed and model estimated size-frequencies of SMBKC by year retained in the directed pot
fishery for the model scenarios.
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Figure 22: Observed and model estimated size-frequencies of discarded male SMBKC by year in the NMFS
trawl survey for the model scenarios.
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Figure 23: Observed and model estimated size-frequencies of discarded SMBKC by year in the ADF&G pot
survey for the model scenarios.
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Figure 24: Bubble plots of residuals by stage and year for the directed pot fishery size composition data for
SMBKC in the reference model.
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Figure 25: Bubble plots of residuals by stage and year for the ADF&G pot survey size composition data for
SMBKC in the fit surveys model.
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Figure 26: Comparison of observed and model predicted retained catch and bycatches in each of the Gmacs
models. Note that difference in units between each of the panels, some panels are expressed in numbers of
crab, some as biomass (tons).
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Figure 27: Comparisons of mature male biomass relative to the dynamic B0 value, (15 February, 1978-2017)
for each of the model scenarios.
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Appendix A: SMBKC Model Description

1. Introduction

The Gmacs model has been specified to account only for male crab ≥ 90 mm in carapace length (CL). These
are partitioned into three stages (size- classes) determined by CL measurements of (1) 90-104 mm, (2) 105-119
mm, and (3) 120+ mm. For management of the St. Matthew Island blue king crab (SMBKC) fishery, 120 mm
CL is used as the proxy value for the legal measurement of 5.5in carapace width (CW), whereas 105 mm CL is
the management proxy for mature-male size (5 AAC 34.917 (d)). Accordingly, within the model only stage-3
crab are retained in the directed fishery, and stage-2 and stage-3 crab together comprise the collection of
mature males. Some justification for the 105 mm value is presented in Pengilly and Schmidt (1995), who used
it in developing the current regulatory SMBKC harvest strategy. The term “recruit” here designates recruits
to the model, i.e., annual new stage-1 crab, rather than recruits to the fishery. The following description of
model structure reflects the Gmacs base model configuration.

2. Model Population Dynamics

Within the model, the beginning of the crab year is assumed contemporaneous with the NMFS trawl survey,
nominally assigned a date of 1 July. Although the timing of the fishery is different each year, MMB is
15 February, which is the reference date for calculation of federal management biomass quantities. To
accommodate this, each model year is split into 5 seasons (t) and a proportion of the natural mortality (τt),
scaled relative to the portions of the year, is applied in each of these seasons where

∑t=5
t=1 τt = 1. Each model

year consists of the following processes with time-breaks denoted here by “Seasons.” However, it is important
to note that actual seasons are survey-to-fishery, fishery-to Feb 15, and Feb 15 to July 1. The following
breakdown accounts for events and fishing mortality treatments:

1. Season 1 (survey period)

• Beginning of the SMBKC fishing year (1 July)
• τ1 = 0
• Surveys

2. Season 2 (natural mortality until pulse fishery)

• τ2 ranges from 0.05 to 0.44 depending on the time of year the fishery begins each year (i.e., a
higher value indicates the fishery begins later in the year; see Table 7)

3. Season 3 (pulse fishery)

• τ3 = 0
• fishing mortality applied

4. Season 4 (natural mortality until spawning)

• τ4 = 0.63−
∑i=4
i=1 τi

• Calculate MMB (15 February)

5. Season 5 (natural mortality and somatic growth through to June 30th)

• τ5 = 0.37
• Growth and molting
• Recruitment (all to stage-1)

1155



The proportion of natural mortality (τt) applied during each season in the model is provided in Table 24.
The beginning of the year (1 July) to the date that MMB is measured (15 February) is 63% of the year.
Therefore 63% of the natural mortality must be applied before the MMB is calculated. Because the timing of
the fishery is different each year, τ2 varies and thus τ4 varies also.

With boldface lower-case letters indicating vector quantities we designate the vector of stage abundances
during season t and year y as

nt,y = nl,t,y = [n1,t,y, n2,t,y, n3,t,y]> . (2)

The number of new crab, or recruits, of each stage entering the model each season t and year y is represented
as the vector rt,y. The SMBKC formulation of Gmacs specifies recruitment to stage-1 only during season
t = 5, thus the recruitment size distribution is

φl = [1, 0, 0]> , (3)

and the recruitment is

rt,y =
{

0 for t < 5
R̄φlδ

R
y for t = 5.

(4)

where R̄ is the average annual recruitment and δRy are the recruitment deviations each year y

δRy ∼ N
(
0, σ2

R

)
. (5)

Using boldface upper-case letters to indicate a matrix, we describe the size transition matrix G as

G =

 1− π12 − π13 π12 π13
0 1− π23 π23
0 0 1

 , (6)

with πjk equal to the proportion of stage-j crab that molt and grow into stage-k within a season or year.

The natural mortality each season t and year y is

Mt,y = M̄τt + δMy where δMy ∼ N
(
0, σ2

M

)
(7)

Fishing mortality by year y and season t is denoted Ft,y and calculated as

Ft,y = F df
t,y + F tb

t,y + F fb
t,y (8)

where F df
t,y is the fishing mortality associated with the directed fishery, F tb

t,y is the fishing mortality associated
with the trawl bycatch fishery, F fb

t,y is the fishing mortality associated with the fixed bycatch fishery. Each of
these are derived as

F df
t,y = F̄ df + δdf

t,y where δdf
t,y ∼ N

(
0, σ2

df
)
,

F tb
t,y = F̄ tb + δtb

t,y where δdf
t,y ∼ N

(
0, σ2

tb
)
,

F fb
t,y = F̄ fb + δfb

t,y where δdf
t,y ∼ N

(
0, σ2

fb
)
, (9)
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where δdf
t,y, δtb

t,y, and δfb
t,y are the fishing mortality deviations for each of the fisheries, each season t during

each year y, F̄ df, F̄ tb, and F̄ fb are the average fishing mortalities for each fishery. The total mortality Zl,t,y
represents the combination of natural mortality Mt,y and fishing mortality Ft,y during season t and year y

Zt,y = Zl,t,y = Mt,y + Ft,y. (10)

The survival matrix St,y during season t and year y is

St,y =

 1− e−Z1,t,y 0 0
0 1− e−Z2,t,y 0
0 0 1− e−Z3,t,y

 . (11)

The basic population dynamics underlying Gmacs can thus be described as

nt+1,y = St,ynt,y, if t < 5
nt,y+1 = GSt,ynt,y + rt,y if t = 5. (12)

3. Model Data

Data inputs used in model estimation are listed in Table 25.

4. Model Parameters

Table 26 lists fixed (externally determined) parameters used in model computations. In all scenarios, the
stage-transition matrix is

G =

 0.2 0.7 0.1
0 0.4 0.6
0 0 1

 (13)

which is the combination of the growth matrix and molting probabilities.

Estimated parameters are listed in Table 27 and include an estimated natural mortality deviation parameter
in 1998/99 (δM1998) assuming an anomalous mortality event in that year, as hypothesized by Zheng and Kruse
(2002), with natural mortality otherwise fixed at 0.18 yr−1.

5. Model Objective Function and Weighting Scheme

The objective function consists of the sum of several “negative log-likelihood” terms characterizing the
hypothesized error structure of the principal data inputs (Table 18). A lognormal distribution is assumed to
characterize the catch data and is modelled as

σcatch
t,y =

√
log
(

1 +
(

CV catch
t,y

)2
)

(14)

δcatch
t,y = N

(
0,
(
σcatch
t,y

)2) (15)

where δcatch
t,y is the residual catch. The relative abudance data is also assumed to be lognormally distributed
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σI
t,y = 1

λ

√
log
(

1 +
(

CV I
t,y

)2
)

(16)

δI
t,y = log

(
Iobs/Ipred) /σI

t,y + 0.5σI
t,y (17)

and the likelihood is

∑
log
(
δI
t,y

)
+
∑

0.5
(
σI
t,y

)2 (18)

Gmacs calculates standard deviation of the normalised residual (SDNR) values and median of the absolute
residual (MAR) values for all abundance indices and size compositions to help the user come up with resonable
likelihood weights. For an abundance data set to be well fitted, the SDNR should not be much greater than 1
(a value much less than 1, which means that the data set is fitted better than was expected, is not a cause for
concern). What is meant by “much greater than 1” depends on m (the number of years in the data set).
Francis (2011) suggests upper limits of 1.54, 1.37, and 1.26 for m = 5, 10, and 20, respectively. Although an
SDNR not much greater than 1 is a necessary condition for a good fit, it is not sufficient. It is important to
plot the observed and expected abundances to ensure that the fit is good.

Gmacs also calculates Francis weights for each of the size composition data sets supplied (Francis 2011). If
the user wishes to use the Francis iterative re-weighting method, first the weights applied to the abundance
indices should be adjusted by trial and error until the SDNR (and/or MAR) are adequte. Then the Francis
weights supplied by Gmacs should be used as the new likelihood weights for each of the size composition
data sets the next time the model is run. The user can then iteratively adjust the abudance index and size
composition weights until adequate SDNR (and/or MAR) values are achieved, given the Francis weights.

6. Estimation

The model was implemented using the software AD Model Builder (Fournier et al. 2012), with parameter
estimation by minimization of the model objective function using automatic differentiation. Parameter
estimates and standard deviations provided in this document are AD Model Builder reported values assuming
maximum likelihood theory asymptotics.
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Table 24: Proportion of the natural mortality (τt) that is applied during each season (t) in the model.
Year Season 1 Season 2 Season 3 Season 4 Season 5
1978 0.00 0.07 0.00 0.56 0.37
1979 0.00 0.06 0.00 0.57 0.37
1980 0.00 0.07 0.00 0.56 0.37
1981 0.00 0.05 0.00 0.58 0.37
1982 0.00 0.07 0.00 0.56 0.37
1983 0.00 0.12 0.00 0.51 0.37
1984 0.00 0.10 0.00 0.53 0.37
1985 0.00 0.14 0.00 0.49 0.37
1986 0.00 0.14 0.00 0.49 0.37
1987 0.00 0.14 0.00 0.49 0.37
1988 0.00 0.14 0.00 0.49 0.37
1989 0.00 0.14 0.00 0.49 0.37
1990 0.00 0.14 0.00 0.49 0.37
1991 0.00 0.18 0.00 0.45 0.37
1992 0.00 0.14 0.00 0.49 0.37
1993 0.00 0.18 0.00 0.45 0.37
1994 0.00 0.18 0.00 0.45 0.37
1995 0.00 0.18 0.00 0.45 0.37
1996 0.00 0.18 0.00 0.45 0.37
1997 0.00 0.18 0.00 0.45 0.37
1998 0.00 0.18 0.00 0.45 0.37
1999 0.00 0.18 0.00 0.45 0.37
2000 0.00 0.18 0.00 0.45 0.37
2001 0.00 0.18 0.00 0.45 0.37
2002 0.00 0.18 0.00 0.45 0.37
2003 0.00 0.18 0.00 0.45 0.37
2004 0.00 0.18 0.00 0.45 0.37
2005 0.00 0.18 0.00 0.45 0.37
2006 0.00 0.18 0.00 0.45 0.37
2007 0.00 0.18 0.00 0.45 0.37
2008 0.00 0.18 0.00 0.45 0.37
2009 0.00 0.44 0.00 0.19 0.37
2010 0.00 0.44 0.00 0.19 0.37
2011 0.00 0.44 0.00 0.19 0.37
2012 0.00 0.44 0.00 0.19 0.37
2013 0.00 0.44 0.00 0.19 0.37
2014 0.00 0.44 0.00 0.19 0.37
2015 0.00 0.44 0.00 0.19 0.37
2016 0.00 0.44 0.00 0.19 0.37
2017 0.00 0.44 0.00 0.19 0.37
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Table 25: Data inputs used in model estimation.
Data Years Source
Directed pot-fishery retained-catch number 1978/79 - 1998/99 Fish tickets
(not biomass) 2009/10 - 2015/16 (fishery closed 1999/00 - 2008/09 and 2016/17)
Groundfish trawl bycatch biomass 1992/93 - 2016/17 NMFS groundfish observer program
Groundfish fixed-gear bycatch biomass 1992/93 - 2016/17 NMFS groundfish observer program
NMFS trawl-survey biomass index
(area-swept estimate) and CV 1978-2017 NMFS EBS trawl survey
ADF&G pot-survey abundance index
(CPUE) and CV 1995-2017 ADF&G SMBKC pot survey
NMFS trawl-survey stage proportions
and total number of measured crab 1978-2017 NMFS EBS trawl survey
ADF&G pot-survey stage proportions
and total number of measured crab 1995-2017 ADF&G SMBKC pot survey
Directed pot-fishery stage proportions 1990/91 - 1998/99 ADF&G crab observer program
and total number of measured crab 2009/10 - 2015/16 (fishery closed 1999/00 - 2008/09 and 2016/17)

Table 26: Fixed model parameters for all scenarios.
Parameter Symbol Value Source/rationale
Trawl-survey catchability q 1.0 Default
Natural mortality M 0.18 yr−1 NPFMC (2007)
Size transition matrix G Equation 13 Otto and Cummiskey (1990)
Stage-1 and stage-2 w1, w2 0.7, 1.2 kg Length-weight equation (B. Foy, NMFS)
mean weights applied to stage midpoints
Stage-3 mean weight w3,y Depends on year Fishery reported average retained weight

Table 10 from fish tickets, or its average, and
mean weights of legal males

Recruitment SD σR 1.2 High value
Natural mortality SD σM 10.0 High value (basically free parameter)
Directed fishery 0.2 2010 Crab SAFE
handling mortality
Groundfish trawl 0.8 2010 Crab SAFE
handling mortality
Groundfish fixed-gear 0.5 2010 Crab SAFE
handling mortality
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Table 27: The lower bound (LB), upper bound (UB), initial value, prior, and estimation phase for each
estimated model parameter.

Parameter LB Initial value UB Prior Phase
Average recruitment log(R̄) -7 10.0 20 Uniform(-7,20) 1
Stage-1 initial numbers log(n0

1) 5 14.5 20 Uniform(5,20) 1
Stage-2 initial numbers log(n0

2) 5 14.0 20 Uniform(5,20) 1
Stage-3 initial numbers log(n0

3) 5 13.5 20 Uniform(5,20) 1
ADF&G pot survey catchability q 0 4.0 5 Uniform(0,5) 1
Stage-1 directed fishery selectivity 1978-2008 0 0.4 1 Uniform(0,1) 3
Stage-2 directed fishery selectivity 1978-2008 0 0.7 1 Uniform(0,1) 3
Stage-1 directed fishery selectivity 2009-2017 0 0.4 1 Uniform(0,1) 3
Stage-2 directed fishery selectivity 2009-2017 0 0.7 1 Uniform(0,1) 3
Stage-1 NMFS trawl survey selectivity 0 0.4 1 Uniform(0,1) 4
Stage-2 NMFS trawl survey selectivity 0 0.7 1 Uniform(0,1) 4
Stage-1 ADF&G pot survey selectivity 0 0.4 1 Uniform(0,1) 4
Stage-2 ADF&G pot survey selectivity 0 0.7 1 Uniform(0,1) 4
Natural mortality deviation during 1998 δM1998 -3 0.0 3 Normal(0, σ2

M ) 4
Recruitment deviations δRy -7 0.0 7 Normal(0, σ2

R) 3
Average directed fishery fishing mortality F̄ df - 0.2 - - 1
Average trawl bycatch fishing mortality F̄ tb - 0.001 - - 1
Average fixed gear bycatch fishing mortality F̄ fb - 0.001 - - 1
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Appendix B: SMBKC Stock Assessment Input Files

The data file used for the reference model (16.0) control file:

#========================================================================================================
# Gmacs Main Data File Version 1.1: SM17 example
# GEAR_INDEX DESCRIPTION
# 1 : Pot fishery retained catch.
# 1 : Pot fishery with discarded catch.
# 2 : Trawl bycatch
# 3 : Fixed bycatch
# 4 : Trawl survey
# 5 : Pot survey

# Fisheries: 1 Pot Fishery, 2 Pot Discard, 3 Trawl by-catch, 3 Fixed by-catch
# Surveys: 4 NMFS Trawl Survey, 5 Pot Survey
#========================================================================================================

1978 # Start year
2017 # End year
2018 # Projection year
5 # Number of seasons
5 # Number of distinct data groups (among fishing fleets and surveys)
1 # Number of sexes
1 # Number of shell condition types
1 # Number of maturity types
3 # Number of size-classes in the model
5 # Season recruitment occurs
5 # Season molting and growth occurs
4 # Season to calculate SSB
1 # Season for N output
# size_breaks (a vector giving the break points between size intervals with dimension nclass+1)
90 105 120 135
# weight-at-length input method (1 = allometry i.e. w_l = a*l^b, 2 = vector by sex, 3 = matrix by sex)
3
# weight-at-length allometry w_l = a*l^b
4.03E-07
# b (male, female)
3.141334
# Male weight-at-length
0.000748427 0.001165731 0.001930510
0.000748427 0.001165731 0.001688886
0.000748427 0.001165731 0.001922246
0.000748427 0.001165731 0.001877957
0.000748427 0.001165731 0.001938634
0.000748427 0.001165731 0.002076413
0.000748427 0.001165731 0.001899330
0.000748427 0.001165731 0.002116687
0.000748427 0.001165731 0.001938784
0.000748427 0.001165731 0.001939764
0.000748427 0.001165731 0.001871067
0.000748427 0.001165731 0.001998295
0.000748427 0.001165731 0.001870418
0.000748427 0.001165731 0.001969415
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0.000748427 0.001165731 0.001926859
0.000748427 0.001165731 0.002021492
0.000748427 0.001165731 0.001931318
0.000748427 0.001165731 0.002014407
0.000748427 0.001165731 0.001977471
0.000748427 0.001165731 0.002099246
0.000748427 0.001165731 0.001982478
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001891628
0.000748427 0.001165731 0.001795721
0.000748427 0.001165731 0.001823113
0.000748427 0.001165731 0.001807433
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001894627
0.000748427 0.001165731 0.001850611
0.000748427 0.001165731 0.001930932
0.000748427 0.001165731 0.001930932
# Male mature weight-at-length (weight * proportion mature)
0 0.001165732 0.001945911
# Proportion mature by sex
0 1 1
# Natural mortality per season input type (1 = vector by season, 2 = matrix by season/year)
2
# Proportion of the total natural mortality to be applied each season (each row must add to 1)
#0 0.0025 0 0.6245 0.373

0.0000 0.0700 0.0000 0.5600 0.3700
0.0000 0.0600 0.0000 0.5700 0.3700
0.0000 0.0700 0.0000 0.5600 0.3700
0.0000 0.0500 0.0000 0.5800 0.3700
0.0000 0.0700 0.0000 0.5600 0.3700
0.0000 0.1200 0.0000 0.5100 0.3700
0.0000 0.1000 0.0000 0.5300 0.3700
0.0000 0.1400 0.0000 0.4900 0.3700
0.0000 0.1400 0.0000 0.4900 0.3700
0.0000 0.1400 0.0000 0.4900 0.3700
0.0000 0.1400 0.0000 0.4900 0.3700
0.0000 0.1400 0.0000 0.4900 0.3700
0.0000 0.1400 0.0000 0.4900 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1400 0.0000 0.4900 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
0.0000 0.1800 0.0000 0.4500 0.3700
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0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700
0.0000 0.4400 0.0000 0.1900 0.3700

# Fishing fleet names (delimited with : no spaces in names)
Pot_Fishery:Trawl_Bycatch:Fixed_bycatch
# Survey names (delimited with : no spaces in names)
NMFS_Trawl:ADFG_Pot
# Number of catch data frames
4
# Number of rows in each data frame
28 16 26 26
## CATCH DATA
## Type of catch: 1 = retained, 2 = discard
## Units of catch: 1 = biomass, 2 = numbers
## for SMBKC Units are in number of crab for landed & 1000 kg for discards.
## Male Retained
# year seas fleet sex obs cv type units mult effort discard_mortality
1978 2 1 1 436126 0.03 1 2 1 0 0
1979 2 1 1 52966 0.03 1 2 1 0 0
1980 2 1 1 33162 0.03 1 2 1 0 0
1981 2 1 1 1045619 0.03 1 2 1 0 0
1982 2 1 1 1935886 0.03 1 2 1 0 0
1983 2 1 1 1931990 0.03 1 2 1 0 0
1984 2 1 1 841017 0.03 1 2 1 0 0
1985 2 1 1 436021 0.03 1 2 1 0 0
1986 2 1 1 219548 0.03 1 2 1 0 0
1987 2 1 1 227447 0.03 1 2 1 0 0
1988 2 1 1 280401 0.03 1 2 1 0 0
1989 2 1 1 247641 0.03 1 2 1 0 0
1990 2 1 1 391405 0.03 1 2 1 0 0
1991 2 1 1 726519 0.03 1 2 1 0 0
1992 2 1 1 545222 0.03 1 2 1 0 0
1993 2 1 1 630353 0.03 1 2 1 0 0
1994 2 1 1 827015 0.03 1 2 1 0 0
1995 2 1 1 666905 0.03 1 2 1 0 0
1996 2 1 1 660665 0.03 1 2 1 0 0
1997 2 1 1 939822 0.03 1 2 1 0 0
1998 2 1 1 635370 0.03 1 2 1 0 0
2009 2 1 1 103376 0.03 1 2 1 0 0
2010 2 1 1 298669 0.03 1 2 1 0 0
2011 2 1 1 437862 0.03 1 2 1 0 0
2012 2 1 1 379386 0.03 1 2 1 0 0
2014 2 1 1 69109 0.03 1 2 1 0 0
2015 2 1 1 24407 0.03 1 2 1 0 0
2016 2 1 1 24.407 0.03 1 2 1 0 0
# Male discards Pot fishery
1990 2 1 1 254.9787861 0.6 2 1 1 0 0.2
1991 2 1 1 531.4483252 0.6 2 1 1 0 0.2
1992 2 1 1 1050.387026 0.6 2 1 1 0 0.2
1993 2 1 1 951.4626128 0.6 2 1 1 0 0.2
1994 2 1 1 1210.764588 0.6 2 1 1 0 0.2
1995 2 1 1 363.112032 0.6 2 1 1 0 0.2
1996 2 1 1 528.5244687 0.6 2 1 1 0 0.2
1997 2 1 1 1382.825328 0.6 2 1 1 0 0.2
1998 2 1 1 781.1032977 0.6 2 1 1 0 0.2
2009 2 1 1 123.3712279 0.2 2 1 1 0 0.2
2010 2 1 1 304.6562225 0.2 2 1 1 0 0.2
2011 2 1 1 481.3572126 0.2 2 1 1 0 0.2
2012 2 1 1 437.3360731 0.2 2 1 1 0 0.2
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2014 2 1 1 45.4839749 0.2 2 1 1 0 0.2
2015 2 1 1 21.19378597 0.2 2 1 1 0 0.2
2016 2 1 1 0.021193786 0.2 2 1 1 0 0.2
# Trawl fishery discards
1991 2 2 1 3.538 0.31 2 1 1 0 0.8
1992 2 2 1 1.996 0.31 2 1 1 0 0.8
1993 2 2 1 1.542 0.31 2 1 1 0 0.8
1994 2 2 1 0.318 0.31 2 1 1 0 0.8
1995 2 2 1 0.635 0.31 2 1 1 0 0.8
1996 2 2 1 0.500 0.31 2 1 1 0 0.8
1997 2 2 1 0.500 0.31 2 1 1 0 0.8
1998 2 2 1 0.500 0.31 2 1 1 0 0.8
1999 2 2 1 0.500 0.31 2 1 1 0 0.8
2000 2 2 1 0.500 0.31 2 1 1 0 0.8
2001 2 2 1 0.500 0.31 2 1 1 0 0.8
2002 2 2 1 0.726 0.31 2 1 1 0 0.8
2003 2 2 1 0.998 0.31 2 1 1 0 0.8
2004 2 2 1 0.091 0.31 2 1 1 0 0.8
2005 2 2 1 0.500 0.31 2 1 1 0 0.8
2006 2 2 1 2.812 0.31 2 1 1 0 0.8
2007 2 2 1 0.045 0.31 2 1 1 0 0.8
2008 2 2 1 0.272 0.31 2 1 1 0 0.8
2009 2 2 1 0.635 0.31 2 1 1 0 0.8
2010 2 2 1 0.363 0.31 2 1 1 0 0.8
2011 2 2 1 0.181 0.31 2 1 1 0 0.8
2012 2 2 1 0.100 0.31 2 1 1 0 0.8
2013 2 2 1 0.400 0.31 2 1 1 0 0.8
2014 2 2 1 0.100 0.31 2 1 1 0 0.8
2015 2 2 1 0.100 0.31 2 1 1 0 0.8
2016 2 2 1 0.500 0.31 2 1 1 0 0.8
# Fixed fishery discards
1991 2 3 1 0.045 0.31 2 1 1 0 0.5
1992 2 3 1 2.268 0.31 2 1 1 0 0.5
1993 2 3 1 0.500 0.31 2 1 1 0 0.5
1994 2 3 1 0.091 0.31 2 1 1 0 0.5
1995 2 3 1 0.136 0.31 2 1 1 0 0.5
1996 2 3 1 0.045 0.31 2 1 1 0 0.5
1997 2 3 1 0.181 0.31 2 1 1 0 0.5
1998 2 3 1 0.907 0.31 2 1 1 0 0.5
1999 2 3 1 1.361 0.31 2 1 1 0 0.5
2000 2 3 1 0.500 0.31 2 1 1 0 0.5
2001 2 3 1 0.862 0.31 2 1 1 0 0.5
2002 2 3 1 0.408 0.31 2 1 1 0 0.5
2003 2 3 1 1.134 0.31 2 1 1 0 0.5
2004 2 3 1 0.635 0.31 2 1 1 0 0.5
2005 2 3 1 0.590 0.31 2 1 1 0 0.5
2006 2 3 1 1.451 0.31 2 1 1 0 0.5
2007 2 3 1 69.717 0.31 2 1 1 0 0.5
2008 2 3 1 6.622 0.31 2 1 1 0 0.5
2009 2 3 1 7.530 0.31 2 1 1 0 0.5
2010 2 3 1 9.571 0.31 2 1 1 0 0.5
2011 2 3 1 1.800 0.31 2 1 1 0 0.5
2012 2 3 1 1.600 0.31 2 1 1 0 0.5
2013 2 3 1 0.8 0.31 2 1 1 0 0.5
2014 2 3 1 1.1 0.31 2 1 1 0 0.5
2015 2 3 1 1.600 0.31 2 1 1 0 0.5
2016 2 3 1 3.600 0.31 2 1 1 0 0.5
## RELATIVE ABUNDANCE DATA
## Units of abundance: 1 = biomass, 2 = numbers
## for SMBKC Units are in crabs for Abundance.
## Number of relative abundance indicies
2
## Number of rows in each index
40 9
# Survey data (abundance indices, units are mt for trawl survey and crab/potlift for pot survey)
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# Year, Seas, Fleet, Sex, Abundance, CV units
1978 1 4 1 6832.819 0.394 1
1979 1 4 1 7989.881 0.463 1
1980 1 4 1 9986.830 0.507 1
1981 1 4 1 6551.132 0.402 1
1982 1 4 1 16221.933 0.344 1
1983 1 4 1 9634.250 0.298 1
1984 1 4 1 4071.218 0.179 1
1985 1 4 1 3110.541 0.210 1
1986 1 4 1 1416.849 0.388 1
1987 1 4 1 2278.917 0.291 1
1988 1 4 1 3158.169 0.252 1
1989 1 4 1 6338.622 0.271 1
1990 1 4 1 6730.130 0.274 1
1991 1 4 1 6948.184 0.248 1
1992 1 4 1 7093.272 0.201 1
1993 1 4 1 9548.459 0.169 1
1994 1 4 1 6539.133 0.176 1
1995 1 4 1 5703.591 0.178 1
1996 1 4 1 9410.403 0.241 1
1997 1 4 1 10924.107 0.337 1
1998 1 4 1 7976.839 0.355 1
1999 1 4 1 1594.546 0.182 1
2000 1 4 1 2096.795 0.310 1
2001 1 4 1 2831.440 0.245 1
2002 1 4 1 1732.599 0.320 1
2003 1 4 1 1566.675 0.336 1
2004 1 4 1 1523.869 0.305 1
2005 1 4 1 1642.017 0.371 1
2006 1 4 1 3893.875 0.334 1
2007 1 4 1 6470.773 0.385 1
2008 1 4 1 4654.473 0.284 1
2009 1 4 1 6301.470 0.256 1
2010 1 4 1 11130.898 0.466 1
2011 1 4 1 10931.232 0.558 1
2012 1 4 1 6200.219 0.339 1
2013 1 4 1 2287.557 0.217 1
2014 1 4 1 6029.220 0.449 1
2015 1 4 1 5877.433 0.770 1
2016 1 4 1 3485.909 0.393 1
2017 1 4 1 1793.760 0.599 1
1995 1 5 1 12042.000 0.130 2
1998 1 5 1 12531.000 0.060 2
2001 1 5 1 8477.000 0.080 2
2004 1 5 1 1667.000 0.150 2
2007 1 5 1 8643.000 0.090 2
2010 1 5 1 10209.000 0.130 2
2013 1 5 1 5643.000 0.190 2
2015 1 5 1 2805.000 0.180 2
2016 1 5 1 2378.000 0.186 2
## Number of length frequency matrices
3
## Number of rows in each matrix
15 40 9
## Number of bins in each matrix (columns of size data)
3 3 3
## SIZE COMPOSITION DATA FOR ALL FLEETS
## SIZE COMP LEGEND
## Sex: 1 = male, 2 = female, 0 = both sexes combined
## Type of composition: 1 = retained, 2 = discard, 0 = total composition
## Maturity state: 1 = immature, 2 = mature, 0 = both states combined
## Shell condition: 1 = new shell, 2 = old shell, 0 = both shell types combined
##length proportions of pot discarded males
##Year, Seas, Fleet, Sex, Type, Shell, Maturity, Nsamp, DataVec
1990 2 1 1 0 0 0 15 0.1133 0.3933 0.4933
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1991 2 1 1 0 0 0 25 0.1329 0.1768 0.6902
1992 2 1 1 0 0 0 25 0.1905 0.2677 0.5417
1993 2 1 1 0 0 0 25 0.2807 0.2097 0.5096
1994 2 1 1 0 0 0 25 0.2942 0.2714 0.4344
1995 2 1 1 0 0 0 25 0.1478 0.2127 0.6395
1996 2 1 1 0 0 0 25 0.1595 0.2229 0.6176
1997 2 1 1 0 0 0 25 0.1818 0.2053 0.6128
1998 2 1 1 0 0 0 25 0.1927 0.2162 0.5911
2009 2 1 1 0 0 0 50 0.1413 0.3235 0.5352
2010 2 1 1 0 0 0 50 0.1314 0.3152 0.5534
2011 2 1 1 0 0 0 50 0.1314 0.3051 0.5636
2012 2 1 1 0 0 0 50 0.1417 0.3178 0.5406
2014 2 1 1 0 0 0 50 0.0939 0.2275 0.6786
2015 2 1 1 0 0 0 50 0.1148 0.2518 0.6333

##length proportions of trawl survey males
##Year, Seas, Fleet, Sex, Type, Shell, Maturity, Nsamp, DataVec
1978 1 4 1 0 0 0 50 0.3865 0.3478 0.2657
1979 1 4 1 0 0 0 50 0.4281 0.3190 0.2529
1980 1 4 1 0 0 0 50 0.3588 0.3220 0.3192
1981 1 4 1 0 0 0 50 0.1219 0.3065 0.5716
1982 1 4 1 0 0 0 50 0.1671 0.2435 0.5893
1983 1 4 1 0 0 0 50 0.1752 0.2726 0.5522
1984 1 4 1 0 0 0 50 0.1823 0.2085 0.6092
1985 1 4 1 0 0 0 46.5 0.2023 0.2010 0.5967
1986 1 4 1 0 0 0 23 0.1984 0.4364 0.3652
1987 1 4 1 0 0 0 35.5 0.1944 0.3779 0.4277
1988 1 4 1 0 0 0 40.5 0.1879 0.3737 0.4384
1989 1 4 1 0 0 0 50 0.4246 0.2259 0.3496
1990 1 4 1 0 0 0 50 0.2380 0.2332 0.5288
1991 1 4 1 0 0 0 50 0.2274 0.3300 0.4426
1992 1 4 1 0 0 0 50 0.2263 0.2911 0.4826
1993 1 4 1 0 0 0 50 0.2296 0.2759 0.4945
1994 1 4 1 0 0 0 50 0.1989 0.2926 0.5085
1995 1 4 1 0 0 0 50 0.2593 0.3005 0.4403
1996 1 4 1 0 0 0 50 0.1998 0.3054 0.4948
1997 1 4 1 0 0 0 50 0.1622 0.3102 0.5275
1998 1 4 1 0 0 0 50 0.1276 0.3212 0.5511
1999 1 4 1 0 0 0 26 0.2224 0.2214 0.5562
2000 1 4 1 0 0 0 30.5 0.2154 0.2180 0.5665
2001 1 4 1 0 0 0 45.5 0.2253 0.2699 0.5048
2002 1 4 1 0 0 0 19 0.1127 0.2346 0.6527
2003 1 4 1 0 0 0 32.5 0.3762 0.2345 0.3893
2004 1 4 1 0 0 0 24 0.2488 0.1848 0.5663
2005 1 4 1 0 0 0 21 0.2825 0.2744 0.4431
2006 1 4 1 0 0 0 50 0.3276 0.2293 0.4431
2007 1 4 1 0 0 0 50 0.4394 0.3525 0.2081
2008 1 4 1 0 0 0 50 0.3745 0.2219 0.4036
2009 1 4 1 0 0 0 50 0.3057 0.4202 0.2741
2010 1 4 1 0 0 0 50 0.4081 0.3371 0.2548
2011 1 4 1 0 0 0 50 0.2179 0.3940 0.3881
2012 1 4 1 0 0 0 50 0.1573 0.4393 0.4034
2013 1 4 1 0 0 0 37 0.2100 0.2834 0.5065
2014 1 4 1 0 0 0 50 0.1738 0.3912 0.4350
2015 1 4 1 0 0 0 50 0.2340 0.2994 0.4666
2016 1 4 1 0 0 0 50 0.2255 0.2780 0.4965
2017 1 4 1 0 0 0 50 0.0849 0.2994 0.6157
##length proportions of pot survey
##Year, Seas, Fleet, Sex, Type, Shell, Maturity, Nsamp, DataVec
1995 1 5 1 0 0 0 100 0.1594 0.2656 0.5751
1998 1 5 1 0 0 0 100 0.0769 0.2205 0.7026
2001 1 5 1 0 0 0 100 0.1493 0.2049 0.6457
2004 1 5 1 0 0 0 100 0.0672 0.2484 0.6845
2007 1 5 1 0 0 0 100 0.1257 0.3148 0.5595
2010 1 5 1 0 0 0 100 0.1299 0.3209 0.5492
2013 1 5 1 0 0 0 100 0.1556 0.2477 0.5967
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2015 1 5 1 0 0 0 100 0.0706 0.2431 0.6859
2016 1 5 1 0 0 0 100 0.0832 0.1917 0.7251

## Growth data (increment)
# nobs_growth
3
# MidPoint Sex Increment CV
97.5 1 14.1 0.2197
112.5 1 14.1 0.2197
127.5 1 14.1 0.2197
# 97.5 1 13.8 0.2197
# 112.5 1 14.1 0.2197
# 127.5 1 14.4 0.2197
# Use custom transition matrix (0=no, 1=growth matrix, 2=transition matrix, i.e. growth and molting)
0
# The custom growth matrix (if not using just fill with zeros)
# Alternative TM (loosely) based on Otto and Cummiskey (1990)
0.2 0.7 0.1
0.0 0.4 0.6
0.0 0.0 1.0
# Use custom natural mortality (0=no, 1=yes, by sex and year)
0
0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 .12
## eof
9999

The reference model (16.0) control file:

## ———————————————————————————————————————————————————————————————————————————————————— ##
## LEADING PARAMETER CONTROLS ##
# Controls for leading parameter vector theta
# LEGEND FOR PRIOR:
# 0 -> uniform # 1 -> normal # 2 -> lognormal
# 3 -> beta
# 4 -> gamma
# ntheta
12

## ———————————————————————————————————————————————————————————————————————————————————— ##
# ival lb ub phz prior p1 p2 # parameter #
0.18 0.01 1 -4 2 0.18 0.02 # M
14.3 -7.0 30 -2 0 -7 30 # log(R0)
10.0 -7.0 20 -1 1 -10.0 20 # log(Rini)
14.13979 7.0 16 1 0 7.0 16. # log(Rbar)
80.0 30.0 310 -2 1 72.5 7.25 # Recruitment size distribution expected value
0.25 0.1 7 -4 0 0.1 9.0 # Recruitment size scale (variance component)
0.2 -10.0 0.75 -4 0 -10.0 0.75 # log(sigma_R)
0.75 0.20 1.00 -2 3 3.0 2.00 # steepness
0.01 0.00 1.00 -3 3 1.01 1.01 # recruitment autocorrelation
14.9 10.00 15.00 3 0 5.00 20.00 # logN0 vector of initial numbers at length
14.5 10.00 15.00 3 0 5.00 20.00 # logN0 vector of initial numbers at length
14.3 10.00 15.00 3 0 5.00 20.00 # logN0 vector of initial numbers at length
## GROWTH PARAM CONTROLS ##
## Two lines for each parameter if split sex, one line if not ##
## number of molt periods
1
## Year(s) molt period changes (blank if no changes)

## ———————————————————————————————————————————————————————————————————————————————————— ##
# ival lb ub phz prior p1 p2 # parameter #
14.1 10.0 30.0 -3 0 0.0 999.0 # alpha males or combined
0.0001 0.0 0.01 -3 0 0.0 999.0 # beta males or combined
0.45 0.01 1.0 -3 0 0.0 999.0 # gscale males or combined

121.5 65.0 145.0 -4 0 0.0 999.0 # molt_mu males or combined
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0.060 0.0 1.0 -3 0 0.0 999.0 # molt_cv males or combined

## ———————————————————————————————————————————————————————————————————————————————————— ##
## SELECTIVITY CONTROLS ##
## Each gear must have a selectivity and a retention selectivity. If a uniform ##
## prior is selected for a parameter then the lb and ub are used (p1 and p2 are ##
## ignored) ##
## LEGEND ##
## sel type: 0 = parametric, 1 = coefficients, 2 = logistic, 3 = logistic95, ##
## 4 = double normal (NIY) ##
## gear index: use +ve for selectivity, -ve for retention ##
## sex dep: 0 for sex-independent, 1 for sex-dependent ##
## ———————————————————————————————————————————————————————————————————————————————————— ##
## ivector for number of year periods or nodes ##
## POT TBycatch FBycatch NMFS_S ADFG_pot
## Gear-1 Gear-2 Gear-3 Gear-4 Gear-5

2 1 1 1 1 # Selectivity periods
0 0 0 0 0 # sex specific selectivity
0 3 3 0 0 # male selectivity type

## Gear-1 Gear-2 Gear-3 Gear-4 Gear-5
1 1 1 1 1 # Retention periods
0 0 0 0 0 # sex specific retention
3 2 2 2 2 # male retention type
1 0 0 0 0 # male retention flag (0 -> no, 1 -> yes)

## gear par sel phz start end ##
## index index par sex ival lb ub prior p1 p2 mirror period period ##
# Gear-1

1 1 1 0 0.4 0.001 1.0 0 0 1 3 1978 2008
1 2 2 0 0.7 0.001 1.0 0 0 1 3 1978 2008
1 3 3 0 1.0 0.001 2.0 0 0 1 -2 1978 2008
1 1 1 0 0.4 0.001 1.0 0 0 1 3 2009 2017
1 2 2 0 0.4 0.001 1.0 0 0 1 3 2009 2017
1 3 3 0 1.0 0.001 2.0 0 0 1 -2 2009 2017

# Gear-2
2 7 1 0 40 10.0 200 0 10 200 -3 1978 2017
2 8 2 0 60 10.0 200 0 10 200 -3 1978 2017

# Gear-3
3 9 1 0 40 10.0 200 0 10 200 -3 1978 2017
3 10 2 0 60 10.0 200 0 10 200 -3 1978 2017

# Gear-4
4 8 1 0 0.7 0.001 1.0 0 0 1 4 1978 2017
4 9 2 0 0.7 0.001 1.0 0 0 1 4 1978 2017
4 10 3 0 0.9 0.001 1.0 0 0 1 -2 1978 2017

# Gear-5
5 11 1 0 0.4 0.001 1.0 0 0 1 4 1978 2017
5 12 2 0 0.7 0.001 1.0 0 0 1 4 1978 2017
5 13 3 0 1.0 0.001 2.0 0 0 1 -2 1978 2017

## Retained
# Gear-1
-1 14 1 0 120 100 200 0 1 900 -1 1978 2017
-1 15 2 0 123 110 200 0 1 900 -1 1978 2017

# Gear-2
-2 16 1 0 595 1 700 0 1 900 -3 1978 2017
-2 17 2 0 10 1 700 0 1 900 -3 1978 2017

# Gear-3
-3 18 1 0 590 1 700 0 1 900 -3 1978 2017
-3 19 2 0 10 1 700 0 1 900 -3 1978 2017

# Gear-4
-4 20 1 0 580 1 700 0 1 900 -3 1978 2017
-4 21 2 0 20 1 700 0 1 900 -3 1978 2017

# Gear-5
-5 22 1 0 580 1 700 0 1 900 -3 1978 2017
-5 23 2 0 20 1 700 0 1 900 -3 1978 2017

## ———————————————————————————————————————————————————————————————————————————————————— ##
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## PRIORS FOR CATCHABILITY
## If a uniform prior is selected for a parameter then the lb and ub are used (p1 ##
## and p2 are ignored). ival must be > 0 ##
## LEGEND ##
## prior: 0 = uniform, 1 = normal, 2 = lognormal, 3 = beta, 4 = gamma ##
## ———————————————————————————————————————————————————————————————————————————————————— ##
## LAMBDA: Arbitrary relative weights for each series, 0 = do not fit.
## SURVEYS/INDICES ONLY
## ival lb ub phz prior p1 p2 Analytic? LAMBDA

1.0 0 2 -1 0 0 9.0 0 1 # NMFS trawl
0.00411135867487 0 5 1 0 0 9.0 0 1 # ADF&G pot
## ———————————————————————————————————————————————————————————————————————————————————— ##

## ———————————————————————————————————————————————————————————————————————————————————— ##
## ADDITIONAL CV FOR SURVEYS/INDICES ##
## If a uniform prior is selected for a parameter then the lb and ub are used (p1 ##
## and p2 are ignored). ival must be > 0 ##
## LEGEND ##
## prior: 0 = uniform, 1 = normal, 2 = lognormal, 3 = beta, 4 = gamma ##
## ———————————————————————————————————————————————————————————————————————————————————— ##
## ival lb ub phz prior p1 p2

0.0000001 0.00000001 10.0 -4 4 1.0 100 # NMFS
0.0000001 0.00000001 10.0 -4 4 1.0 100 # ADF&G

## ———————————————————————————————————————————————————————————————————————————————————— ##

## ———————————————————————————————————————————————————————————————————————————————————— ##
## PENALTIES FOR AVERAGE FISHING MORTALITY RATE FOR EACH GEAR
## ———————————————————————————————————————————————————————————————————————————————————— ##
## Mean_F STD_PHZ1 STD_PHZ2 PHZ

0.2 0.05 50.0 1 # Pot
0.001 0.05 50.0 1 # Trawl
0.001 0.05 50.0 1 # Fixed
0.00 2.00 20.00 -1 # NMFS
0.00 2.00 20.00 -1 # ADF&G

## ———————————————————————————————————————————————————————————————————————————————————— ##

## ——————————————————————————————————————————————————————————————————————————————————— ##
## OPTIONS FOR SIZE COMPOSTION DATA (COLUMN FOR EACH MATRIX)
## ———————————————————————————————————————————————————————————————————————————————————— ##
## LIKELIHOOD OPTIONS
## -1) Multinomial with estimated/fixed sample size
## -2) Robust approximation to multinomial
## -3) logistic normal (NIY)
## -4) multivariate-t (NIY)
## -5) Dirichlet
## AUTOTAIL COMPRESSION
## pmin is the cumulative proportion used in tail compression.
## ———————————————————————————————————————————————————————————————————————————————————— ##
# 1 1 1 # Type of likelihood
2 2 2 # Type of likelihood

# 5 5 5 # Type of likelihood
0 0 0 # Auto tail compression (pmin)
1 1 1 # Initial value for effective sample size multiplier
-4 -4 -4 # Phz for estimating effective sample size (if appl.)
1 2 3 # Composition aggregator
1 1 1 # LAMBDA

## ———————————————————————————————————————————————————————————————————————————————————— ##

## ———————————————————————————————————————————————————————————————————————————————————— ##
## TIME VARYING NATURAL MORTALIIY RATES ##
## ———————————————————————————————————————————————————————————————————————————————————— ##
## TYPE:
## 0 = constant natural mortality
## 1 = Random walk (deviates constrained by variance in M)
## 2 = Cubic Spline (deviates constrained by nodes & node-placement)
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## 3 = Blocked changes (deviates constrained by variance at specific knots)
## 4 = Time blocks
## ———————————————————————————————————————————————————————————————————————————————————— ##
## Sex-specific? (0=no, 1=yes)
0
## Type
3
## Phase of estimation
4
## STDEV in m_dev for Random walk
10.0
## Number of nodes for cubic spline or number of step-changes for option 3
2
0 # Females (ignored if single sex...)
## Year position of the knots (vector must be equal to the number of nodes)
1998 1999
# 1976 1980 1985 1994 # Females (ignored if single sex...)
## ———————————————————————————————————————————————————————————————————————————————————— ##

## ———————————————————————————————————————————————————————————————————————————————————— ##
## OTHER CONTROLS
## ———————————————————————————————————————————————————————————————————————————————————— ##
3 # Estimated rec_dev phase
3 # Estimated rec_ini phase
0 # VERBOSE FLAG (0 = off, 1 = on, 2 = objective func)
2 # Initial conditions (0 = Unfished, 1 = Steady-state fished, 2 = Free parameters)
1978 # First year for average recruitment for Bspr calculation
2016 # Last year for average recruitment for Bspr calculation
0.35 # Target SPR ratio for Bmsy proxy
1 # Gear index for SPR calculations (i.e. directed fishery)
1 # Lambda (proportion of mature male biomass for SPR reference points)
1 # Use empirical molt increment data (0 = FALSE, 1 = TRUE)
0 # Stock-Recruit-Relationship (0 = None, 1 = Beverton-Holt)

## EOF
9999
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Appendix C. Test of VAST spatio-temporal analysis of SMBKC
from NMFS bottom-trawl survey data

Overview

This is an example application of VAST for estimating single-species abundance indices specifically applied
to a subset of NMFS/AFSC bottom trawl survey data. Further details can be found at the GitHub repo
mainpage, wiki, and glossary. The R help files, e.g., ?Data_Fn for explanation of data inputs, or ?Param_Fn
for explanation of parameters. VAST has involved many publications for developing individual features (see
references section below).

The following loads in the main libraries.

library(TMB)
library(VAST)
Version <- "VAST_v2_0_0"

Spatial settings and model configuration

The following settings define the spatial resolution for the model, and whether to use a grid or mesh
approximation as well as specific model settings.

Method <- "Mesh"
grid_size_km <- 25
n_x <- 50 # Number of stations
Kmeans_Config <- list(randomseed = 1, nstart = 100,

iter.max = 1000)

FieldConfig <- c(Omega1 = 1, Epsilon1 = 1, Omega2 = 1,
Epsilon2 = 1)

RhoConfig <- c(Beta1 = 0, Beta2 = 0, Epsilon1 = 0,
Epsilon2 = 0)

OverdispersionConfig <- c(Vessel = 0, VesselYear = 0)
ObsModel <- c(2, 0)
Options <- c(SD_site_density = 0, SD_site_logdensity = 0,

Calculate_Range = 1, Calculate_evenness = 0, Calculate_effective_area = 1,
Calculate_Cov_SE = 0, Calculate_Synchrony = 0,
Calculate_Coherence = 0)

strata.limits <- data.frame(STRATA = "All_areas")
VesselConfig <- c(Vessel = 0, VesselYear = 1)
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Data preparation

Data-frame for catch-rate data

The following extracts a subset of the data file downloaded from AKFIN.

# Read in header names
m.df <- data.frame(read.csv("male_ge90.csv", header = T,

as.is = T))
hnames <- read.csv("hdr.csv", header = T)
names(m.df) <- names(hnames)
# Get into format for VASt
p.df <- transmute(m.df, yr = as.numeric(SURVEY_YEAR),

loc = STRATUM_NAME, lat = as.numeric(MID_LATITUDE),
long = as.numeric(MID_LONGITUDE), CrabN = as.numeric(CRAB_NUM),
cpueN = as.numeric(CRAB_CPUENUM), cpueKG = as.numeric(CRAB_CPUEWGT_MT)/1000)

Data_Geostat <- p.df %>% mutate(Catch_KG = cpueKG,
Year = yr, Vessel = "missing", AreaSwept_km2 = 1,
Lat = lat, Lon = long, Pass = 0)

# Create a coverage of this specific are (St.
# Matthews Island)
posLL <- p.df %>% select(Lat = lat, Lon = long)
# Apply to create the extrapolation grid
Extrapolation_List <- SpatialDeltaGLMM::Prepare_Extrapolation_Data_Fn(Region = "Other",

observations_LL = posLL, strata.limits = strata.limits)

## Derived objects for spatio-temporal estimation
Spatial_List <- SpatialDeltaGLMM::Spatial_Information_Fn(grid_size_km = grid_size_km,

n_x = n_x, Method = Method, Lon = Data_Geostat[,
"Lon"], Lat = Data_Geostat[, "Lat"], Extrapolation_List = Extrapolation_List,

randomseed = Kmeans_Config[["randomseed"]], nstart = Kmeans_Config[["nstart"]],
iter.max = Kmeans_Config[["iter.max"]], DirPath = DateFile,
Save_Results = FALSE)

# Add knots to Data_Geostat
Data_Geostat <- cbind(Data_Geostat, knot_i = Spatial_List$knot_i)

Build and run model

To estimate parameters, first create a list of data-inputs used for parameter estimation. Data_Fn has some
simple checks for buggy inputs, but also please read the help file ?Data_Fn.

library(VAST)
TmbData <- Data_Fn(Version = Version, FieldConfig = FieldConfig,

OverdispersionConfig = OverdispersionConfig, RhoConfig = RhoConfig,
ObsModel = ObsModel, c_i = rep(0, nrow(Data_Geostat)),
b_i = Data_Geostat[, "Catch_KG"], a_i = Data_Geostat[,

"AreaSwept_km2"], v_i = as.numeric(Data_Geostat[,
"Vessel"]) - 1, s_i = Data_Geostat[, "knot_i"] -
1, t_i = Data_Geostat[, "Year"], a_xl = Spatial_List$a_xl,

MeshList = Spatial_List$MeshList, GridList = Spatial_List$GridList,
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Method = Spatial_List$Method, Options = Options)

# We then build the TMB object.
TmbList <- Build_TMB_Fn(TmbData = TmbData, RunDir = DateFile,

Version = Version, RhoConfig = RhoConfig, loc_x = Spatial_List$loc_x,
Method = Method)

Obj <- TmbList[["Obj"]]

## Estimate fixed effects and predict random effects
## Next, we use a gradient-based nonlinear minimizer
## to identify maximum likelihood estimates for
## fixed-effects
Opt <- TMBhelper::Optimize(obj = Obj, lower = TmbList[["Lower"]],

upper = TmbList[["Upper"]], getsd = TRUE, savedir = DateFile,
bias.correct = FALSE)

# Store output
Report <- Obj$report()

Diagnostic plots

SpatialDeltaGLMM::Plot_data_and_knots(Extrapolation_List = Extrapolation_List,
Spatial_List = Spatial_List, Data_Geostat = Data_Geostat,
PlotDir = DateFile)

Region = "Other"
MapDetails_List <- SpatialDeltaGLMM::MapDetails_Fn(Region = Region,

NN_Extrap = Spatial_List$PolygonList$NN_Extrap,
Extrapolation_List = Extrapolation_List)

# Decide which years to plot
Year_Set <- seq(min(Data_Geostat[, "Year"]), max(Data_Geostat[,

"Year"]))
Years2Include <- which(Year_Set %in% sort(unique(Data_Geostat[,

"Year"])))

Convergence

Diagnostics generated during parameter estimation can confirm that parameter estimates are away from
upper or lower bounds and that the final gradient for each fixed-effect is close to zero. For explanation of
parameters, please see references (and specifically ?Data_Fn in R).

[1] “”

Encounter-probability component

One can check to ensure that observed encounter frequencies for either low or high probability samples are
within the 95% predictive interval for predicted encounter probability (Figure . Diagnostics for positive-catch-
rate component was evaluated using a standard Q-Q plot. Qualitatively, the fits to SMBKC are reasonable
but could stand some more evaluation for improvement as only one configuration was tested here (Figures
and .

Enc_prob <- SpatialDeltaGLMM::Check_encounter_prob(Report = Report,
Data_Geostat = Data_Geostat, DirName = DateFile)
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Figure 1: Observed encounter rates and predicted probabilities for SMBKC.

Q <- SpatialDeltaGLMM::QQ_Fn(TmbData = TmbData, Report = Report,
FileName_PP = paste0(DateFile, "Posterior_Predictive.jpg"),
FileName_Phist = paste0(DateFile, "Posterior_Predictive-Histogram.jpg"),
FileName_QQ = paste0(DateFile, "Q-Q_plot.jpg"),
FileName_Qhist = paste0(DateFile, "Q-Q_hist.jpg"))

Pearson residuals

Spatially the residual pattern can be evaluated over time. Results for SMBKC shows that consistent positive
or negative residuals accross or within years is limited for the encounter probability component of the model
and for the positive catch rate component (Figures 4 and 5, respectively). Some VAST plots for visualizing
results can be seen by examining the direction of faster or slower spatial decorrelation (termed “geometric
anisotropy”; Figure 6).

SpatialDeltaGLMM:::plot_residuals(Lat_i = Data_Geostat[,
"Lat"], Lon_i = Data_Geostat[, "Lon"], TmbData = TmbData,
Report = Report, Q = Q, savedir = DateFile, MappingDetails = MapDetails_List[["MappingDetails"]],
PlotDF = MapDetails_List[["PlotDF"]], MapSizeRatio = MapDetails_List[["MapSizeRatio"]],
Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]],
FileName = DateFile, Year_Set = Year_Set, Years2Include = Years2Include,
Rotate = MapDetails_List[["Rotate"]], Cex = MapDetails_List[["Cex"]],
Legend = MapDetails_List[["Legend"]], zone = MapDetails_List[["Zone"]],
mar = c(0, 0, 2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8)

SpatialDeltaGLMM::PlotAniso_Fn(FileName = paste0(DateFile,
"Aniso.png"), Report = Report, TmbData = TmbData)
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Figure 2: Plot indicating distribution of quantiles for "positive catch rate" component.

Figure 3: Quantile-quantile plot of residuals for "positive catch rate" component.
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Figure 4: Pearson residuals of the encounter probability component at SMBKC stations, 1976-2017.
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Figure 5: Pearson residuals of the positive catch rate component for SMBKC stations, 1976-2017.
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Figure 6: Directional decorrelation for SMBKC stations, 1978-2017.
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SpatialDeltaGLMM::PlotResultsOnMap_Fn(plot_set = c(3),
MappingDetails = MapDetails_List[["MappingDetails"]],
Report = Report, Sdreport = Opt$SD, PlotDF = MapDetails_List[["PlotDF"]],
MapSizeRatio = MapDetails_List[["MapSizeRatio"]],
Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]],
FileName = DateFile, Year_Set = Year_Set, Years2Include = Years2Include,
Rotate = MapDetails_List[["Rotate"]], Cex = MapDetails_List[["Cex"]],
Legend = MapDetails_List[["Legend"]], zone = MapDetails_List[["Zone"]],
mar = c(0, 0, 2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8,
plot_legend_fig = FALSE)

Densities and biomass estimates A heatmap of the relative densities over

time shows a consistent pattern in the relative biomass of males >89mm (Figure 7). For the application to
SMBKC, the biomass index was scaled to have the same mean as that from the design-based estimate (5,763
t) of abundance is generally most useful for stock assessment models (Table 2).
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Figure 7: St. Matthews Island blue king crab (males >89mm) density maps as predicted using the VAST
model approach, 1976-2017.
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Figure 8: St. Matthews Island blue king crab (males >89mm) relative abundance as predicted using the
VAST model approach.
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Table 1: SMBKC parameter estimates, bounds, and final gradients as derived from the VAST modeling
framework.

Param Lower MLE Upper final_gradient
ln_H_input -50.0 -0.157 50.0 0.00001
ln_H_input -50.0 -0.637 50.0 -0.00006
beta1_ct -50.0 1.068 50.0 0.00001
beta1_ct -50.0 -1.381 50.0 0.00001
beta1_ct -50.0 -2.306 50.0 -0.00002
beta1_ct -50.0 -0.486 50.0 0.00001
beta1_ct -50.0 0.556 50.0 0.00001
beta1_ct -50.0 -0.774 50.0 0.00001
beta1_ct -50.0 -0.643 50.0 -0.00004
beta1_ct -50.0 -0.616 50.0 0.00000
beta1_ct -50.0 -1.786 50.0 0.00000
beta1_ct -50.0 -3.240 50.0 -0.00000
beta1_ct -50.0 -2.464 50.0 0.00001
beta1_ct -50.0 -2.955 50.0 0.00002
beta1_ct -50.0 -2.080 50.0 0.00001
beta1_ct -50.0 -1.924 50.0 -0.00001
beta1_ct -50.0 -0.402 50.0 -0.00002
beta1_ct -50.0 -0.534 50.0 -0.00001
beta1_ct -50.0 -0.867 50.0 -0.00001
beta1_ct -50.0 -1.032 50.0 -0.00001
beta1_ct -50.0 0.265 50.0 -0.00002
beta1_ct -50.0 -0.869 50.0 -0.00001
beta1_ct -50.0 -1.201 50.0 -0.00001
beta1_ct -50.0 -1.061 50.0 -0.00004
beta1_ct -50.0 -1.742 50.0 0.00001
beta1_ct -50.0 -2.691 50.0 -0.00001
beta1_ct -50.0 -3.145 50.0 -0.00001
beta1_ct -50.0 -3.401 50.0 -0.00004
beta1_ct -50.0 -3.412 50.0 0.00002
beta1_ct -50.0 -3.214 50.0 0.00002
beta1_ct -50.0 -3.797 50.0 -0.00001
beta1_ct -50.0 -1.776 50.0 0.00000
beta1_ct -50.0 -1.032 50.0 -0.00002
beta1_ct -50.0 -1.630 50.0 -0.00001
beta1_ct -50.0 0.157 50.0 0.00001
beta1_ct -50.0 0.141 50.0 0.00001
beta1_ct -50.0 -1.206 50.0 -0.00003
beta1_ct -50.0 0.143 50.0 0.00001
beta1_ct -50.0 -0.956 50.0 0.00005
beta1_ct -50.0 -2.236 50.0 0.00001
beta1_ct -50.0 -2.546 50.0 -0.00001
beta1_ct -50.0 -3.100 50.0 -0.00000
beta1_ct -50.0 -3.756 50.0 0.00002
L_omega1_z -50.0 2.282 50.0 0.00007
L_epsilon1_z -50.0 0.683 50.0 -0.00009
logkappa1 -4.7 -3.695 -1.9 -0.00003
beta2_ct -50.0 -8.669 50.0 0.00004
beta2_ct -50.0 -7.498 50.0 0.00008
beta2_ct -50.0 -7.295 50.0 0.00011
beta2_ct -50.0 -7.582 50.0 0.00008
beta2_ct -50.0 -7.801 50.0 -0.00014
beta2_ct -50.0 -6.802 50.0 0.00000
beta2_ct -50.0 -7.813 50.0 0.00013
beta2_ct -50.0 -8.131 50.0 -0.00000
beta2_ct -50.0 -8.362 50.0 -0.00010
beta2_ct -50.0 -8.978 50.0 -0.00006
beta2_ct -50.0 -8.486 50.0 0.00001
beta2_ct -50.0 -8.395 50.0 -0.00005
beta2_ct -50.0 -7.845 50.0 -0.00005
beta2_ct -50.0 -7.838 50.0 -0.00014
beta2_ct -50.0 -7.881 50.0 0.00016
beta2_ct -50.0 -7.763 50.0 -0.00004
beta2_ct -50.0 -7.515 50.0 0.00018
beta2_ct -50.0 -7.891 50.0 -0.00008
beta2_ct -50.0 -8.162 50.0 0.00001
beta2_ct -50.0 -7.718 50.0 0.00002
beta2_ct -50.0 -7.656 50.0 -0.00026
beta2_ct -50.0 -7.870 50.0 0.00002
beta2_ct -50.0 -8.767 50.0 -0.00001
beta2_ct -50.0 -8.751 50.0 0.00005
beta2_ct -50.0 -8.249 50.0 0.00009
beta2_ct -50.0 -8.820 50.0 0.00008
beta2_ct -50.0 -8.854 50.0 0.00005
beta2_ct -50.0 -9.064 50.0 -0.00025
beta2_ct -50.0 -8.506 50.0 -0.00015
beta2_ct -50.0 -8.519 50.0 0.00009
beta2_ct -50.0 -8.129 50.0 0.00005
beta2_ct -50.0 -8.322 50.0 0.00001
beta2_ct -50.0 -8.136 50.0 0.00001
beta2_ct -50.0 -8.006 50.0 0.00004
beta2_ct -50.0 -7.794 50.0 0.00002
beta2_ct -50.0 -8.183 50.0 0.00002
beta2_ct -50.0 -8.765 50.0 0.00005
beta2_ct -50.0 -8.088 50.0 -0.00013
beta2_ct -50.0 -8.574 50.0 0.00004
beta2_ct -50.0 -8.388 50.0 -0.00000
beta2_ct -50.0 -8.873 50.0 0.00017
L_omega2_z -50.0 -0.767 50.0 0.00009
L_epsilon2_z -50.0 0.454 50.0 -0.00038
logkappa2 -4.7 -2.952 -1.9 -0.00001
logSigmaM -50.0 -0.352 10.0 -0.00081
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Table 2: SMBKC male >89mm biomass (t) estimates as derived from the VAST modeling framework.
Year Estimate CV
1977 3654.3 0.801
1978 9467.9 0.234
1979 10354.7 0.276
1980 10318.3 0.187
1981 9142.0 0.192
1982 21625.3 0.196
1983 9004.3 0.152
1984 4873.7 0.162
1985 3708.6 0.183
1986 1401.1 0.238
1987 2942.9 0.226
1988 3020.4 0.212
1989 6377.5 0.185
1990 7102.0 0.192
1991 7111.8 0.168
1992 7721.3 0.157
1993 10730.5 0.155
1994 7291.9 0.163
1995 6164.3 0.141
1996 9530.6 0.162
1997 9144.6 0.164
1998 6919.4 0.165
1999 2316.9 0.196
2000 2110.6 0.213
2001 3105.0 0.242
2002 1656.7 0.250
2003 1639.7 0.234
2004 1457.0 0.216
2005 1856.6 0.300
2006 3894.4 0.176
2007 5595.6 0.158
2008 4569.5 0.176
2009 6480.5 0.145
2010 7723.8 0.144
2011 7102.5 0.178
2012 5725.3 0.147
2013 2603.0 0.170
2014 4517.7 0.199
2015 2330.7 0.235
2016 2797.0 0.230
2017 1192.9 0.293
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Norton Sound Red King Crab Stock Assessment for the fishing year 2016 

Toshihide Hamazaki1 and Jie Zheng 2  

Alaska Department of Fish and Game Commercial Fisheries Division 
1333 Raspberry Rd., Anchorage, AK 99518-1565 

Phone: 907-267-2158 

Email: Toshihide.Hamazaki@alaska.gov 
2P.O. Box 115526, Juneau, AK 99811-5526 

Phone : 907-465-6102 

Email : Jie.Zheng@alaska.gov 

Executive Summary 

1. Stock. Red king crab, Paralithodes camtschaticus, in Norton Sound, Alaska.

2. Catches. This stock supports three main fisheries: summer commercial, winter commercial,

and winter subsistence fisheries. Of those, the summer commercial fishery accounts for

more than 90% of total harvest. The summer commercial fishery started in 1977, and catch

peaked in the late 1970s with retained catch of over 2.9 million pounds. Since 1982, retained

catches have been below 0.5 million pounds, averaging 0.275 million pounds, including

several low years in the 1990s. Retained catches have increased to about 0.4 million pounds

in recent years coincident with increases in estimated abundance.

3. Stock Biomass. Following a peak in 1977, abundance or the stock collapsed to a historic low

in 1982. Estimated mature male biomass (MMB) has shown an increasing trend since 1997.

However, uncertainty in historical biomass is high due in part to infrequent trawl surveys

(every 3 to 5 years) and limited winter pot surveys.

4. Recruitment. Model estimated recruitment was weak during the late 1970s and high during

the early 1980s, with a slight downward trend from 1983 to 1993. Estimated recruitment has

been highly variable but on an increasing trend in recent years.

5. Management performance.

Status and catch specifications (million lb.) 

Status and catch specifications (1000t) 

Year MSST 
Biomass 

(MMB) 
GHL 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2012/13 1.76A 4.59 0.47 0.47 0.47 0.53A 0.48 

2013/14 2.06B 5.00 0.50 0.35 0.35 0.58B 0.52 

2014/15 2.11C 3.71 0.38 0.39 0.39 0.46C 0.42 

2015 2.41D 5.13 0.39 0.40 0.52 0.72D 0.58 

2016 2.26 E 5.87 TBD TBD TBD 0.71E 0.57 
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Year MSST 
Biomass 

(MMB) 
GHL 

Retained 

Catch 
Total Catch OFL ABC 

2012/13 0.80A 1.93 0.21 0.21 0.21 0.24A 0.22 

2013/14 0.93B 2.27 0.23 0.16 0.16 0.26B 0.24 

2014/15 0.96C 1.68 0.17 0.18 0.18 0.21C 0.19 

2015 1.09D 2.33 0.18 0.18 0.24 0.33D 0.26 

2016 1.03 2.66 TBD TBD TBD 0.32 E 0.26 

Notes:  

MSST was calculated as BMSY/2 

A-Calculated from the assessment reviewed by the Crab Plan Team in May 2012

B-Calculated from the assessment reviewed by the Crab Plan Team in May 2013

C-Calculated from the assessment reviewed by the Crab Plan Team in May 2014

D-Calculated from the assessment reviewed by the Crab Plan Team in Jan 2015

E-Calculated from the assessment reviewed by the Crab Plan Team in Jan 2016

Conversion to Metric ton: 1 Metric ton = 2.2046× 1000 lb

Biomass in millions of pounds 

Year Tier BMSY 
Current 

MMB 

B/BMSY 

(MMB) 
FOFL 

Years to 

define 

BMSY 

 M 1-Buffer ABC

2012/13 4a 3.51 4.59 1.2 0.18 1980-2012 0.18 0.9 0.48 

2013/14 4b 4.12 5.00 1.2 0.18 1980-2013 0.18 0.9 0.52 

2014/15 4b 4.19 3.71 0.9 0.16 1980-2014 0.18 0.9 0.42 

2015 4a 4.81 5.13 1.1 0.18 1980-2015 0.18 0.8 0.58 

2016 4a 4.53 5.87 1.3 0.18 1980-2016 0.18 0.8 0.57 

Biomass in 1000t 

Year Tier BMSY 
Current 

MMB 

B/BMSY 

(MMB) 
FOFL 

Years to 

define 

BMSY 

 M 1-Buffer ABC

2012/13 4a 1.59 1.93 1.2 0.18 1980-2012 0.18 0.9 0.22 

2013/14 4a 1.86 2.27 1.2 0.18 1980-2013 0.18 0.9 0.24 

2014/15 4b 1.90 1.68 0.9 0.16 1980-2014 0.18 0.9 0.19 

2015 4a 2.18 2.33 1.1 0.18 1980-2015 0.18 0.8 0.26 

2016 4a 2.06 2.66 1.3 0.18 1980-2016 0.18 0.8 0.26 
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6. Probability Density Function of the OFL, OFL profile, and mcmc estimates.  

 
7. The basis for the ABC recommendation 

 

For Tier 4 stocks, the default maximum ABC is based on P*=49% that is essentially 

identical to the OFL. Accounting for uncertainties in assessment and model results, the 

SSC chose to use 90% OFL (10% Buffer) for the Norton Sound red king crab stock from 

2011 to 2014. In 2015, the buffer was increased to 20% (ABC = 80% OFL).  

  

8. A summary of the results of any rebuilding analyses.   

 

N/A 

  

A. Summary of Major Changes in 2015 

1. Changes to the management of the fishery:   

None 

2. Changes to the input data 

a. Data update: 2015 summer commercial fishery (total catch, catch length comp, 

discards length comp), 2014/2015 winter commercial and subsistence catch 

b. Data update: 1977-2015 standardized commercial catch CPUE and CV. No 

changes in standardization methodology (SAFE 2013). 
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3. Changes to the assessment methodology:  

None   

4. Changes to the assessment results. 

None  

B. Response to SSC and CPT Comments 

Crab Plan Team - Jan 16 2015 

 

• Provide trawl survey documentation  

 

Trawl survey report is published as ADFG report. The report is available at  

http://www.adfg.alaska.gov/FedAidPDFs/FDS15-40.pdf 

 

• Provide an explanation and legend for figures comparing input sample sizes with 

effective sample. 

 

Done 

 

• Provide the documentation on the survey CPUE standardization as an Appendix 

 

Included in the Appendix B.  

 

• Fix trawl survey selectivity parameter to 1.0 (i.e., do not estimate) 

 

Not conducted because selectivity was not always 1.0.  

 

• Provide stock-specific maturity information for possible move to Tier 3. 

 

Author’s reply: 

Assumed male size at (functional) maturity of the NSRKC (CL 94 mm) was determined 

by adjusting that of Tier 3 BBRKC (CL 120mm) reflecting their slower growth and 

smaller size. However, male size at (functional) maturity of Tier 3 BBRKC is also 

assumed (Zheng et al. 2014). For BBRKC male size at maturity is 103 mm CL by chelae 

allometry (Somerton 1980), 50-59 mm CL by spermatophore presence (Paul et al. 1991).  

Functional size-at-functional maturity is likely greater than physiological or 

morphological maturity based on in situ grasping pair morphometry was estimated at 120 

to 130mm CL for Kodiak Island red king crab (Powell et al. 2002, Webb 2014).    

 

• Include a discussion of the relative uncertainty in model parameters and data employed in 

the model as well as relative weightings in model configuration for use in best 

approximating the uncertainty in the OFL. 

 

Author’s reply: 

Tagging data weighting issue has been discussed in SAFE 2015 and effects of input 

sample size for length composition have been discussed at modeling workshop in 2013 
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and 2014. We would gladly examine if there is a request for examining effects of specific 

data set.  

 

 

SSC Feb 2-4 2015 

 

• The SSC identified the fate of large males as the major uncertainty and hopes that this 

can be resolved through further research. The competing hypotheses of localized 

depletion, high natural mortality, or migration to a refuge from fishing have very 

different implications for OFL and ABC. Until this is resolved, the SSC felt that moving 

this stock to Tier 3 status would be problematic. 

 

Author’s reply: 

 

The CPT (Sept 17 2015) commented that the fate of large males is not really a tier 3 

question, although does need more investigation.  

 

Regarding the SSC’s hypotheses of localized depletion, high natural mortality, or 

migration to a refuge from fishing; we examined the available data and suggest the 

following:  

  

Trawl survey did not show any pattern that higher number of larger crab being caught at 

edge of survey boundaries. Spring survey 2012-2015 also did not see higher proportion of 

large crabs along the coastal area. On the other hand, fall surveys in 2013-2014 

consistently showed higher proportion (17% in 2013, 23% in 2014) of the largest size 

class (> 123mm CL) crab. Those larger crabs were absent in spring survey conducted 8 

months later (5% in 2014, 3.5% in 2015).  Winter commercial catch length composition 

did not show high large crab proportion (11 % in Jan-May 2015). These results do not 

seem to support the hypotheses of localized depletion or migration to a refuge from 

fishing.  

 

Regarding the high natural mortality, see section 3.c: Model selection and evaluation – 

search for balance.  

 

 

• The SSC prefers that OFL and ABC be consistently presented in units of tons.  

 

Author’s reply: 

 

We agree to SSC about using of tons as standard metric, international standard. 

Unfortunately, however, pounds is the customary unit of the US public. We prefer our 

report to be easily readable to the US public, including crab fishermen, by using the US 

customary units. 

 

 

CPT Sept 17 2015 
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• Explore iterative data reweighting after guidance from the data weighting workshop. 

 

Author’s reply: 

As of preparation of this report (Nov. 2015), no specific recommendations of exploring 

iterative re-weighting procedures have been provided by the time of NSRKC assessment. 

We look forward implementing the recommendations for January 2017 assessment.  

 

• Maturity data on males is needed before moving NSRKC to tier 3.  

 

Author’s reply: 

Assumed male size at (functional) maturity of the NSRKC (CL 94 mm) was determined 

by adjusting that of Tire 3 BBRKC (CL 120mm) reflecting their slower growth and 

smaller size. However, male size at (functional) maturity of Tire 3 BBRKC is also 

assumed (Zheng et al. 2014). For BBRKC male size at maturity is CL 103 mm by chelae 

allometry (Somerton 1980), 50-59 mm CL by spermatophore presence (Paul et al. 1991).  

Estimated size at functional maturity is only available for one red king crab stock in 

Alaska (Webb 2014) in which the 5th percentile of the size frequency distribution of 

males observed in grasping pairs near Kodiak Island was ~ 120 mm CL (Powell et al. 

2002).    

 

SSC Oct 5-7 2015 

 

•   The SSC supports the plan team’s recommendations of exploring iterative re-weighting 

procedures after the Center for the Advancement of Population Assessment Methodology 

(CAPAM) data-weighting workshop in late October 2015.  

 

Author’s reply: 

As of preparation of this report (Nov. 2015), no specific recommendations of exploring 

iterative re-weighting procedures have been provided by the time of NSRKC assessment. 

We look forward implementing the recommendations for January 2017 assessment.  

 

• The SSC also recommends that the author follow the terms of reference and provide 

retrospective estimates of spawning stock biomass and the appropriate statistics (e.g., 

Mohns’ rho). 

 

Author’s reply: 

Mohns’ rho (Mohn 1999) was calculated, as 
1),:1976(1),2015:1976(1),:1976( /)(   yyyyy BBB , 

only for the author preferred model.  Mohns’ rho has NO statistical range criteria of 

whether an assessment model is deemed acceptable/ unacceptable. We appreciate SSC 

providing a list of appropriate statistics to be reported for assessment model evaluations, 

and guidance how each statistics are weighed for selecting the best assessment model.  
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C. Introduction 

1. Species: red king crab (Paralithodes camtschaticus) in Norton Sound, Alaska.  

2. General Distribution: Norton Sound red king crab is one of the northernmost red king crab 

populations that can support a commercial fishery (Powell et al. 1983). It is distributed 

throughout Norton Sound with a westward limit of 167-168o W. longitude, depths less than 

30 m, and summer bottom temperatures above 4oC. The Norton Sound red king crab 

management area consists of two units: Norton Sound Section (Q3) and Kotzebue Section 

(Q4) (Menard et al. 2011). The Norton Sound Section (Q3) consists of all waters in 

Registration Area Q north of the latitude of Cape Romanzof, east of the International 

Dateline, and south of 66°N latitude (Figure 1). The Kotzebue Section (Q4) lies immediately 

north of the Norton Sound Section and includes Kotzebue Sound. Commercial fisheries have 

not occurred regularly in the Kotzebue Section. This report deals with the Norton Sound 

Section of the Norton Sound red king crab management area.  

3. Evidence of stock structure: Thus far, no studies have been made on possible stock 

separation within the putative stock known as Norton Sound red king crab.  

4. Life history characteristics relevant to management: One of the unique life-history traits of 

Norton Sound red king crab is that they spend their entire lives in shallow water since Norton 

Sound is generally less than 40 m in depth. Distribution and migration patterns of Norton 

Sound red king crab have not been well studied. Based on the 1976-2006 trawl surveys, red 

king crab in Norton Sound are found in areas with a mean depth range of 19 ± 6 (SD) m and 

bottom temperatures of 7.4 ± 2.5 (SD) oC during summer. Norton Sound red king crab are 

consistently abundant offshore of Nome.  

Norton Sound red king crab migrate between deeper offshore and inshore shallow waters. .  

Timing of the inshore mating migration is unknown, but is assumed to be during late fall to 

winter (Powell et al. 1983). Offshore migration occurs in late May - July (Jennifer Bell, 

ADF&G, personal communication). The results from a study funded by North Pacific 

Research Board (NPRB) during 2012-2014 suggest that older/large crab (> 104mm CL) stay 

offshore in winter, based on findings that large crab are not found nearshore during spring 

offshore migration periods (Jennifer Bell, ADF&G, personal communication). Timing of 

molting is unknown but is considered to occur in late August – September, based on increase 

catches of fresh-molted crab later in the fishing season (August- September) (Joyce Soong, 

ADF&G personal communication); however, blood hormonal studies suggested an April-

May molting season (Jennifer Bell, ADF&G, personal communication), which is consistent 

with Powell et al. (1983). Recent observations indicate biennial mating (Robert Foy, NOAA, 

personal communication). Trawl surveys show that crab distribution is dynamic. Recent 

surveys show high abundance on the southeast side of the sound, offshore of Stebbins and 

Saint Michael.  

5. Brief management history: Norton Sound red king crab fisheries consist of commercial and 

subsistence fisheries. The commercial red king crab fishery started in 1977 and occurs in 

summer (June – August) and winter (December – May). The majority of red king crab is 

harvested offshore during the summer commercial fishery, whereas most of the winter 

subsistence fishery harvest occurs nearshore.  
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Summer Commercial Fishery 

A large-vessel summer commercial crab fishery started in 1977 in the Norton Sound Section 

(Table 1) and continued from 1977 through 1990. No summer commercial fishery occurred 

in 1991 because there was no staff to manage the fishery. In March 1993, the Alaska Board 

of Fisheries (BOF) limited participation in the fishery to small boats. Then on June 27, 1994, 

a super-exclusive designation went into effect for the fishery. This designation stated that a 

vessel registered for the Norton Sound crab fishery may not be used to take king crabs in any 

other registration areas during that registration year. A vessel moratorium was put into place 

before the 1996 season. This was intended to precede a license limitation program. In 1998, 

Community Development Quota (CDQ) groups were allocated a portion of the summer 

harvest; however, no CDQ harvest occurred until the 2000 season. On January 1, 2000 the 

North Pacific License Limitation Program (LLP) went into effect for the Norton Sound crab 

fishery. The program dictates that a vessel which exceeds 32 feet in length overall must hold 

a valid crab license issued under the LLP by the National Marine Fisheries Service. 

Regulation changes and location of buyers resulted in harvest distribution moving eastward 

in Norton Sound in the mid-1990s.In Norton Sound, a legal crab is defined as ≥ 4-3/4 inch 

carapace width (CW, Menard et al. 2011), which is approximately equivalent to ≥ 104 mm 

carapace length mm CL. Since 2005, commercial buyers started accepting only legal crab of 

≥ 5 inch CW.  

Not all Norton Sound area is open for commercial fisheries. Since the beginning of the 

commercial fisheries in 1977, approximately 5-10 miles off the shore of southern Seward 

Peninsula from Port Clarence to St. Michael have been closed to protect crab nursery 

grounds during the summer commercial crab fishery (Figure 2). The spatial extent of closed 

waters has varied historically.  

CDQ Fishery 

The Norton Sound and Lower Yukon CDQ groups divide the CDQ allocation. Only fishers 

designated by the Norton Sound and Lower Yukon CDQ groups are allowed to participate in 

this portion of the king crab fishery. Fishers are required to have a CDQ fishing permit from 

the Commercial Fisheries Entry Commission (CFEC) and register their vessel with the 

Alaska Department of Fish and Game (ADF&G) before begin fishing. Fishers operate under 

the authority of each CDQ group who decides how their crab quota is to be harvested.  

During the March 2002 BOF meeting, new regulations for the CDQ crab fishery were 

adopted that affected; closed-water boundaries were relaxed in eastern Norton Sound and 

waters west of Sledge Island. In March 2008, the BOF changed the start date of the Norton 

Sound open-access portion of the fishery to be opened by emergency order as early as June 

15. The CDQ fishery may open at any time (as soon as ice is out), by emergency order.  

Winter Commercial Fishery  

The winter commercial crab fishery is a small fishery using hand lines and pots through the 

nearshore ice. On average 10 permit holders harvested 2,500 crabs during 1978-2009.  From 

2007 to 2015 the winter commercial catch increased from 3,000 crabs to over 40,000 (Table 

2). In 2015 winter commercial catch reached 20% of total crab catch. The BOF responded in 

May 2015 by amending regulations to allocate 8% of the total commercial guideline harvest 

level (GHL) to the winter commercial fishery.  The winter red king crab commercial fishing 
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season was also set from January 15 to April 30, unless changed by emergency order.  The 

new regulation will be in effect for the 2016 season.  

 

Subsistence Fishery 

While the subsistence fishery has a long history, harvest information is available only since 

the 1977/78 season. The majority of the subsistence crab fishery harvest occurs during winter 

using hand lines and pots through nearshore ice. Average annual winter subsistence harvest 

was 5,400 crab (1977-2010). Subsistence harvesters need to obtain a permit before fishing 

and record daily effort and catch. Subsistence fishery has no size or sex limit; however, the 

majority of retained catches are males of near legal crab size.  The subsistence fishery catch 

is influenced not only by crab abundance, but also by changes in distribution, changes in gear 

(e.g., more use of pots instead of hand lines since 1980s), and ice conditions (e.g., reduced 

catch due to unstable ice conditions: 1987-88, 1988-89, 1992-93, 2000-01, 2003-04, 2004-05, 

and 2006-07). 

The summer subsistence crab fishery harvest has been monitored since 2004 with an average 

harvest of 712 crab per year. Since this harvest is very small, the summer subsistence fishery 

was not included in the assessment model.  

6. Brief description of the annual ADF&G harvest strategy 

Since 1997 Norton Sound red king crab have been managed based on a guideline harvest 

level (GHL). From 1999 to 2011 the GHL for the summer commercial fishery was 

determined by a prediction model and the model estimated predicted biomass: (1) 0% harvest 

rate of legal crab when estimated legal biomass < 1.5 million lb; (2) ≤ 5% of legal male 

abundance when the estimated legal biomass falls within the range 1.5-2.5 million lb; and (3) 

≤ 10% of legal male when estimated legal biomass >2.5 million lb.  

In 2012 a revised GHL for the summer commercial fishery was implemented: (1) 0% harvest 

rate of legal crab when estimated legal biomass < 1.25 million lb; (2) ≤ 7% of legal male 

abundance when the estimated legal biomass falls within the range 1.25-2.0 million lb; (3) ≤ 

13% of legal male abundance when the estimated legal biomass falls within the range 2.0-3.0 

million lb; and (3) ≤ 15% of legal male biomass when estimated legal biomass >3.0 million 

lb.  

In 2015 the Alaska Board of Fisheries passed the following regulations regarding winter 

commercial fisheries:  

1. Revised GHL to include all fisheries (winter, summer, commercial, and subsistence).  

2. Set guideline harvest level for winter commercial fishery (GHLw) at 8% of the total 

GHL (i.e., GHLw = 0.08 x GHL), and summer commercial guideline harvest level 

(GHLs) be remainder of total GHL (i.e., GHLs = GHL - winter comm. harvest  - 

winter subsistence harvest).  

3. Date of the winter red king crab commercial fishing season is from January 15 to 

April 30. 

 
Year  Notable historical management changes 

1976 The abundance survey started 

1977 Large vessel commercial fisheries began 
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1991 Fishery closed due to staff constraints 

1994 Super exclusive designation went into effect. The end of large vessel commercial fishery 

operation. The majority of commercial fishery subsequently shifted to east of 164oW longitude.  

1998 Community Development Quota (CDQ) allocation went into effect  

1999 Guideline Harvest Level (GHL) went into effect  

2000 North Pacific License Limitation Program (LLP) went into effect.  

2002 Change in closed water boundaries (Figure 2)  

2005 Commercially accepted legal crab size changed from ≥ 4-3/4 inch CW to  ≥ 5 inch CW  

2006 The Statistical area Q3 section expanded (Figure 1) 

2008 Start date of the open access fishery changed from July1 to after June 15 by emergency order. 

Pot configuration requirement: at least 4 escape rings (>4½ inch diameter) per pot located within 

one mesh of the bottom of the pot, or at least ½ of the vertical surface of a square pot or sloping 

side-wall surface of a conical or pyramid pot with mesh size > 6½ inches. 

2012 The Board of Fisheries adopted a revised GHL for summer fishery. 

2016 Winter GHL for commercial fisheries was established and modified winter fishing season dates 

were implemented. 

 

7. Summary of the history of the BMSY. 

NSRKC is a Tier4 crab stock. Direct estimation of the BMSY is not possible. The BMSY proxy 

is calculated as mean model estimated mature male biomass (MMB) from 1980 to present. 

Choice of this period was based on a hypothesized shift in stock productivity a due to a 

climatic regime shift indexed by the Pacific Decadal Oscillation (PDO) in 1976-77. Stock 

status of the NSRKC was Tier 4a until 2013. In 2014 the stock fell to Tier 4b, but came back 

to Tire 4a in 2015. 

     

D. Data 

1. Summary of new information: 

Trawl survey:  

 

Trawl survey report is published as ADFG report. The report is available at  

http://www.adfg.alaska.gov/FedAidPDFs/FDS15-40.pdf 

 

Winter commercial and subsistence fishery: 

 

Winter commercial fishery catch in 2015 was 41,046 crabs (98,750 lb.), which was the highest 

harvest record since development of its fishery. Subsistence crab catch was 7,651 (15,302 lb., 

Table 2). 

 

Summer commercial fishery: 

 

The summer commercial fishery opened on June 29 and closed on July 24 due to meeting the 

GHL. This was the shortest fishery in the history. A total of 144,255 crabs (401,115 lb.) were 

harvested (Table 1).  
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Total harvest for 2015 season was 192,952 crabs (515,167 lb.) and did not exceed the 2015 

ABC of 0.58 million lb.  

 

 

2. Available survey, catch, and tagging data   

 Years Data Types Tables 

Summer trawl survey 76,79,82,85,88,91,96, 99, 

02,06,08,10,11, 14 

Abundance  3 

Length proportion 5, Figure 3 

Winter pot survey 81-87, 89-91,93,95-00,02-12 Length proportion 6, Figure 3 

Summer commercial 

fishery 

76-90,92-15 Retained catch 1 

Standardized CPUE, 1 

Length proportion 4, Figure 3 

Summer commercial 

Discards 

87-90,92,94, 2012-2014 Length proportion  

(sublegal only) 

7, Figure 3 

Winter subsistence fishery 76-15 Total catch  2 

Retained catch 2 

Winter commercial fishery 78-15 Retained catch  2 

Tag recovery  80-15 Recovered tagged crab 8  

 

 

Data available but not used for assessment 

Data Years Data Types Reason  for not used 

Summer pot survey 80-82,85 Abundance  Uncertainties on how estimates 

were made. Length proportion 

Summer preseason survey 95 Length proportion Just one year of data 

Summer subsistence fishery 2005-2013 retained catch  Too few catches compared to 

commercial  

Winter Pot survey -87, 89-91,93,95-

00,02-12 

CPUE, 

Length  

Not reliable due to ice 

conditions 

Winter Commercial  2015 Length proportion Years of data too short 

Preseason Spring pot 

survey  

2011-15 CPUE,  

Length proportion 

Years of data too short 

Postseason Fall pot survey 2013-15 CPUE, 

Length proportion 

Years of data too short 

 

 

 

Abundance 

Length 

comp 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Survey

Trawl Abundance X

Winter Pot X

Fishery

Summer
CPUE, 

Catch X

Discards X

Winter Catch

Tagging X

Data Not Used

Summer Pot Abundance X

Prefishery X

Spring Tagging X

Fall Tagging X
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Catches in other fisheries  

In Norton Sound, no other crab, groundfish, or shellfish fisheries exist.  

 

 Fishery Data availability 

Bycatch in other crab 

fisheries 

Does not exist NA 

Bycatch in groundfish pot Does not exist NA 

Bycatch in groundfish trawl Does not exist NA 

Bycatch in the scallop fishery Does not exist NA 

 

3. Other miscellaneous data: 

Spring offshore migration distance and direction (2013-2015) 

Monthly blood hormone level (indication of molting timing) (2014-2015) 

Data aggregated:  

Proportion of legal size crab, estimated from trawl survey and observer data. (Table 11) 

Data estimated outside the model:  

Summer commercial catch standardized CPUE (Table 1) 

 

E. Analytic Approach 

 

1. History of the modeling approach. 

The Norton Sound red king crab stock was assessed using a length-based synthesis model 

(Zheng et al. 1998). Since adoption of the model, the major challenge is a conflict 

between model projection and data, specifically the model projects higher abundance-

proportion of the largest size class of crab than in seen in data.  This problem was further 

exasperated when natural mortality M was set as 0.18 from previous M = 0.3 in 2011 

(SAFE 2011).  This problem was examined and resolved by increasing M of the largest 

length crabs to 3.6×M or M = 0.648 (SAFE 2012). Profile likelihood analyses have been 

conducted several times, which resulted in the lowest likelihood at M = 0.34 (SAFE 

2012, 2013). However, even at this higher M, the model was not able to resolve poor fits 

to the commercial catch.  Profile likelihood of commercial catch was lowest around M = 

0.5 or greater.  

 

From 2013 to 2014, the NSRKC model was thoroughly examined by the CPT during the 

modeling workshop. The workshop improved the model fit thorough excluding some data 

(summer pot survey), revising the trawl survey abundance estimates, standardizing 

commercial catch CPUE, including tag recovery data to estimate the growth transition 

matrix within the model, and changing weights in the likelihood. However, the issue of M 
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was not addressed in this workshop. For the 2016 assessment we again examined the 

influence of M on model performance.  

 

Historical Model configuration progression:  

 

2011 (SAFE 2011) 

1. M =0.18 

2. M of the last length class = 0.288 

3. Include summer commercial discards mortality = 0.2 

4. Weight of fishing effort = 20,  

5. The maximum effective sample size for commercial catch and winter surveys = 100,  

 

2012 (SAFE 2012)  

1. M of the last length class = 3.6×M 

2. The maximum effective sample size for commercial catch and winter surveys = 50, 

3. Weight of fishing effort = 50. 

 

2013 (SAFE 2013)  

1. Standardize commercial catch cpue and replace likelihood of commercial catch 

efforts to standardized commercial catch cpue with weight = 1.0 

2. Eliminate summer pot survey data from likelihood 

3. Estimate survey q of 1976-1991 NMFS survey with maximum of 1.0 

4. The maximum effective sample size for commercial catch and winter surveys = 20. 

 

2014 (SAFE 2014) 

1. Modify functional form of selectivity and molting probability to improve parameter 

estimates (2 parameter logistic to 1 parameter logistic) 

2. Include additional variance for the standardized cpue. 

3. Include winter pot survey cpue (But was removed from the final model due to lack of 

fit)  

4. Estimate growth transition matrix from tagged recovery data.  

 

2015 (SAFE 2015) 

1. Winter pot survey selectivity is an inverse logistic, estimating selectivity of the 

smallest length group independently  

2. Reduce Weight of tag-recovery: W = 0.5 

3. Model parsimony: one  trawl survey selectivity and one commercial pot selectivity  

 

 

2. Model Description 

a. Description of overall modeling approach:  

The model is a male-only size structured model that combines multiple sources of 

survey, catch, and mark-recovery data using a maximum likelihood approach to 

estimate abundance, recruitment, catchability of the commercial pot gear, and 

parameters for selectivity and molting probabilities (See Appendix A for full model 

description). 
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b-f. See Appendix A. 

 

g. Critical assumptions of the model: 

 

i. Male crab mature at CL length 94mm. 

Size at maturity of the NSRKC (CL 94 mm) was determined by adjusting that of BBRKC 

(CL 120mm) reflecting their slower growth and smaller size.   

 

ii. Molting events in fall after the fishery 

iii. Instantaneous natural mortality M is 0.18 for all length classes, except for the last 

length group (> 123mm) where M is 3.6 times higher (0.648). M is constant over 

time.  

iv. Trawl survey selectivity is a logistic function with 1.0 for length classes 5-6. . 

Selectivity is constant over time.  

 

v. Winter pot survey selectivity is a dome shaped function: Reverse logistic function 

of 1.0 for length class CL 84mm, and model estimate for CL < 84mm length 

classes. Selectivity is constant over time.  

This assumption is based on the fact that low proportion of large crabs caught in 

nearshore area where the winter surveys occur. Causes of this have been argued: 

(1) large crab do not migrate into nearshore in winter, or (2) large crab are fished 

out by winter fisheries where the survey occurs (i.e., local depletion). Recent 

studies suggest that the former was more likely the cause (Jennifer Bell, ADFG, 

personal communication).   
 

 

vi. Summer commercial fisheries selectivity is an asymptotic logistic function of 1.0 

at the length class CL 124mm. While fishery changed greatly between the periods 

of 1977-1992 and 1993-present in terms of fishing vessel composition and pot 

configuration, the selectivity of each period was assumed to be identical. Model 

fits of separating and combining two periods were examined in 2015, which 

showed no difference between the two models (SAFE 2015). For model 

parsimony, the two were combined.  

 

vii. Summer trawl survey selectivity is an asymptotic logistic function of 1.0 at the 

length of CL 124mm. While the survey changed greatly between NOAA (1976-

1991) and ADF&G (1996-present) in terms of survey vessel and trawl net 

structure, selectivity of both periods was assumed to be identical. Model fits 

separating and combining the two surveys were examined in 2015. No differences 

between the two model were observed (SAFE 2015) and for model parsimony the 

two were combined.  
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viii. Winter commercial and subsistence fishery selectivity and length-shell conditions 

are the same as those of the winter pot survey. All winter commercial and 

subsistence harvests occur February 1st.  

Winter commercial king crab pots can be any dimension (5AAC 34.925(d)). No 

length composition data exists for crab harvested in the winter commercial or 

subsistence fisheries. However, because commercial fishers are also subsistence 

fishers, it is reasonable to assume that the commercial fishers used crab pots that 

they use for subsistence harvest, and hence both fisheries have the same 

selectivity. 
 

ix. Growth increments are a function of length, are constant over time, estimated 

from tag recovery data. 
 

x. Molting probability is an inverse logistic function of length for males.  
 

xi. A summer fishing season for the directed fishery is short. All summer commercial 

harvests occur July 1st.  

 

xii. Discards handling mortality for all fisheries is 20%.  
  No empirical estimate is available. 

     

xiii. Annual retained catch is measured without error. 
 

xiv. All legal size crab (≥ 4-3/4 inch CW) are retained. 
 

Since 2005, buyers announced that only legal crab with  ≥ 5 inch CW are acceptable for 

purchase. Since samples are taken at a commercial dock, it was anticipated that this 

change would lower the proportion of legal crab for length class 4. However, the model 

was not sensitive to this change  (SAFE 2013). 
 

xv. All sublegal size crab or commercially unacceptable size crab (< 5 inch CW, since 

2005) are discarded.  
 

xvi. Length compositions have a multinomial error structure and abundance has a log-

normal error structure.  

 

h. Changes of assumptions since last assessment: 

None. 

i. Code validation 

The model code was reviewed at the CPT modeling workshop in 2013 and 2014. It is 

available from the authors. 

 

 

3. Model Selection and Evaluation 
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a. Description of alternative model configurations. 

 

CPT did not recommend any future model modifications in Jan 2015, except for fixing 

the trawl survey selectivity parameter. Here, we examined 3 major model scenarios: (1) 

estimate multiplier of the last length class natural mortality multiplier (ms) from the 

model, (2) estimate M equal for all length classes from the model, and (3) estimate M and 

ms from the model. For data input, we examined 3 scenarios: (1) expand length classes 

(2) change growth increment interval from 10 mm to 5 mm, and (3) both  (1) and (2).  

Increasing length ranges or reducing growth increment interval increases use of data. 

This may increase the number of parameters to be estimated, but may also improve 

model fit.  
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List of model scenarios considered.  

 

 

Scenario 

Length 

Range  

Length 

Interval 
M 

ms 

(> 123mm) 

0 (Default) 74-124 10 0.18 3.6 

1   0.18 Est 

2   Est 1.0 

3   Est Est 

4 64-134 10 0.18 3.6 

5   0.18 Est 

6   Est 1.0 

7   Est Est 

8 74-124 5 0.18 3.6 

9   0.18 Est 

10   Est 1.0 

11   Est Est 

12 64-134 5 0.18 3.6 

13   0.18 Est 

14   Est 1.0 

15   Est Est 

Est: model estimated.  

 

b. Evaluation of alternative models results:  

For model 1 to 15 

Model Number of 

Parameters 

Total TSA St. 

CPUE 

TLP WLP CLP OBS REC TAG 

0 59 310.9 9.7 -21.7 124.5 44.6 59.7 33.5 12.0 48.6 

1 60 310.8 9.6 -21.7 124.2 44.6 60.1 33.5 12.1 48.4 
2 60 324.2 9.3 -21.2 120.1 44.8 72.1 34.4 11.2 53.4 
3 61 310.7 9.6 -21.6 123.6 44.3 60.5 33.5 11.9 48.8 

4 61 292.9 10.0 -21.1 102.0 42.3 58.0 29.8 12.3 59.5 
5 62 293.0 10.0 -21.0 102.0 42.3 58.2 29.8 12.3 59.5 
6 62 314.0 9.9 -20.9 103.3 45.1 69.7 31.4 11.4 64.1 
7 63 292.6 9.9 -21.1 102.6 42.2 57.9 29.5 12.4 59.2 

8 60 353.2 9.8 -22.1 119.4 43.7 63.4 30.5 11.6 96.8 
9 61 353.1 9.8 -22.1 119.1 43.6 63.8 30.4 11.6 96.8 

10 61 366.3 9.5 -21.7 116.7 46.3 71.2 32.1 11.0 101.2 
11 62 352.8 9.8 -22.1 118.3 43.8 63.7 30.7 11.5 97.0 

12 64 354.8 10.3 -21.3 101.9 44.7 62.5 28.0 12.3 116.3 
13 65 354.8 10.3 -21.3 101.9 44.7 62.5 28.0 12.3 116.3 
14 65 378.4 10.2 -21.2 104.6 49.0 73.3 29.8 11.6 121.0 
15 66 354.3 10.2 -21.3 102.1 44.3 62.9 27.6 12.4 116.1 

TSA: Trawl survey abundance 

St. CPUE:  Summer commercial catch standardized cpue 

TLP:  Trawl survey length composition:  

WLP:  Winter pot survey length composition 

CLP:  Summer commercial catch length composition 

REC:  Recruitment deviation 
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OBS:  Summer Commercial catch Observer discards length composition 

TAG: Tagging recovery data composition  

 

 

Estimated M, ms, MMB (2016) and OFL. Bold fonts are model estimate.  

Model M ms MMB(2016) OFL 

0 0.18 3.6 5.99 0.85 

1 0.18 3.42 5.78 0.82 
2 0.42 1 6.15 1.74 
3 0.21 2.96 6.03 0.78 

4 0.18 3.6 5.88 0.77 
5 0.18 3.56 5.87 0.77 
6 0.4 1 5.81 1.42 
7 0.14 4.61 6.54 0.81 

8 0.18 3.6 6.50 0.86 
9 0.18 3.45 6.46 0.85 

10 0.41 1 6.63 1.64 
11 0.22 2.78 6.54 1.02 

12 0.18 3.6 6.17 0.76 
13 0.18 3.60 6.17 0.76 
14 0.39 1 6.16 1.33 
15 0.14 4.82 6.05 0.59 

 

c. Search for balance: 

 

Diagnostics and output from alternative models are detailed in Appendices C1 (model 0) to 

C16 (model 15) Among all alternative models, major differences are: estimate M of the 

largest length class, estimate M for all lengths equal, estimate M and the largest length class, 

increase range of length classes, and decrease increments length class.  Estimating M 

multiplier of the largest length class (ms) did not change model fit (Model 0 vs. Model 1), 

indicating that ms = 3.6 is still a valid assumption. Estimating M (Model 0 vs. Model 2) 

improved fits of trawl survey length composition, but worsened fit of commercial fishery 

length composition and tag recovery. The model tends to overestimate commercial catch 

proportion of largest length class or underestimate that of middle length crabs. We also 

attempted to estimate selectivity of the largest length class as separate parameter, which 

allows model to choose dome shaped selectivity.  However, the estimate was 1.0. Estimate of 

M was 0.42 that was more than twice higher than the default assumption of M = 0.18. Profile 

analyses showed that each likelihood components had different information about M 

(Appendix B1); however, except for winter pot and observer length comp, all other 

likelihood components were minimized at M ranging 0.3 to 0.6.  This suggests that under the 

assumption of constant natural mortality across length classes and current model 

configurations, the data do not support the assumption of M = 0.18. Estimating both M and 

that of the largest length class (Model 0 vs. Model 3) did not change model fit. Estimated M 

was 0.21 for all and 0.617 (ms = 2.96) for the largest length class, similar to model 

assumption. This suggests that given available data and model configuration, assuming 
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higher mortality for the largest length classes is the best option. This also suggests that if M = 

0.18 across all length classes is true then model structure may need to be re-examined. 

Increasing the length classes (Model 0 vs. Model 4) or decreasing length category interval 

from 10 mm to 5 mm (Model 0 vs. Model 8) can increase use of more data and thus may 

yield better estimates for selectivities and molting probability.  Regardless, all models had 

similar fit to trawl survey abundance and standardized CPUE.  

 

Projected MMB for 2016 was similar across models ranging from 5.8 to 6.6 million lb. On 

the other hand, estimates of OFL differed greatly across the models because of differences in 

M.  Considering all factors, we initially considered alternative models 0, 1, 5, and 13 for the 

2016 assessment.  Among the 4 models, Model 5 had the lowest Mohn’s rho (Model 0: -

0.482, Model 1: -0.556, Model 5:  0.115, Model 13:  0.924). While Mohn’s rho has no cut-

off criteria to which a model is deemed unacceptable, a model with Mohn’s roh closer to 0 is 

generally considered a better model. Thus, we recommend the Model 5 for the 2016 

assessment model.  

 

4. Results 

 

1. List of effective sample sizes and weighting factors (Figure 4) 

“Implied” effective sample sizes were calculated as  

2

,,,, )ˆ()ˆ1(ˆ
ly

l

lyly

l

ly PPPPn    

   Where 
lyP ,
and

lyP ,
ˆ  are observed and estimated length compositions in year y and length 

group l, respectively. Estimated effective sample sizes vary greatly over time.  

 

Maximum sample size for length proportion: 

 

Survey data Sample size 

Summer commercial, winter pot,  

and summer observer 
minimum of 0.1× actual sample size or 10 

Summer trawl and pot survey  minimum of 0.5× actual sample size or 20 

   

2. Tables of estimates. 

a. Model parameter estimates (Tables 10, 11, 12, 13).  

 

  

b. Abundance and biomass time series (Table 14) 
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c. Recruitment time series (Table 14).  

 

d. Time series of catch/biomass (Tables 14 and 15)  

 

3. Graphs of estimates. 

a. Molting probability and trawl/pot selectivity (Figure 5) 

b. Trawl survey and model estimated trawl survey abundance (Figure 6)  

c. Estimated male abundances (recruits, legal, and total) (Figure 7) 

d. Estimated mature male biomass (Figure 8) 

e. Time series of standardized cpue for the summer commercial fishery (Figure 9). 

f. Time series of catch and estimated harvest rate (Figure 10). 

 

4. Evaluation of the fit to the data. 

 

a. Fits to observed and model predicted catches.  

Not applicable. Catch is assumed to be measured without error; however fits of cpue 

are available (Figures 9, 11). 

 

b. Model fits to survey numbers (Figures 6, 11). 

 

All model estimated abundances of total crab were within the 95% confidence interval of 

the survey observed abundance, except for 1976 and 1979, where model estimates were 

higher than the observed abundances.   

 

  c. Fits of catch proportions by lengths (Figures 12, 13). 

 

d. Model fits to catch and survey proportions by length (Figures 12, 14, 15, 16). 

     

e. Marginal distribution for the fits to the composition data 

 

f. Plots of implied versus input effective sample sizes and time-series of implied effective 

sample size (Figure 4).  

 

g. Tables of RMSEs for the indices:   

 

 Trawl survey:  0.36 

 Summer commercial standardized CPUE: 0.5. 

   

 

h. QQ plots and histograms of residuals (Figure 11).  
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5. Retrospective and prospective analyses (Figure 17,18). 

6. Uncertainty and sensitivity analyses. 

See Sections 2 and 5. 

 

F. Calculation of the OFL 

 

1. Specification of the Tier level and stock status.  

 

The Norton Sound red king crab stock is placed in Tier 4. It is not possible to estimate the 

spawner-recruit relationship, but some abundance and harvest estimates are available to build a 

computer simulation model that captures the essential population dynamics. Tier 4 stocks are 

assumed to have reliable estimates of current survey biomass and instantaneous M; however, the 

estimates for the Norton Sound red king crab stock are uncertain. Survey biomass is based on 

triennial trawl surveys with CVs ranging from 15-42% (Table 4).  

   

Tire 4 level and the OFL are determined by the FMSY proxy, BMSY proxy, and estimated legal male 

abundance and biomass:  

 

level Criteria FOFL 

a 1/ proxMSY
BB  MFOFL   

b 1/  proxMSY
BB  )1/()/(   proxMSYOFL BBMF  

c proxMSY
BB /  0&  FfisherydirectedmortalitybycatchFOFL

 

 

where B is a mature male biomass (MMB), BMSY proxy is average mature male biomass over a 

specified time period,  M = 0.18,  = 1, α = 0.1, and β = 0.25 

 

For Norton Sound red king crab, MMB is defined as the biomass of males > 94 mm CL on 

February 01 (Appendix A).  BMSY proxy is  

 

BMSY proxy = average model estimated MMB from 1980-2016  

 

Predicted mature male biomass in 2016 in February 01 is: 
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Mature male biomass :  5.87 (SD 1.12) million lb.  

 

Estimated BMSY proxy is:  

 

4.53 million lb. 

 

Since projected MMB is greater than BMSY proxy, Norton Sound red king crab stock status is 

Tire 4 a.  

 

2. Calculation of OFL. 

 

The OFL was calculated for retained, unretained, and total male catch, in which OFL is calculated 

by applying FOFL control rule to crab abundance estimates.  

 

BLegalFOFL OFL _))exp(1(   

 

Legal_B, biomass of legal crab subject to fisheries is calculated as : Projected abundance by length 

crab × fishing selectivity by length crab × Proportion of legal crab per length class × Average lb per 

length class (Appendix A) 

The Norton Sound red king crab fishery consists of a small (1-17% of total catch biomass) winter 

subsistence and commercial fishery from January to May and summer commercial fishery (83-99% 

of total catch biomass) from mid-June to September. The two fisheries use different fishing gears 

and thus have different catch selectivities (Figure 5, Table 11).    

In determination of OFL, Legal_B should be biomass right before the majority of fisheries occur 

that is July 01, which is calculated as: (Feb 1st abundance – winter fishery harvests – winter fishery 

discards × handling mortality) × natural mortality from Feb 1st to June 30th.   However, because 

model assessment is based on February 01 population, and winter fishery is yet to occur, predicted 

July 01 population cannot be calculated directly.    

Hence, under the direction of the CPT (Jan 12, 2016), the crab abundance (Legal_B) used for 

calculation of the OFL the July 01 Legal_B was calculated as: Projected legal abundance (Feb 1st) × 

Commercial pot selectivity × Proportion of legal crab per length class × average lb per length class 

× natural mortality from February 1st to July 1st.    

M

lllsl,wl,w

l

ewmLSON=BLegal
42.0

,,, ))((_
  

BLegalFOFL OFLr _))exp(1(   

For next year (2017) calculation of (Legal_B) will be updated to incorporate projected winter 

fishery removal. 
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The unretained OFL is a sub-legal crab biomass catchable to summer commercial pot fisheries 

calculated as: Projected legal abundance (Feb 1st) × Commercial pot selectivity × Proportion of 

sub-legal crab per length class × Average lb per length class × handling mortality.   

 

hmwmLSONFOFL lllsl,sl,s

l

OFLnr )1()())exp(1( ,,,    

where Ns,l and Os,l are summer abundances of newshell and oldshell crab in length class l in the 

terminal year, Ll is the proportion of legal males in length class l, Ss,l  is summer commercial catch 

selectivity, wml is average weight in length class l and hm is handling mortality rate. .  

 

The total male OFL is  

                                    

OFLOFLOFL rT nr
  

 

For calculation of the OFL 2016  

 

Legal male biomass (July 01):  4.31 (SD 0.89) million lb 

OFLr =  0.710 million lb.  

OFLnr =  0.180 million lb.  

OFLT =  0.890 million lb. 

 

 

G. Calculation of the ABC  

 

1. Specification of the probability distribution of the OFL.  

Probability distribution of the OFL was determined based on the CPT recommendation in 

January 2015 of 20% buffer:  

 

Retained ABC for legal male crab is 80% of OFL 

 

 

ABC = 0.710× 0.8 = 0.568 million lb.  

 

 

H. Rebuilding Analyses  

Not applicable 
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I. Data Gaps and Research Priorities 
 

The major data gap is the fate of crab greater than 123 mm.   
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Figure 1. King crab fishing districts and sections of Statistical Area Q. 
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Figure 2. Closed water regulations in effect for the Norton Sound commercial crab fishery. 
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Figure 3. Observed length compositions 1976-2015.  
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Figure 4. Effective sample size vs. implied sample size. Figures in the first column show effective 

sample size (x-axis) vs. frequency (y-axis). Vertical solid line is the implied sample size. Figures in the 

second column show implied sample size (x-axis) vs. effective sample size (y-axis).  Dashed line 

indicates linear regression slope, and solid line is 1:1 line.  Figures in the third column show year (x-

axis) vs. effective sample size (y-axis). 
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Figure 5. Molting probability and trawl/pot selectivities. 
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Figure 6. Estimated trawl survey male abundance with 95% lognormal Confidence Interval (crab ≥ 74 

mm CL).  
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Figure 7. Estimated abundances of legal and recruits males from 1976-2015. 
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Figure 8. Estimated MMB from 1976-2015. Dash line shows Bmsy (Average MMB of 1980-2016). 

Black points indicate projected MMB of 2016. 
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Figure 9. Summer commercial standardized cpue. Black line is input SD and red line is input and estimated 

additional SD.  
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Figure 10. Commercial Catch and estimated harvest rate of legal male.  
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Figure 11. Residual and QQ plot.  
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Figure 12. Bubble plot of predicted and observed length proportion (Alternative model 0). Black circle 

indicates model estimates lower than observed, white circle indicates model estimates higher than 

observed. Size of circle indicate degree of deviance (larger circle = larger deviance).  
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Figure 13. Predicted (dashed line) vs. observed (black dots) length class proportion for the summer 

commercial catch. 
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Figure 14. Predicted vs. observed length class proportion for winter pot survey. 
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Figure 15. Predicted vs. observed length class proportion for trawl survey and commercial observer. 
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Figure 16. Predicted vs. observed length class proportion for tag recovery data 1980-1992, and 1993-2014. 
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Figure 17. Retrospective analyses. Each line shows retrospective MMB.  Model 5 
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Figure 18. Retrospective analyses. Each line shows retrospective MMB.  Model 13 
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Table 1. Historical summer commercial red king crab fishery economic performance, Norton Sound 

Section, eastern Bering Sea, 1977-2014. Bold type shows data that are used for the assessment 

model. 
  Guideline  Commercial                      Mid-

day 

from 

July 1 

 

 Harvest  Harvest (lb) a, b             

 

 
Level Open   Total Number  (Open Access) 

CDQ) 
 Total Pots ST CPUE    Season Length 

Year  (lb) b       Access CDQ Harvest 

(lb) 

 

Vessels Permits Landings   Registered Pulls CPUE SD Days Dates 

1977 c 0.52  195,877 7 7 13   5,457 4.18 0.34 60 c 0.03 

1978 3.00 2.09  660,829 8 8 54   10,817 2.21 0.23 60 6/07-8/15 0.03 

1979 3.00 2.93  970,962 34 34 76   34,773 3.09 0.18 16 7/15-7/31 0.063 

1980 1.00 1.19  329,778 9 9 50   11,199 3.03 0.26 16 7/15-7/31 0.063 

1981 2.50 1.38  376,313 36 36 108   33,745 0.89 0.19 38 7/15-8/22 0.093 

1982 0.50 0.23  63,949 11 11 33   11,230 0.11 0.25 23 8/09-9/01 0.14 

1983 0.30 0.37  132,205 23 23 26  3,583 11,195 1.00 0.22 3.8 8/01-8/05 0.093 

1984 0.40 0.39  139,759 8 8 21  1,245 9,706 0.94 0.23 13.6 8/01-8/15 0.107 

1985 0.45 0.43  146,669 6 6 72  1,116 13,209 0.34 0.20 21.7 8/01-8/23 0.132 

1986 0.42 0.48  162,438 3 3   578 4,284 0.76 0.41 13 8/01-8/25 0.153 

1987 0.40 0.33  103,338 9 9   1,430 10,258 0.57 0.32 11 8/01-8/12 0.118 

1988 0.20 0.24  76,148 2 2   360 2,350 1.44 0.67 9.9 8/01-8/11 0.115 

1989 0.20 0.25  79,116 10 10   2,555 5,149 1.80 0.32 3 8/01-8/04 0.096 

1990 0.20 0.19  59,132 4 4   1,388 3,172 1.13 0.40 4 8/01-8/05 0.099 

1991 0.34   0 No Summer Fishery         

1992 0.34 0.07  24,902 27 27   2,635 5,746 0.30 0.31 2 8/01-8/03 0.093 

1993 0.34 0.33  115,913 14 20 208  560 7,063 0.91 0.10 52 7/01-8/28 0.09 

1994 0.34 0.32  108,824 34 52 407  1,360 11,729 0.81 0.06 31 7/01-7/31 0.044 

1995 0.34 0.32  105,967 48 81 665  1,900 18,782 0.43 0.05 67 7/01-9/05 0.066 

1996 0.34 0.22  74,752 41 50 264  1,640 10,453 0.51 0.08 57 7/01-9/03 0.096 

1997 0.08 0.09  32,606 13 15 100  520 2,982 0.85 0.10 44 7/01-8/13 0.101 

1998 0.08 0.03 0.00 10,661 8 11 50  360 1,639 0.80 0.13 65 7/01-9/03 0.088 

1999 0.08 0.02 0.00 8,734 10 9 53  360 1,630 0.93 0.13 66 7/01-9/04 0.101 

2000 0.33 0.29 0.01 111,728 15 22 201  560 6,345 1.26 0.06 91 7/01- 9/29 0.11 

2001 0.30 0.28 0.00 98,321 30 37 319  1,200 11,918 0.66 0.05 97 7/01- 9/09 0.085 

2002 0.24 0.24 0.01 86,666 32 49 201  1,120 6,491 1.25 0.06 77 6/15-9/03 0.074 

2003 0.25 0.25 0.01 93,638 25 43 236   960 8,494 0.88 0.05 68 6/15-8/24 0.079 

2004 0.35 0.31 0.03 120,289 26 39 227  1,120 8,066 1.37 0.05 51 6/15-8/08 0.063 

2005 0.37 0.37 0.03 138,926 31 42 255  1,320 8,867 1.26 0.05 73 6/15-8/27 0.071 

2006 0.45 0.42 0.03 150,358 28 40 249  1,120 8,867 1.38 0.05 68 6/15-8/22 0.09 

2007 0.32 0.29 0.02 110,344 38 30 251  1,200 9,118 1.07 0.05 52 6/15-8/17 0.063 

2008 0.41 0.36 0.03 143,337 23 30 248  920 8,721 1.42 0.05 73 6/23-9/03 0.063 

2009 0.38 0.37 0.03 143,485 22 27 359   920 11,934 0.89 0.04 98 6/15-9/20 0.1 

2010 0.40 0.39 0.03 149,822 23 32 286  1,040 9,698 1.27 0.04 58 6/28-8/24 0.096 

2011 0.36 0.37 0.03 141,626 24 25 173  1,040 6,808 1.62 0.05 33 6/28-7/30 0.038 

2012 0.47 0.44 0.03 161,113 40 29 312  1,200 10,041 1.34 0.04 72 6/29-9/08 0.077 

2013 0.50 0.37 0.02 130,603 37 33 460  1,420 15,058 0.69 0.04 74 7/3-9/14 0.107 

2014 0.38 0.36 0.03 129,657 52 33 309  1,560 10,127 1.16 0.05 52 6/25-8/15 0.052 

2015 0.39 0.37 0.03 144,255 42 36 251  1,480 8,356 1.53 0.05 26 6/29-7/24 0.030 
a Deadloss included in total. b Millions of pounds. c Information not available. 
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Table 2. Historical winter commercial and subsistence red king crab fisheries, Norton Sound 

Section, eastern Bering Sea, 1977-2015. Bold typed data are used for the assessment model.  
   Commercial Subsistence  

Model 

Year Yeara 
# of  
Fish

ers 

# of Crab 

Harvested 

  

Winterb 

Permits Total Crab 

Issued Returned Fished Caughtc Retainedd 

1978 1978 37 9,625 1977/78 290 206 149 NA 12,506 

1979 1979 1f 221f 1978/79 48 43 38 NA 224 

1980 1980 1f 22f 1979/80 22 14 9 NA 213 

1981 1981 0 0 1980/81 51 39 23 NA 360 

1982 1982 1f 17f 1981/82 101 76 54 NA 1,288 

1983 1983 5 549 1982/83 172 106 85 NA 10,432 

1984 1984 8 856 1983/84 222 183 143 15,923 11,220 

1985 1985 9 1,168 1984/85 203 166 132 10,757 8,377 

1986 1985/86 5 2,168 1985/86 136 133 107 10,751 7,052 

1987 1986/87 7 1,040 1986/87 138 134 98 7,406 5,772 

1988 1987/88 10 425 1987/88 71 58 40 3,573 2,724 

1989 1988/89 5 403 1988/89 139 115 94 7,945 6,126 

1990 1989/90 13 3,626 1989/90 136 118 107 16,635 12,152 

1991 1990/91 11 3,800 1990/91 119 104 79 9,295 7,366 

1992 1991/92 13 7,478 1991/92 158 105 105 15,051 11,736 

1993 1992/93 8 1,788 1992/93 88 79 37 1,193 1,097 

1994 1993/94 25 5,753 1993/94 118 95 71 4,894 4,113 

1995 1994/95 42 7,538 1994/95 166 131 97 7,777 5,426 

1996 1995/96 9 1,778 1995/96 84 44 35 2,936 1,679 

1997 1996/97 2f 83f 1996/97 38 22 13 1,617 745 

1998 1997/98 5 984 1997/98 94 73 64 20,327 8,622 

1999 1998/99 5 2,714 1998/99 95 80 71 10,651 7,533 

2000 1999/00 10 3,045 1999/00 98 64 52 9,816 5,723 

2001 2000/01 3 1,098 2000/01 50 27 12 366 256 

2002 2001/02 11 2,591 2001/02 114 61 45 5,119 2,177 

2003 2002/03 13 6,853 2002/03 107 70 61 9,052 4,140 

2004 2003/04 2f 522 f 2003/04g 96 77 41 1,775 1,181 

2005 2004/05 4 2,091 2004/05 170 98 58 6,484 3,973 

2006 2005/06 1f 75f 2005/06 98 97 67 2,083 1,239 

2007 2006/07 8 3,313 2006/07 129 127 116 21,444 10,690 

2008 2007/08 9 5,796 2007/08 139 137 108 18,621 9,485 

2009 2008/09 7 4,951 2008/09 105 105 70 6,971 4,752 

2010 2009/10 10 4,834 2009/10 125 123 85 9,004 7,044 

2011 2010/11 5 3,365 2010/11 148 148 95 9,183 6,640 

2012 2011/12 35 9,157 2011/12 204 204 138 11,341 7,311 

2013 2012/13 26 22,639 2012/13 149 148 104 21,524 7,622 

2014 2013/14 21 14,986 2013/14 103 103 75 5,421 3,252 

2015 2014/15 44 41,046 2014/15 155 153 107 9,840 7,651 

a  Prior to 1985 the winter commercial fishery occurred from January 1 - April 30. As of March 1985, fishing may occur from 

November 15 - May 15. 

b The winter subsistence fishery occurs during months of two calendar years (as early as December, through May). 

c  The number of crab actually caught; some may have been returned. 

d  The number of crab Retained is the number of crab caught and kept. 

f  Confidentiality was waived by the fishers. 

h  Prior to 2005, permits were only given out of the Nome ADF&G office. Starting with the 2004-5 season, permits were given out in 

Elim, Golovin, Shaktoolik, and White Mountain. 
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Table 3. Summary of triennial trawl survey Norton Sound male red king crab abundance estimates. 

Trawl survey abundance estimate is based on 10×10 nmil2 grid, except for 2010 (20×20 nmil2).   

 
         Survey coverage Abundance 

≥74 mm 

Year Dates 
Survey  

Agency 

Survey  

method 

 

surveyed  

stations 

 

Stations w/ 

NSRKC 

 

n mile2 

covered 

 CV 

1976 9/02 - 9/05 NMFS Trawl 103 

 

62 10260 4247.5 0.31 
1979 7/26 - 8/05 NMFS Trawl 85 

 

 

22 8421 1417.2 0.20 
1980 7/04 - 7/14 ADFG Pots    2092.3 

 

N/A 
1981 6/28 - 7/14 ADFG Pots    2153.4 N/A 
1982 7/06 - 7/20 ADFG Pots    1140.5 N/A 
1982 9/05 - 9/11 NMFS Trawl 58 37 5721 2791.7 0.29 
1985 7/01 - 7/14 ADFG Pots    2320.4 0.083 
1985 9/16 -10/01 NMFS Trawl 78 49 7688 2306.3 0.25 
1988 8/16 - 8/30 NMFS Trawl 78 41 7721 2263.4 0.29 
1991 8/22 - 8/30 NMFS Trawl 52 38 5183 3132.5 0.43 
1996 8/07 - 8/18 ADFG Trawl 50 30 4938 1264.7 0.317 
1999 7/28 - 8/07 ADFG Trawl 53 31 5221 2276.1 0.194 
2002 7/27 - 8/06 ADFG Trawl 57 37 5621 1747.6 0.125 
2006 7/25 - 8/08 ADFG Trawl 101 45 10008 2549.7 0.288 
2008 7/24 - 8/11 ADFG Trawl 74 44 7330 2707.1 0.164 
2010a 7/27 - 8/09 NMFS Trawl 35 15 13749 2041.0 

 

0.455 
2011 7/18 - 8/15 ADFG Trawl 65 34 6447 2701.7 0.133 
2014 7/18 - 7/30 ADFG Trawl 47 34 4700 5481.5 0.486 
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Table 4. Summer commercial catch size/shell compositions. Sizes in this and Tables 5-10 and 12 

are mm carapace length. Legal size (4.75 inch carapace width is approximately equal to 124 mm 

carapace length. 

Model 5 data 
    New Shell    Old Shell 

Year Sample 
64-

73 
74-83 

84-93 94-

103 

104-

113 

114-

123 

124-

133 
134+ 

64-

73 

74-

83 

84-

93 

94-

103 

104-

113 

114-

123 

124-

133 
134+ 

1977 1549 0 0 0 0.00 0.42 0.34 0.08 0.05 0 0 0 0.00 0.06 0.04 0.01 0.00 
1978 389 0 0 0 0.01 0.19 0.47 0.26 0.04 0 0 0 0.00 0.01 0.01 0.01 0.00 
1979 1660 0 0 0 0.03 0.23 0.38 0.26 0.07 0 0 0 0.00 0.03 0.00 0.00 0.01 
1980 1068 0 0 0 0.00 0.10 0.31 0.37 0.18 0 0 0 0.00 0.00 0.01 0.02 0.01 
1981 1784 0 0 0 0.00 0.07 0.15 0.28 0.23 0 0 0 0.00 0.00 0.05 0.12 0.09 
1982 1093 0 0 0 0.04 0.19 0.16 0.22 0.29 0 0 0 0.00 0.01 0.02 0.03 0.03 
1983 802 0 0 0 0.04 0.41 0.36 0.06 0.03 0 0 0 0.00 0.04 0.01 0.02 0.02 
1984 963 0 0 0 0.10 0.42 0.28 0.06 0.01 0 0 0 0.01 0.07 0.05 0.01 0.00 
1985 2691 0 0 0.00 0.06 0.31 0.37 0.15 0.02 0 0 0 0.00 0.03 0.03 0.01 0.00 
1986 1138 0 0 0 0.03 0.36 0.39 0.12 0.02 0 0 0 0.00 0.02 0.04 0.02 0.00 
1987 1985 0 0 0 0.02 0.18 0.29 0.27 0.11 0 0 0 0.00 0.03 0.06 0.03 0.01 
1988 1522 0 0.00 0 0.02 0.20 0.30 0.18 0.04 0 0 0 0.01 0.06 0.10 0.07 0.02 
1989 2595 0 0 0 0.01 0.16 0.32 0.17 0.05 0 0 0 0.00 0.06 0.12 0.09 0.02 
1990 1289 0 0 0 0.01 0.14 0.35 0.26 0.07 0 0 0 0.00 0.04 0.07 0.05 0.01 
1991                  
1992 2566 0 0 0 0.02 0.20 0.27 0.14 0.09 0 0 0 0.00 0.08 0.13 0.06 0.02 
1993 17804 0 0 0 0.01 0.23 0.39 0.23 0.03 0 0 0 0.00 0.02 0.04 0.03 0.01 
1994 404 0 0 0 0.02 0.09 0.08 0.07 0.02 0 0 0 0.02 0.19 0.25 0.20 0.05 
1995 1167 0 0 0 0.04 0.26 0.29 0.15 0.05 0 0 0 0.01 0.05 0.07 0.06 0.01 
1996 787 0 0 0 0.03 0.22 0.24 0.09 0.05 0 0 0 0.01 0.12 0.14 0.08 0.02 
1997 1198 0 0 0 0.03 0.37 0.34 0.10 0.03 0 0 0 0.00 0.06 0.04 0.03 0.01 
1998 1055 0 0 0 0.03 0.23 0.24 0.08 0.03 0 0 0 0.02 0.11 0.14 0.08 0.03 
1999 562 0 0 0 0.06 0.29 0.24 0.18 0.09 0 0 0 0.00 0.02 0.05 0.04 0.00 
2000 17213 0 0 0 0.02 0.30 0.39 0.11 0.02 0 0 0 0.00 0.05 0.07 0.04 0.01 
2001 20030 0 0 0 0.02 0.22 0.37 0.21 0.07 0 0 0 0.00 0.02 0.05 0.02 0.01 
2002 5219 0 0 0 0.04 0.23 0.28 0.25 0.07 0 0 0 0.00 0.03 0.04 0.03 0.01 
2003 5226 0 0 0 0.02 0.37 0.32 0.12 0.03 0 0 0 0.00 0.02 0.05 0.05 0.01 
2004 9606 0 0 0 0.01 0.38 0.39 0.11 0.03 0 0 0 0.00 0.03 0.03 0.01 0.01 
2005 5360 0 0 0 0.00 0.25 0.47 0.16 0.02 0 0 0 0.00 0.02 0.05 0.02 0.01 
2006 6707 0 0 0 0.00 0.18 0.35 0.17 0.02 0 0 0 0.00 0.05 0.14 0.07 0.01 
2007 6125 0 0 0 0.01 0.36 0.34 0.14 0.03 0 0 0 0.00 0.02 0.06 0.03 0.01 
2008 5766 0 0 0 0.00 0.35 0.35 0.06 0.01 0 0 0 0.00 0.09 0.09 0.04 0.01 
2009 6026 0 0 0 0.01 0.34 0.33 0.11 0.02 0 0 0 0.00 0.08 0.08 0.02 0.01 
2010 5902 0 0 0 0.01 0.39 0.36 0.10 0.01 0 0 0 0.00 0.05 0.05 0.02 0.00 
2011 2552 0 0 0 0.00 0.32 0.40 0.12 0.02 0 0 0 0.00 0.06 0.06 0.02 0.00 
2012 5056 0 0 0 0.00 0.24 0.46 0.18 0.02 0 0 0 0.00 0.03 0.04 0.02 0.00 
2013 6072 0 0 0 0.00 0.24 0.37 0.24 0.06 0 0 0 0.00 0.01 0.04 0.02 0.00 
2014 4682 0 0 0 0.01 0.28 0.24 0.18 0.07 0 0 0 0.00 0.04 0.09 0.07 0.02 
2015 4173 0 0 0 0.01 0.48 0.28 0.10 0.03 0 0 0 0.00 0.02 0.03 0.03 0.01 
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Model 13 data 
    New Shell     

Year Sample 
64-

68 

79-

73 

74-

78 

79-

83 
84-88 89-93 

94-

98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1977 1549 0 0 0 0 0.00 0.00 0.00 0.00 0.15 0.27 0.22 0.12 0.05 0.02 0.05 
1978 389 0 0 0 0 0.00 0.00 0.00 0.01 0.04 0.14 0.23 0.24 0.17 0.10 0.04 
1979 1660 0 0 0 0 0.00 0.00 0.00 0.03 0.09 0.14 0.20 0.19 0.16 0.10 0.07 
1980 1068 0 0 0 0 0.00 0.00 0.00 0.00 0.04 0.05 0.12 0.18 0.19 0.18 0.18 
1981 1784 0 0 0 0 0.00 0.00 0.00 0.00 0.03 0.05 0.06 0.09 0.13 0.15 0.23 
1982 1093 0 0 0 0 0.00 0.00 0.00 0.04 0.09 0.10 0.07 0.09 0.10 0.12 0.29 
1983 802 0 0 0 0 0.00 0.00 0.00 0.04 0.16 0.25 0.23 0.13 0.04 0.02 0.03 
1984 963 0 0 0 0 0.00 0.00 0.01 0.09 0.21 0.21 0.16 0.12 0.04 0.02 0.01 
1985 2691 0 0 0 0 0.00 0.00 0.00 0.06 0.14 0.17 0.19 0.19 0.11 0.05 0.02 
1986 1138 0 0 0 0 0.00 0.00 0.00 0.03 0.14 0.22 0.23 0.16 0.08 0.04 0.02 
1987 1985 0 0 0 0 0.00 0.00 0.00 0.02 0.05 0.13 0.14 0.15 0.14 0.13 0.11 
1988 1522 0 0 0 0 0.00 0.00 0.00 0.02 0.06 0.14 0.16 0.15 0.10 0.08 0.04 
1989 2595 0 0 0 0 0.00 0.00 0.00 0.01 0.07 0.10 0.15 0.16 0.11 0.06 0.05 
1990 1289 0 0 0 0 0.00 0.00 0.00 0.01 0.05 0.09 0.17 0.18 0.16 0.10 0.07 
1991                 
1992 2566 0 0 0 0 0.00 0.00 0.00 0.02 0.08 0.12 0.14 0.12 0.08 0.05 0.09 
1993 17804 0 0 0 0 0.00 0.00 0.00 0.01 0.09 0.14 0.19 0.20 0.15 0.08 0.03 
1994 404 0 0 0 0 0.00 0.00 0.00 0.02 0.04 0.05 0.03 0.05 0.04 0.03 0.02 
1995 1167 0 0 0 0 0.00 0.00 0.00 0.04 0.10 0.17 0.15 0.14 0.09 0.06 0.05 
1996 787 0 0 0 0 0.00 0.00 0.00 0.03 0.10 0.12 0.13 0.11 0.05 0.04 0.05 
1997 1198 0 0 0 0 0.00 0.00 0.00 0.03 0.13 0.24 0.22 0.13 0.07 0.03 0.03 
1998 1055 0 0 0 0 0.00 0.00 0.00 0.02 0.08 0.16 0.14 0.11 0.05 0.03 0.03 
1999 562 0 0 0 0 0.00 0.00 0.00 0.06 0.13 0.17 0.12 0.12 0.11 0.08 0.09 
2000 17213 0 0 0 0 0.00 0.00 0.00 0.02 0.10 0.19 0.23 0.16 0.08 0.03 0.02 
2001 20030 0 0 0 0 0.00 0.00 0.00 0.02 0.09 0.14 0.21 0.16 0.13 0.07 0.07 
2002 5219 0 0 0 0 0.00 0.00 0.00 0.04 0.10 0.13 0.13 0.15 0.15 0.10 0.07 
2003 5226 0 0 0 0 0.00 0.00 0.00 0.02 0.14 0.23 0.20 0.12 0.07 0.05 0.03 
2004 9606 0 0 0 0 0.00 0.00 0.00 0.01 0.11 0.28 0.24 0.15 0.07 0.04 0.03 
2005 5360 0 0 0 0 0.00 0.00 0.00 0.00 0.05 0.20 0.26 0.21 0.12 0.04 0.02 
2006 6707 0 0 0 0 0.00 0.00 0.00 0.00 0.04 0.14 0.18 0.17 0.12 0.06 0.02 
2007 6125 0 0 0 0 0.00 0.00 0.00 0.01 0.13 0.23 0.19 0.15 0.09 0.05 0.03 
2008 5766 0 0 0 0 0.00 0.00 0.00 0.00 0.10 0.25 0.23 0.12 0.04 0.01 0.01 
2009 6026 0 0 0 0 0.00 0.00 0.00 0.01 0.12 0.22 0.19 0.14 0.08 0.04 0.02 
2010 5902 0 0 0 0 0.00 0.00 0.00 0.01 0.11 0.28 0.23 0.13 0.07 0.03 0.01 
2011 2552 0 0 0 0 0.00 0.00 0.00 0.00 0.09 0.23 0.25 0.15 0.08 0.04 0.02 
2012 5056 0 0 0 0 0.00 0.00 0.00 0.00 0.06 0.18 0.25 0.21 0.13 0.05 0.02 
2013 6072 0 0 0 0 0.00 0.00 0.00 0.00 0.07 0.16 0.19 0.18 0.15 0.10 0.06 
2014 4682 0 0 0 0 0.00 0.00 0.00 0.01 0.11 0.17 0.13 0.11 0.09 0.09 0.07 
2015 4173 0 0 0 0 0.00 0.00 0.00 0.01 0.19 0.28 0.19 0.10 0.06 0.04 0.03 
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Model 13 data 
    Old Shell     

Year Sample 
64-

68 

79-

73 

74-

78 

79-

83 
84-88 89-93 

94-

98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1977 1549 0 0 0 0 0.00 0.00 0.00 0.00 0.02 0.04 0.03 0.01 0.01 0.00 0.00 
1978 389 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 
1979 1660 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 
1980 1068 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 
1981 1784 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.05 0.07 0.09 
1982 1093 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.03 
1983 802 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.02 
1984 963 0 0 0 0 0.00 0.00 0.00 0.01 0.04 0.03 0.03 0.02 0.00 0.00 0.00 
1985 2691 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.01 0.01 0.00 0.00 
1986 1138 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.00 
1987 1985 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.03 0.02 0.01 0.01 
1988 1522 0 0 0 0 0.00 0.00 0.00 0.01 0.03 0.04 0.05 0.05 0.05 0.02 0.02 
1989 2595 0 0 0 0 0.00 0.00 0.00 0.00 0.02 0.03 0.06 0.06 0.06 0.03 0.02 
1990 1289 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.03 0.03 0.02 0.01 
1991                 
1992 2566 0 0 0 0 0.00 0.00 0.00 0.00 0.03 0.05 0.07 0.06 0.03 0.03 0.02 
1993 17804 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.01 
1994 404 0 0 0 0 0.00 0.00 0.00 0.02 0.09 0.10 0.10 0.15 0.11 0.09 0.05 
1995 1167 0 0 0 0 0.00 0.00 0.00 0.01 0.02 0.03 0.03 0.04 0.04 0.03 0.01 
1996 787 0 0 0 0 0.00 0.00 0.00 0.01 0.05 0.07 0.08 0.06 0.04 0.03 0.02 
1997 1198 0 0 0 0 0.00 0.00 0.00 0.00 0.03 0.03 0.02 0.02 0.02 0.01 0.01 
1998 1055 0 0 0 0 0.00 0.00 0.00 0.02 0.05 0.06 0.08 0.06 0.05 0.04 0.03 
1999 562 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.02 0.04 0.01 0.00 
2000 17213 0 0 0 0 0.00 0.00 0.00 0.00 0.02 0.03 0.03 0.03 0.02 0.01 0.01 
2001 20030 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.02 0.02 0.01 0.01 
2002 5219 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.01 0.01 
2003 5226 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.01 
2004 9606 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.01 0.01 0.01 0.01 
2005 5360 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.02 0.01 0.01 0.01 
2006 6707 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.04 0.07 0.07 0.05 0.02 0.01 
2007 6125 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.02 0.01 0.01 
2008 5766 0 0 0 0 0.00 0.00 0.00 0.00 0.03 0.06 0.05 0.04 0.02 0.01 0.01 
2009 6026 0 0 0 0 0.00 0.00 0.00 0.00 0.02 0.05 0.05 0.03 0.01 0.01 0.01 
2010 5902 0 0 0 0 0.00 0.00 0.00 0.00 0.02 0.04 0.03 0.02 0.02 0.01 0.00 
2011 2552 0 0 0 0 0.00 0.00 0.00 0.00 0.02 0.04 0.03 0.02 0.01 0.00 0.00 
2012 5056 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.01 0.01 0.00 
2013 6072 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.01 0.01 0.00 
2014 4682 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.05 0.04 0.03 0.02 
2015 4173 0 0 0 0 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.01 

1233



Table 5. Summer Trawl Survey size/shell compositions. 

Model 5 data 

    New Shell   Old Shell 

Year Sample 
64-

73 

74-

83 

84-

93 

94-

103 

104-

113 

114-

123 

124-

133 
134+ 

64-

73 

74-

83 

84-

93 

94-

103 

104-

113 

114-

123 

124-

133 
134+ 

1976 1326 0.01 0.02 0.10 0.19 0.34 0.18 0.02 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.01 0.01 
1979 220 0.01 0.01 0.00 0.02 0.05 0.05 0.03 0.01 0.01 0.00 0.01 0.04 0.14 0.40 0.19 0.03 
1982 327 0.22 0.07 0.16 0.23 0.17 0.03 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.02 0.02 0.03 
1985 350 0.11 0.11 0.19 0.17 0.16 0.06 0.01 0.00 0.00 0.00 0.00 0.02 0.05 0.08 0.05 0.01 
1988 366 0.16 0.19 0.12 0.13 0.11 0.06 0.03 0.00 0.00 0.00 0.01 0.01 0.03 0.07 0.05 0.03 
1991 340 0.18 0.08 0.02 0.03 0.06 0.03 0.01 0.01 0.03 0.06 0.02 0.08 0.16 0.14 0.09 0.02 
1996 269 0.29 0.21 0.13 0.09 0.05 0.00 0.00 0.01 0.00 0.00 0.03 0.03 0.04 0.04 0.04 0.03 
1999 283 0.03 0.01 0.10 0.29 0.26 0.13 0.03 0.01 0.00 0.00 0.00 0.03 0.05 0.04 0.02 0.00 
2002 244 0.09 0.12 0.14 0.11 0.02 0.03 0.02 0.01 0.01 0.03 0.07 0.10 0.09 0.09 0.05 0.02 
2006 373 0.18 0.26 0.21 0.11 0.06 0.04 0.02 0.00 0.00 0.00 0.00 0.02 0.04 0.04 0.01 0.00 
2008 275 0.12 0.15 0.21 0.11 0.10 0.03 0.02 0.01 0.00 0.01 0.04 0.06 0.08 0.01 0.04 0.00 
2010 69 0.01 0.04 0.06 0.17 0.06 0.03 0.00 0.00 0.00 0.03 0.09 0.20 0.19 0.07 0.03 0.01 
2011 315 0.13 0.11 0.09 0.11 0.18 0.14 0.03 0.01 0.00 0.00 0.01 0.02 0.09 0.04 0.03 0.00 
2014 391 0.08 0.15 0.24 0.18 0.09 0.02 0.01 0.01 0.00 0.00 0.03 0.10 0.05 0.04 0.01 0.00 
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Model 13 data 

    New Shell    

Year Sample 
64-

68 

79-

73 

74-

78 

79-

83 

84-

88 

89-

93 

94-

98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1976 1326 0.00 0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.16 0.18 0.13 0.05 0.02 0.01 0.00 
1979 220 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.02 0.03 0.02 0.01 0.01 
1982 327 0.14 0.08 0.04 0.03 0.06 0.10 0.09 0.14 0.10 0.06 0.02 0.01 0.00 0.00 0.00 
1985 350 0.05 0.06 0.05 0.05 0.08 0.11 0.09 0.08 0.08 0.08 0.03 0.03 0.01 0.00 0.00 
1988 366 0.09 0.08 0.10 0.09 0.06 0.06 0.07 0.06 0.06 0.04 0.03 0.02 0.02 0.01 0.00 
1991 340 0.09 0.09 0.06 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.03 0.00 0.01 0.01 0.01 
1996 269 0.09 0.20 0.10 0.11 0.07 0.06 0.06 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.01 
1999 283 0.02 0.01 0.00 0.01 0.03 0.07 0.10 0.19 0.14 0.12 0.09 0.04 0.03 0.00 0.01 
2002 244 0.07 0.03 0.07 0.05 0.06 0.07 0.07 0.05 0.01 0.00 0.01 0.02 0.02 0.00 0.01 
2006 373 0.08 0.11 0.12 0.14 0.11 0.10 0.06 0.06 0.04 0.02 0.01 0.03 0.01 0.01 0.00 
2008 275 0.07 0.06 0.07 0.08 0.11 0.11 0.05 0.06 0.06 0.04 0.03 0.00 0.01 0.01 0.01 
2010 69 0.00 0.01 0.01 0.03 0.04 0.01 0.09 0.09 0.03 0.03 0.00 0.03 0.00 0.00 0.00 
2011 315 0.05 0.08 0.09 0.03 0.04 0.05 0.05 0.06 0.07 0.11 0.08 0.06 0.03 0.01 0.01 
2014 391 0.04 0.04 0.06 0.09 0.10 0.14 0.11 0.07 0.06 0.03 0.01 0.01 0.01 0.01 0.01 
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Model 13 data 

    Old Shell    

Year Sample 
64-

68 

79-

73 

74-

78 

79-

83 

84-

88 

89-

93 

94-

98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1976 1326 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.00 0.01 0.01 
1979 220 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.04 0.10 0.16 0.24 0.12 0.07 0.03 
1982 327 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.03 
1985 350 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.04 0.03 0.02 0.01 
1988 366 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.03 0.03 0.04 0.03 0.02 0.03 
1991 340 0.01 0.02 0.04 0.02 0.01 0.01 0.04 0.04 0.08 0.08 0.07 0.07 0.05 0.04 0.02 
1996 269 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03 
1999 283 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.02 0.02 0.01 0.02 0.00 0.00 
2002 244 0.00 0.01 0.01 0.02 0.02 0.05 0.06 0.05 0.05 0.04 0.05 0.04 0.03 0.02 0.02 
2006 373 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.01 0.00 0.00 
2008 275 0.00 0.00 0.00 0.01 0.02 0.03 0.02 0.04 0.03 0.05 0.00 0.01 0.01 0.02 0.00 
2010 69 0.00 0.00 0.03 0.00 0.04 0.04 0.07 0.13 0.06 0.13 0.07 0.00 0.01 0.01 0.01 
2011 315 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.05 0.04 0.02 0.03 0.01 0.02 0.00 
2014 391 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.05 0.02 0.03 0.03 0.01 0.01 0.00 0.00 
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Table 6. Winter pot survey size/shell compositions. 

Model 5 data 

     New Shell   Old Shell 

Year 
CPUE 

Sample 64-73 74-83 
84-

93 

94-

103 

104-

113 

114-

123 

124-

133 
134+ 

64-

73 

74-

83 

84-93 94-

103 

104-

113 

114-

123 

124-

133 
134+ 

1981/82 NA 719 0.00 0.10 0.23 0.21 0.07 0.02 0.02 0.00 0.00 0.05 0.11 0.11 0.04 0.02 0.02 0.00 

1982/83 24.2 2583 0.03 0.08 0.28 0.28 0.21 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 

1983/84 24.0 1677 0.01 0.16 0.26 0.23 0.15 0.06 0.01 0.00 0.00 0.00 0.00 0.02 0.06 0.03 0.01 0.01 

1984/85 24.5 789 0.02 0.09 0.25 0.35 0.16 0.06 0.01 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.00 0.00 

1985/86 19.2 594 0.04 0.12 0.17 0.24 0.19 0.08 0.01 0.00 0.00 0.00 0.00 0.01 0.06 0.04 0.01 0.00 

1986/87 5.8 144 0.00 0.06 0.15 0.19 0.07 0.04 0.00 0.00 0.00 0.00 0.01 0.04 0.30 0.11 0.03 0.00 

1987/88        

1988/89 13.0 500 0.02 0.13 0.15 0.13 0.19 0.17 0.03 0.00 0.00 0.00 0.00 0.00 0.05 0.08 0.03 0.00 

1989/90 21.0 2076 0.00 0.05 0.21 0.26 0.18 0.12 0.06 0.01 0.00 0.00 0.00 0.00 0.03 0.06 0.02 0.00 

1990/91 22.9 1283 0.00 0.01 0.09 0.29 0.27 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.12 0.07 0.02 

1992/93 5.5 181 0.00 0.01 0.03 0.06 0.13 0.12 0.03 0.00 0.00 0.00 0.00 0.02 0.19 0.27 0.10 0.05 

1993/94        

1994/95 6.2 858 0.01 0.06 0.08 0.10 0.26 0.23 0.07 0.01 0.00 0.00 0.00 0.00 0.03 0.07 0.06 0.02 

1995/96 9.9 1580 0.06 0.14 0.20 0.19 0.11 0.07 0.03 0.00 0.00 0.00 0.00 0.01 0.06 0.07 0.03 0.01 

1996/97 2.9 398 0.07 0.21 0.22 0.11 0.15 0.11 0.05 0.01 0.00 0.00 0.00 0.00 0.02 0.03 0.01 0.01 

1997/98 10.9 881 0.00 0.14 0.41 0.27 0.05 0.02 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.02 0.02 0.01 

1998/99 10.7 1307 0.00 0.02 0.12 0.36 0.36 0.08 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.00 

1999/00 6.2 575 0.02 0.09 0.10 0.16 0.33 0.18 0.03 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.01 0.00 

2000/01 3.1 44      

2001/02 13.0 828 0.05 0.29 0.26 0.17 0.06 0.06 0.04 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 

2002/03 9.6 824 0.02 0.10 0.22 0.28 0.18 0.06 0.02 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.01 

2003/04 3.7 296 0.00 0.02 0.16 0.26 0.32 0.14 0.01 0.00 0.00 0.00 0.01 0.02 0.02 0.01 0.02 0.01 

2004/05 4.4 405 0.00 0.07 0.14 0.18 0.22 0.19 0.07 0.00 0.00 0.00 0.00 0.00 0.04 0.06 0.01 0.00 

2005/06 6.0 512 0.00 0.14 0.23 0.21 0.16 0.05 0.02 0.00 0.00 0.01 0.01 0.02 0.04 0.07 0.03 0.01 

2006/07 7.3 159 0.07 0.14 0.19 0.35 0.13 0.04 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.00 0.00 

2007/08 25.0 3552 0.01 0.14 0.25 0.17 0.14 0.07 0.01 0.00 0.01 0.04 0.07 0.03 0.03 0.01 0.01 0.00 

2008/09 21.9 525 0.00 0.07 0.13 0.35 0.20 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.10 0.00 0.00 

2009/10 25.3 578 0.01 0.05 0.13 0.21 0.24 0.11 0.02 0.00 0.00 0.00 0.01 0.06 0.10 0.05 0.01 0.00 

2010/11 22.1 596 0.02 0.08 0.13 0.20 0.17 0.13 0.05 0.00 0.00 0.00 0.01 0.03 0.11 0.05 0.01 0.00 

2011/12 29.4 675 0.03 0.11 0.23 0.19 0.12 0.13 0.04 0.00 0.00 0.00 0.00 0.01 0.05 0.05 0.03 0.00 
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Model 13 data 

     New Shell    

Year 
CPUE 

Sample 64-68 79-73 
74-

78 

79-

83 
84-88 89-93 94-98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1981/82 NA 719 0.00 0.00 0.03 0.07 0.09 0.13 0.12 0.09 0.04 0.03 0.01 0.01 0.01 0.01 0.00 

1982/83 24.2 2583 0.01 0.02 0.03 0.06 0.12 0.16 0.14 0.14 0.11 0.10 0.05 0.02 0.01 0.00 0.00 

1983/84 24.0 1677 0.00 0.01 0.05 0.11 0.14 0.11 0.12 0.11 0.09 0.06 0.04 0.02 0.00 0.00 0.00 

1984/85 24.5 789 0.01 0.01 0.03 0.06 0.09 0.16 0.21 0.14 0.10 0.05 0.04 0.02 0.00 0.00 0.00 

1985/86 19.2 594 0.01 0.03 0.06 0.07 0.07 0.10 0.13 0.12 0.09 0.10 0.06 0.02 0.01 0.00 0.00 

1986/87 5.8 144 0.00 0.00 0.02 0.03 0.06 0.10 0.09 0.10 0.03 0.04 0.03 0.01 0.00 0.00 0.00 

1987/88        

1988/89 13.0 500 0.00 0.01 0.05 0.08 0.10 0.05 0.06 0.08 0.10 0.09 0.11 0.06 0.02 0.01 0.00 

1989/90 21.0 2076 0.00 0.00 0.01 0.04 0.08 0.13 0.14 0.12 0.09 0.09 0.06 0.06 0.04 0.02 0.01 

1990/91 22.9 1283 0.00 0.00 0.01 0.00 0.03 0.06 0.12 0.17 0.15 0.11 0.07 0.03 0.01 0.00 0.00 

1992/93 5.5 181 0.00 0.00 0.00 0.01 0.01 0.03 0.03 0.02 0.06 0.07 0.09 0.03 0.02 0.01 0.00 

1993/94        

1994/95 6.2 858 0.00 0.01 0.02 0.04 0.04 0.04 0.05 0.05 0.11 0.15 0.14 0.10 0.05 0.03 0.01 

1995/96 9.9 1580 0.02 0.05 0.06 0.07 0.08 0.12 0.11 0.09 0.07 0.05 0.03 0.03 0.02 0.01 0.00 

1996/97 2.9 398 0.01 0.06 0.11 0.11 0.12 0.10 0.06 0.05 0.06 0.09 0.06 0.05 0.02 0.03 0.01 

1997/98 10.9 881 0.00 0.00 0.03 0.11 0.19 0.22 0.16 0.10 0.04 0.02 0.02 0.01 0.00 0.00 0.00 

1998/99 10.7 1307 0.00 0.00 0.01 0.01 0.04 0.08 0.14 0.22 0.22 0.14 0.06 0.02 0.01 0.00 0.00 

1999/00 6.2 575 0.01 0.01 0.04 0.05 0.04 0.06 0.07 0.09 0.15 0.18 0.12 0.06 0.03 0.00 0.00 

2000/01 3.1 44      

2001/02 13.0 828 0.01 0.04 0.13 0.17 0.14 0.12 0.10 0.07 0.04 0.03 0.03 0.03 0.03 0.01 0.01 

2002/03 9.6 824 0.01 0.01 0.04 0.06 0.09 0.13 0.16 0.12 0.10 0.08 0.04 0.02 0.01 0.01 0.00 

2003/04 3.7 296 0.00 0.00 0.00 0.01 0.04 0.12 0.12 0.14 0.14 0.18 0.10 0.04 0.01 0.01 0.00 

2004/05 4.4 405 0.00 0.00 0.03 0.04 0.06 0.08 0.08 0.10 0.11 0.10 0.11 0.08 0.04 0.03 0.00 

2005/06 6.0 512 0.00 0.00 0.04 0.10 0.12 0.11 0.12 0.09 0.09 0.07 0.03 0.03 0.02 0.00 0.00 

2006/07 7.3 159 0.03 0.04 0.04 0.09 0.03 0.16 0.19 0.16 0.09 0.04 0.02 0.03 0.00 0.00 0.00 

2007/08 25.0 3552 0.00 0.01 0.04 0.11 0.12 0.13 0.09 0.08 0.07 0.07 0.04 0.02 0.00 0.00 0.00 

2008/09 21.9 525 0.00 0.00 0.02 0.05 0.04 0.09 0.15 0.20 0.13 0.07 0.05 0.03 0.01 0.00 0.00 

2009/10 25.3 578 0.00 0.01 0.01 0.03 0.04 0.09 0.09 0.12 0.12 0.12 0.08 0.03 0.01 0.01 0.00 

2010/11 22.1 596 0.00 0.02 0.02 0.05 0.07 0.07 0.09 0.12 0.08 0.09 0.07 0.06 0.03 0.02 0.00 

2011/12 29.4 675 0.00 0.02 0.05 0.06 0.11 0.12 0.10 0.09 0.07 0.05 0.06 0.07 0.03 0.01 0.00 
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Model 13 data 

     Old Shell    

Year 
CPUE 

Sample 64-68 79-73 
74-

78 

79-

83 
84-88 89-93 94-98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1981/82 NA 719 0.00 0.00 0.02 0.03 0.05 0.07 0.06 0.05 0.03 0.01 0.01 0.01 0.01 0.01 0.00 

1982/83 24.2 2583 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 

1983/84 24.0 1677 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.03 0.02 0.01 0.00 0.00 0.01 

1984/85 24.5 789 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.02 0.01 0.00 0.00 0.00 

1985/86 19.2 594 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.03 0.02 0.02 0.01 0.00 0.00 

1986/87 5.8 144 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.15 0.15 0.08 0.03 0.02 0.01 0.00 

1987/88        

1988/89 13.0 500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.05 0.04 0.02 0.01 0.00 

1989/90 21.0 2076 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.03 0.01 0.01 0.00 

1990/91 22.9 1283 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.07 0.04 0.03 0.02 

1992/93 5.5 181 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.06 0.14 0.10 0.17 0.06 0.05 0.05 

1993/94        

1994/95 6.2 858 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.03 0.03 0.02 

1995/96 9.9 1580 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.04 0.03 0.02 0.01 0.01 

1996/97 2.9 398 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.02 0.01 0.00 0.01 

1997/98 10.9 881 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 

1998/99 10.7 1307 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 

1999/00 6.2 575 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.02 0.01 0.00 0.01 0.00 

2000/01 3.1 44      

2001/02 13.0 828 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 

2002/03 9.6 824 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 

2003/04 3.7 296 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.01 0.01 0.01 

2004/05 4.4 405 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.04 0.02 0.01 0.00 0.00 

2005/06 6.0 512 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.03 0.02 0.01 0.01 

2006/07 7.3 159 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.03 0.01 0.00 0.00 0.00 

2007/08 25.0 3552 0.00 0.01 0.01 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 

2008/09 21.9 525 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.04 0.00 0.00 0.00 

2009/10 25.3 578 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.05 0.05 0.03 0.03 0.01 0.00 0.00 

2010/11 22.1 596 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.05 0.06 0.03 0.02 0.01 0.00 0.00 

2011/12 29.4 675 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.03 0.03 0.02 0.01 0.00 
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Table 7. Summer commercial1987-1994, 2012-2015 observer discards size/shell compositions  

Model 5 data 
     New Shell Old Shell   

Year Sample 
64-

73 

74-

83 

84-

93 

94-

103 

104-

113 

114-

123 

124-

133 
134+ 

64-

73 

74-

83 

84-

93 

94-

103 

104-

113 

114-

123 

124-

133 
134+ 

1987 1146 0.06 0.19 0.32 0.33 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.00 

1988 722 0.01 0.04 0.15 0.48 0.14 0.00 0.00 0.00 0.00 0.01 0.03 0.10 0.04 0.00 0.00 0.00 

1989 1000 0.07 0.19 0.24 0.22 0.03 0.00 0.00 0.00 0.02 0.03 0.07 0.11 0.03 0.00 0.00 0.00 

1990 507 0.08 0.23 0.27 0.27 0.04 0.00 0.00 0.00 0.02 0.02 0.02 0.05 0.01 0.00 0.00 0.00 

1992 580 0.11 0.17 0.30 0.29 0.03 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.01 0.00 0.00 0.00 

1994 850 0.07 0.06 0.11 0.15 0.02 0.00 0.00 0.00 0.07 0.07 0.15 0.24 0.05 0.00 0.00 0.00 

2012 939 0.21 0.11 0.19 0.32 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 

2013 2617 0.34 0.29 0.16 0.16 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2014 1755 0.05 0.10 0.26 0.41 0.12 0.01 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.00 

2015 824 0.01 0.08 0.18 0.44 0.23 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 
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Model 13 data 
     New Shell   

Year Sample 
64-

68 

79-

73 

74-

78 

79-

83 

84-

88 

89-

93 

94-

98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1987 1146 0.02 0.04 0.08 0.11 0.13 0.19 0.18 0.15 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

1988 722 0.00 0.01 0.01 0.03 0.06 0.09 0.21 0.26 0.12 0.02 0.00 0.00 0.00 0.00 0.00 

1989 1000 0.02 0.05 0.10 0.09 0.10 0.14 0.13 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

1990 507 0.03 0.05 0.09 0.13 0.14 0.13 0.16 0.11 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

1992 580 0.04 0.07 0.07 0.10 0.14 0.15 0.15 0.14 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

1994 850 0.03 0.05 0.02 0.04 0.04 0.06 0.08 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

2012 939 0.11 0.10 0.06 0.05 0.09 0.10 0.15 0.17 0.09 0.01 0.01 0.00 0.00 0.00 0.00 

2013 2617 0.14 0.20 0.17 0.12 0.08 0.08 0.08 0.08 0.04 0.01 0.00 0.00 0.00 0.00 0.00 

2014 1755 0.01 0.03 0.04 0.06 0.10 0.16 0.19 0.22 0.10 0.02 0.01 0.00 0.00 0.00 0.00 

2015 824 0.00 0.01 0.02 0.06 0.07 0.11 0.15 0.29 0.19 0.04 0.01 0.01 0.00 0.00 0.00 

 

Model 13 data 
     Old Shell   

Year Sample 
64-

68 

79-

73 

74-

78 

79-

83 

84-

88 

89-

93 

94-

98 

99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

1987 1146 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1988 722 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.05 0.04 0.01 0.00 0.00 0.00 0.00 0.00 

1989 1000 0.01 0.01 0.01 0.02 0.03 0.04 0.06 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

1990 507 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

1992 580 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

1994 850 0.03 0.04 0.03 0.04 0.07 0.08 0.12 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.00 

2012 939 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

2013 2617 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2014 1755 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

2015 824 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
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Table 8 The number of tagged data released and recovered after 1 year (Y1) – 3 year (Y3) during 

1980-1992 and 1993-2015 periods.  

Model 5 data 

Release 

Length  

Class 

Recap 

Length  

Class 

1980-1992  1993-2014 

Y1 Y2 Y3 

 

Y1 Y2 Y3 
64 – 73 64 – 73        
64 – 73 74  -  83 1       
64 – 73 84  -  93 1    3 1  
64 – 73 94  - 103  1    4  
64 – 73 104 – 113      4 1 
64 – 73 114 – 123       2 
64 – 73 124 – 133        
64 – 73 134+        
74  -  83 74  -  83        
74  -  83 84  -  93     21   
74  -  83 94  - 103     22 10  
74  -  83 104 – 113  2   4 68 3 
74  -  83 114 – 123   2   3 2 
74  -  83 124 – 133        
74  -  83 134+        
84  -  93 84  -  93        
84  -  93 94  - 103 5    42 4  
84  -  93 104 – 113 10 2   80 20 6 
84  -  93 114 – 123  1 1  7 37 2 
84  -  93 124 – 133     1 1 2 
84  -  93 134+        
94  - 103 94  - 103 3    6 1  
94  - 103 104 – 113 31 1 1  144 19  
94  - 103 114 – 123 26 1 3  71 7 10 
94  - 103 124 – 133 2  1   8 6 
94  - 103 134+     1   
104 – 113 104 – 113 16    44 2  
104 – 113 114 – 123 34 13   73 22 4 
104 – 113 124 – 133 7 6 3  12 4 7 
104 – 113 134+        
114 – 123 114 – 123 16 2   62 4  
114 – 123 124 – 133 26 9 1  59 28 3 
114 – 123 134+ 5 1   19 4 2 
124 – 133 124 – 133 15    36 6  
124 – 133 134+ 10 4 2  10 8 4 

134+ 134+ 15 6 1  8   
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Model 13 data 

Release 

Length  

Class 

Recap 

Length  

Class 

1980-1992  1993-2014 

Y1 Y2 Y3 

 

Y1 Y2 Y3 
64-68 64-68        
64-68 69-73        
64-68 74-78 1       
64-68 79-83        
64-68 84-88        
64-68 89-93        
64-68 94-98        
64-68 99-103        
64-68 104-108      1  
64-68 109-113        
64-68 114-118        
64-68 119-123        
64-68 123-128        
64-68 129-133        
64-68 134+        
69-73 69-73        
69-73 74-78        
69-73 79-83        
69-73 84-88 1    3   
69-73 89-93      1  
69-73 94-98      2  
69-73 99-103  1    2  
69-73 104-108      2  
69-73 109-113      1 1 
69-73 114-118       1 
69-73 119-123        
69-73 123-128        
69-73 129-133        
69-73 134+        
74-78 74-78        
74-78 79-83        
74-78 84-88     5   
74-78 89-93     10   
74-78 94-98     1 1  
74-78 99-103      7  
74-78 104-108  1    10  
74-78 109-113      3  
74-78 114-118       2 
74-78 119-123   2     
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74-78 123-128        
74-78 129-133        
74-78 134+        
79-83 79-83        
79-83 84-88     1   
79-83 89-93     5   
79-83 94-98     17 1  
79-83 99-103     4 1  
79-83 104-108  1   3 20 1 
79-83 109-113     1 35 2 
79-83 114-118      3  
79-83 119-123        
79-83 123-128        
79-83 129-133        
79-83 134+        
84-88 84-88        
84-88 89-93        
84-88 94-98     5   
84-88 99-103     25 3  
84-88 104-108 2    8 1  
84-88 109-113  2   2 15 4 
84-88 114-118      22 1 
84-88 119-123        
84-88 123-128        
84-88 129-133      1  
84-88 134+        
89-93 89-93        
89-93 94-98        
89-93 99-103 5    12 1  
89-93 104-108 5    58  1 
89-93 109-113 3    12 4 1 
89-93 114-118  1 1   7 1 
89-93 119-123     5 6  
89-93 123-128     1  1 
89-93 129-133       1 
89-93 134+        
94-98 94-98        
94-98 99-103     1   
94-98 104-108 5    32 6  
94-98 109-113 14    84 7  
94-98 114-118 4    10  3 
94-98 119-123  1 3   4 5 
94-98 123-128 1  1   6 1 
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94-98 129-133 1       
94-98 134+     1   
99-103 99-103 3    5 1  
99-103 104-108     4   
99-103 109-113 12 1 1  24 6  
99-103 114-118 19    59 2 1 
99-103 119-123 3    2 1 1 
99-103 123-128      2 2 
99-103 129-133       3 
99-103 134+        
104-108 104-108 10    7   
104-108 109-113 1    4 1  
104-108 114-118 10 2   21 6 1 
104-108 119-123 15 3   20 4  
104-108 123-128 3 1 2  2 2 1 
104-108 129-133   1   1 3 
104-108 134+        
109-113 109-113     29   
109-113 114-118 5    1  1 
109-113 119-123  2   31 12 2 
109-113 123-128 9 6   10 1 1 
109-113 129-133 4 5     2 
109-113 134+        
114-118 114-118     24   
114-118 119-123 3    18 2  
114-118 123-128  2   22 7 2 
114-118 129-133 10 4   8 2 1 
114-118 134+ 2    1 1  
119-123 119-123 1    20   
119-123 123-128 12    5 4  
119-123 129-133 1    24 15  
119-123 134+ 13 5 1  18 3 2 
123-128 123-128 4 1   19 1  
123-128 129-133 3    6 1  
123-128 134+ 4 2 1  8 5 3 
129-133 129-133 12    11 4  
129-133 134+ 6 2 1  2 3 1 

134+ 134+ 15 6 1  8   
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Table 9. Summary of initial input parameter values and bounds for a length-based population model 

of Norton Sound red king crab. Parameters with “log_” indicate log scaled parameters. 

 
Parameter Parameter description Equation  

Number in 

Appendix A  

Lower  Upper  

log_q1 Commercial fishery catchability (1977-92)   (20) -32.5 8.5 

log_q2 Commercial fishery catchability (1993-2014)  (20) -32.5 10.0 

log_N76 Initial abundance  (1) 2.0 15.0 

R0 Mean Recruit  (13) 2.0 12.0 

log_σR
2 Recruit standard deviation  (13) -20.0 20.0 

a1 Parameter for intimal length proportion (2) -5.0 5.0 

a2 Parameter for intimal length proportion (2) -5.0 5.0 

a3 Parameter for intimal length proportion (2) -5.0 5.0 

a4 Parameter for intimal length proportion (2) -5.0 5.0 

a5 Parameter for intimal length proportion (2) -5.0 5.0 

r Proportion of length class 1 for recruit (14) 0.5 0.9 

log_ Inverse logistic molting parameter (15) -5.5 -2.0 

log_st1 Logistic trawl selectivity parameter (NMFS) (16) -15.0 -1.0 

log_st2 Logistic trawl selectivity parameter (ADF&G) (16) -15.0 -1.0 

log_w 

Logistic winter pot selectivity parameter  

Or  

Inverse logistic winter pot selectivity parameter  

(15,16) -10.0 10.0 

Sw6 / Sw1 

Winter pot selectivity of length class 6 (logistic), 

length class 1 (inverse logistic) 

(15,16) 0.1 1.0 

log_1 

Logistic commercial catch  selectivity parameter 

(1977-92)  

(16) -5.0 -1.0 

log_2 

Logistic commercial catch selectivity parameter 

(1993-2014) 

(16) -5.0 -1.0 

w2
t Additional varince for standard CPUE (31) 0.0 6.0 

q Survey q for NMFS trawl 1976-91 (31) 0.1 1.0 

σ Growth transition sigma  (17) 0.0 30.0 

β1 Growth transition mean (17) 0.0 20.0 

β2 Growth transition increment (17) 0.0 20.0 
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Table 10 . Summary of parameter estimates and standard deviations of Norton Sound red king crab. 

Model 5 

 
Estimate std.dev 

 
name Estimate std.dev 

log_q1 -6.9259 0.1906 

 
log_R13 -0.064742 0.36781 

log_q2 -6.7761 0.11195 

 
log_R14 -0.14998 0.44671 

log_N76 9.1231 0.15299 

 

a1 2.5859 4.3418 

R0 6.4911 0.090086 

 
a2 2.6678 4.2709 

log_σR
2 0.027945 0.44393 

 
a3 4.003 4.0705 

log_R77 -0.56982 0.37063 

 
a4 4.2557 4.0567 

log_R78 -0.71447 0.35474 

 
a5 4.4771 4.0493 

log_R79 0.24017 0.32398 

 
a6 3.6832 4.0742 

log_R80 0.34399 0.29828 

 
a7 2.0469 4.2894 

log_R81 0.31351 0.27449 

 
r1 14.988 63.407 

log_R82 0.40028 0.31875 

 

r2 14.626 63.407 

log_R83 0.58749 0.28078 

 
log_ -2.0122 0.016911 

log_R84 0.061908 0.31094 

 
log_st1 -2.6268 0.35705 

log_R85 0.45028 0.28276 

 
log_w -2.0465 0.050315 

log_R86 -0.008591 0.30533 

 
Sw1 0.070758 0.034013 

log_R87 -0.008095 0.26231 

 
Sw2 0.44402 0.10674 

log_R88 0.010236 0.2729 

 
log_1 -2.0887 0.057957 

log_R89 -0.39646 0.29694 

 
w2

t 0.075056 0.023717 

log_R90 -0.28167 0.26238 

 
q 0.74645 0.13422 

log_R91 -0.54566 0.2904 

 
σ 4.3015 0.26533 

log_R92 -0.74061 0.31228 

 
β1 10.292 0.80362 

log_R93 -0.61466 0.29318 

 

β2 8.1997 0.20266 

log_R94 -0.37182 0.26754 

 
M   

log_R95 -0.086911 0.24029 

 
ms 3.5552 0.31672 

log_R96 0.53258 0.21708 

    log_R97 -0.20834 0.31568 

    log_R98 -0.66352 0.31794 

    log_R99 -0.17289 0.31294 

    log_R00 0.14649 0.26868 

    log_R01 0.16903 0.25699 

    log_R02 0.006718 0.30956 

    log_R03 -0.31276 0.33503 

    log_R04 0.28697 0.24744 

    log_R05 0.3216 0.24164 

    log_R06 0.48335 0.24985 

    log_R07 0.485 0.24724 

    log_R08 0.11161 0.29966 

    log_R09 -0.31992 0.30542 

    log_R10 0.050226 0.25402 

    log_R11 0.2479 0.2958 

    log_R12 0.95366 0.26511 
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 Model 13 

 
Estimate std.dev 

 

name Estimate std.dev 

log_q1 -6.915 0.1882 

 
log_R13 -0.080906 0.35931 

log_q2 -6.7478 0.10959 

 
log_R14 -0.16095 0.44919 

log_N76 9.1446 0.15016 

 
a1 2.5616 4.089 

R0 6.4965 0.087764 

 
a2 1.8895 4.5519 

log_σR
2 -0.017897 0.4288 

 
a3 1.3861 4.7425 

log_R77 -0.6057 0.35732 

 

a4 2.2245 4.1301 

log_R78 -0.70196 0.34304 

 
a5 2.9176 3.9276 

log_R79 0.34168 0.27485 

 
a6 3.1745 3.8839 

log_R80 0.26841 0.27664 

 
a7 3.4127 3.8627 

log_R81 0.33319 0.25218 

 
a8 3.3869 3.8586 

log_R82 0.48945 0.27443 

 
a9 3.4946 3.8463 

log_R83 0.48783 0.26815 

 
a10 3.4981 3.8466 

log_R84 0.11651 0.28101 

 

a11 3.1417 3.8613 

log_R85 0.46689 0.25099 

 

a12 2.1496 3.9518 

log_R86 -0.051417 0.27787 

 
a13 1.7873 4.1704 

log_R87 -0.007842 0.24367 

 
a14 0.30529 5.1112 

log_R88 0.024252 0.2508 

 
r1 14.967 135.17 

log_R89 -0.44084 0.27779 

 
r2 14.943 135.17 

log_R90 -0.29302 0.24642 

 
r3 14.885 135.17 

log_R91 -0.5423 0.27091 

 

r4 14.347 135.17 

log_R92 -0.74135 0.29141 

 
r5 -6.8084 17901 

log_R93 -0.53768 0.2666 

 
log_α -2.0597 0.012815 

log_R94 -0.4061 0.25618 

 
log_st1 -2.5495 0.27329 

log_R95 -0.087755 0.22817 

 
log_w -2.0929 0.049215 

log_R96 0.54883 0.19138 

 
Sw1 0.032224 0.034442 

log_R97 -0.31011 0.2923 

 
Sw2 0.10802 0.061776 

log_R98 -0.62355 0.29992 

 
Sw3 0.2926 0.11008 

log_R99 -0.16896 0.28657 

 
Sw4 0.52251 0.15919 

log_R00 0.18266 0.24043 

 
log_1 -2.0581 0.060299 

log_R01 0.18352 0.23424 

 
w2

t 7.38E-02 0.023578 

log_R02 -0.068791 0.29021 

 
q 0.743 0.13223 

log_R03 -0.2684 0.30106 

 
σ 3.5999 0.31154 

log_R04 0.32018 0.22461 

 
β1 2.7995 0.12141 

log_R05 0.26825 0.23038 

 
β2 13.289 0.4609 

log_R06 0.53006 0.21792 

 
M   

log_R07 0.44263 0.22501 

 
ms 3.5999 0.31154 

log_R08 0.10561 0.26684 

    log_R09 -0.27795 0.27491 

    log_R10 0.027615 0.24224 

    log_R11 0.34476 0.27238 

    log_R12 0.91115 0.26265 
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Table 11. Estimated selectivities, molting probabilities, and proportions of legal crab by length (mm 

CL) class for Norton Sound male red king crab.  

 

Model 5 
   Selectivity   

Length  

Class 

Legal 

Proportion 

Mean 

weight (lb) 

ADFG/ 

NOAA 

Winter 

Pot  

Summer 

Fishery 

Molting  

Probability 

  

64 - 73 0.00 0.434 0.86 0.07 0.15 1.00 
74  -  83 0.00 0.855 0.93 0.44 0.37 1.00 
84  -  93 0.00 1.313 0.96 0.99 0.67 0.99 
94  - 103 0.13 1.823 0.98 0.95 0.88 0.95 
104 - 113 0.87 2.387 0.99 0.85 0.96 0.83 
114 - 123 1.00 3.064 1.00 0.61 0.99 0.56 
124 - 133 1.00 3.840 1.00 0.30 1.00 0.25 

134+ 1.00 4.649 1.00 0.11 1.00 0.08 
 

 

Model 13 
   Selectivity   

Length  

Class 

Legal 

Proportion 

Mean 

weight (lb) 

ADFG/ 

NOAA 

Winter 

Pot  

Summer 

Fishery 

Molting  

Probability 

  

64-68 0.00 0.332 0.81 0.03 0.12 1.00 
69-73 0.00 0.537 0.86 0.11 0.20 1.00 
74-78 0.00 0.747 0.90 0.29 0.32 1.00 
79-83 0.00 0.965 0.93 0.52 0.47 0.99 
84-88 0.00 1.194 0.95 0.99 0.63 0.99 
89-93 0.00 1.435 0.97 0.98 0.76 0.98 
94-98 0.02 1.691 0.98 0.96 0.86 0.96 

99-103 0.23 1.958 0.98 0.93 0.92 0.92 
104-108 0.77 2.239 0.99 0.88 0.96 0.86 
109-113 0.97 2.543 0.99 0.80 0.98 0.76 
114-118 1.00 2.882 1.00 0.68 0.99 0.63 
119-123 1.00 3.252 1.00 0.53 0.99 0.47 
123-128 1.00 3.641 1.00 0.38 1.00 0.32 
129-133 1.00 4.041 1.00 0.25 1.00 0.20 

134+ 1.00 4.446 1.00 0.15 1.00 0.12 
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Table 12: Estimated molting probability incorporated transition matrix. 

 

Model 5: without molting probability 
Pre-molt 

Length 

Class 

Post-molt Length Class   

64-73 74-83 84-93 94-103 104-113 114-123 124-133 134+ 

64 – 73 0.001 0.208 0.726 0.065 0.000 0.000 0.000 0.000 
74  -  83  0.003 0.344 0.626 0.027 0.000 0.000 0.000 
84  -  93   0.011 0.499 0.480 0.009 0.000 0.000 
94  - 103    0.030 0.641 0.326 0.003 0.000 
104 – 113     0.072 0.734 0.194 0.001 
114 – 123      0.148 0.752 0.100 
124 – 133       0.277 0.723 

134+        1.000 

 

Model 5: with molting probability 

 
Pre-molt 

Length 

Class 

Post-molt Length Class   

64-73 74-83 84-93 94-103 104-113 114-123 124-133 
134+ 

64 - 73 0.002 0.207 0.726 0.065 0.000 0.000 0.000 0.00 
74  -  83  0.007 0.343 0.624 0.027 0.000 0.000 0.00 
84  -  93   0.025 0.492 0.474 0.009 0.000 0.00 
94  - 103    0.081 0.608 0.309 0.003 0.00 
104 - 113     0.233 0.606 0.160 0.00 
114 - 123      0.527 0.418 0.06 
124 - 133       0.821 0.18 

134+        1.00 
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Model 13: without molting probability 
Pre-

molt 

Length 

Class 

Post-molt Length Class          

64-68 79-73 74-78 79-83 84-88 89-93 94-98 
99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

64-68 0.000 0.000 0.034 0.451 0.474 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
69-73  0.000 0.000 0.057 0.525 0.394 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
74-78   0.000 0.001 0.091 0.584 0.312 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
79-83    0.000 0.002 0.137 0.619 0.235 0.006 0.000 0.000 0.000 0.000 0.000 0.000 
84-88     0.000 0.004 0.196 0.627 0.169 0.003 0.000 0.000 0.000 0.000 0.000 
89-93      0.000 0.009 0.268 0.607 0.115 0.001 0.000 0.000 0.000 0.000 
94-98       0.000 0.016 0.347 0.561 0.075 0.001 0.000 0.000 0.000 

99-103        0.000 0.029 0.429 0.495 0.046 0.000 0.000 0.000 
104-

108         0.000 0.050 0.506 0.416 0.027 0.000 0.000 
109-

113          0.001 0.080 0.570 0.334 0.015 0.000 
114-

118           0.002 0.123 0.612 0.255 0.008 
119-

123            0.004 0.179 0.631 0.187 
123-

128             0.008 0.284 0.708 
129-

133              0.041 0.959 
134+               1.000 
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Model 13: with molting probability 
Pre-

molt 

Length 

Class 

Post-molt Length Class          

64-68 79-73 74-78 79-83 84-88 89-93 94-98 
99-

103 

104-

108 

109-

113 

114-

118 

119-

123 

124-

128 

129-

133 

134+ 

64-68 0.001 0.000 0.034 0.451 0.474 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
69-73  0.002 0.000 0.057 0.525 0.393 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
74-78   0.004 0.001 0.090 0.582 0.311 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
79-83    0.007 0.002 0.136 0.615 0.234 0.006 0.000 0.000 0.000 0.000 0.000 0.000 
84-88     0.013 0.004 0.194 0.620 0.167 0.003 0.000 0.000 0.000 0.000 0.000 
89-93      0.024 0.008 0.261 0.593 0.113 0.001 0.000 0.000 0.000 0.000 
94-98       0.044 0.016 0.332 0.536 0.071 0.001 0.000 0.000 0.000 

99-103        0.080 0.027 0.395 0.455 0.042 0.000 0.000 0.000 
104-

108         0.141 0.043 0.435 0.358 0.023 0.000 0.000 
109-

113          0.237 0.061 0.435 0.255 0.011 0.000 
114-

118           0.371 0.077 0.386 0.161 0.005 
119-

123            0.528 0.085 0.299 0.088 
123-

128             0.680 0.092 0.228 
129-

133              0.807 0.193 
134+               1.000 
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Table 13. Annual abundance estimates (million crab) and mature male biomass (MMB, million lb) 

for Norton Sound red king crab estimated by a length-based analysis from 1976 to 2014  

 

Model 5. 
 Abundance Legal (≥ 104 mm) MMB 

Year Recruits 

Total 

(≥ 74 mm) 

Mature 

(≥ 94 

mm) Abundance S.D Biomass S.D Biomass S.D. 

1976 2.610 9.165 6.554 4.250 1.036 11.262 2.929 15.667 3.424 
1977 1.175 8.041 6.866 5.580 0.960 16.221 2.908 18.739 3.087 
1978 0.797 6.368 5.571 5.024 0.738 15.872 2.402 16.957 2.437 
1979 0.566 4.383 3.817 3.485 0.505 11.589 1.723 12.235 1.751 
1980 1.039 3.126 2.087 1.878 0.339 6.373 1.186 6.776 1.218 
1981 1.426 2.929 1.504 1.216 0.236 4.109 0.824 4.650 0.887 
1982 1.467 2.787 1.319 0.890 0.211 2.746 0.679 3.553 0.802 
1983 1.544 3.129 1.585 1.097 0.225 3.249 0.688 4.173 0.825 
1984 1.791 3.537 1.746 1.239 0.246 3.659 0.745 4.620 0.887 
1985 1.427 3.375 1.948 1.376 0.270 4.078 0.813 5.161 0.975 
1986 1.488 3.554 2.065 1.537 0.296 4.576 0.894 5.584 1.052 
1987 1.280 3.294 2.013 1.531 0.299 4.666 0.924 5.583 1.050 
1988 1.075 3.121 2.046 1.577 0.291 4.837 0.905 5.731 1.031 
1989 1.072 3.006 1.934 1.551 0.272 4.840 0.856 5.573 0.951 
1990 0.856 2.674 1.817 1.450 0.244 4.582 0.776 5.281 0.861 
1991 0.782 2.464 1.682 1.363 0.217 4.324 0.692 4.935 0.762 
1992 0.690 2.232 1.542 1.269 0.184 4.073 0.592 4.596 0.641 
1993 0.557 1.956 1.400 1.150 0.155 3.712 0.501 4.189 0.544 
1994 0.554 1.714 1.160 0.958 0.131 3.091 0.425 3.479 0.458 
1995 0.673 1.638 0.965 0.779 0.110 2.510 0.357 2.863 0.388 
1996 0.881 1.750 0.869 0.657 0.098 2.077 0.313 2.477 0.350 
1997 1.491 2.418 0.927 0.655 0.096 2.004 0.299 2.517 0.355 
1998 1.211 2.439 1.228 0.796 0.111 2.361 0.332 3.171 0.409 
1999 0.696 2.268 1.571 1.113 0.141 3.241 0.407 4.113 0.497 
2000 0.775 2.320 1.545 1.256 0.148 3.812 0.447 4.372 0.492 
2001 1.098 2.448 1.350 1.100 0.131 3.471 0.417 3.949 0.449 
2002 1.245 2.584 1.339 1.002 0.119 3.150 0.375 3.786 0.422 
2003 1.146 2.595 1.449 1.043 0.120 3.184 0.367 3.951 0.424 
2004 0.898 2.419 1.521 1.123 0.126 3.388 0.381 4.144 0.445 
2005 1.185 2.651 1.466 1.136 0.136 3.457 0.407 4.089 0.474 
2006 1.436 2.851 1.415 1.056 0.137 3.251 0.420 3.930 0.473 
2007 1.629 3.170 1.541 1.082 0.140 3.253 0.425 4.120 0.499 
2008 1.726 3.467 1.741 1.219 0.151 3.618 0.453 4.605 0.528 
2009 1.399 3.339 1.940 1.371 0.162 4.049 0.485 5.128 0.565 
2010 0.949 2.972 2.023 1.514 0.170 4.512 0.513 5.485 0.585 
2011 1.001 2.859 1.858 1.490 0.165 4.562 0.509 5.270 0.568 
2012 1.265 2.911 1.646 1.318 0.151 4.142 0.478 4.766 0.520 
2013 2.227 3.801 1.574 1.177 0.139 3.670 0.437 4.422 0.505 
2014 1.639 3.477 1.838 1.208 0.163 3.642 0.480 4.821 0.633 
2015 0.994 3.174 2.179 1.541 0.253 4.477 0.702 5.694 0.933 
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Model 13. 
 Abundance Legal (≥ 104 mm) MMB 

Year Recruits 

Total 

(≥ 64 mm) 

Mature 

(≥ 94 

mm) Abundance S.D Biomass S.D Biomass S.D. 

1976 2.921 9.364 6.443 4.072 0.994 10.830 2.831 15.270 3.283 
1977 1.440 8.167 6.727 5.487 0.950 15.861 2.855 18.277 3.015 
1978 0.824 6.449 5.624 4.975 0.737 15.708 2.391 16.945 2.410 
1979 0.580 4.432 3.852 3.509 0.500 11.646 1.709 12.305 1.736 
1980 1.153 3.243 2.090 1.886 0.334 6.420 1.171 6.806 1.201 
1981 1.474 2.952 1.479 1.192 0.228 4.072 0.803 4.593 0.861 
1982 1.502 2.818 1.316 0.860 0.200 2.647 0.647 3.494 0.779 
1983 1.702 3.254 1.552 1.068 0.218 3.151 0.664 4.054 0.792 
1984 1.801 3.535 1.735 1.204 0.237 3.546 0.716 4.534 0.860 
1985 1.470 3.415 1.945 1.362 0.264 4.015 0.791 5.104 0.957 
1986 1.567 3.609 2.042 1.510 0.290 4.489 0.874 5.492 1.025 
1987 1.331 3.314 1.983 1.503 0.292 4.584 0.903 5.477 1.024 
1988 1.094 3.137 2.043 1.548 0.283 4.739 0.880 5.671 1.011 
1989 1.122 3.030 1.909 1.535 0.268 4.786 0.842 5.490 0.931 
1990 0.883 2.673 1.790 1.420 0.238 4.500 0.759 5.191 0.842 
1991 0.789 2.457 1.668 1.337 0.211 4.238 0.675 4.864 0.746 
1992 0.717 2.227 1.510 1.246 0.180 4.006 0.580 4.500 0.623 
1993 0.579 1.952 1.373 1.118 0.149 3.619 0.486 4.097 0.527 
1994 0.602 1.739 1.138 0.932 0.126 3.007 0.410 3.394 0.442 
1995 0.699 1.645 0.946 0.756 0.106 2.437 0.345 2.790 0.374 
1996 0.901 1.758 0.856 0.639 0.094 2.015 0.301 2.419 0.340 
1997 1.550 2.449 0.899 0.631 0.093 1.932 0.288 2.427 0.339 
1998 1.243 2.416 1.173 0.750 0.105 2.233 0.312 3.009 0.386 
1999 0.703 2.266 1.563 1.070 0.131 3.085 0.378 4.018 0.475 
2000 0.804 2.329 1.525 1.246 0.146 3.758 0.437 4.289 0.477 
2001 1.166 2.488 1.322 1.080 0.128 3.420 0.409 3.871 0.437 
2002 1.324 2.628 1.304 0.962 0.113 3.042 0.359 3.673 0.407 
2003 1.154 2.584 1.430 1.005 0.115 3.058 0.351 3.851 0.411 
2004 0.928 2.435 1.507 1.103 0.123 3.305 0.369 4.065 0.431 
2005 1.257 2.701 1.444 1.115 0.130 3.388 0.391 4.007 0.453 
2006 1.468 2.848 1.381 1.026 0.131 3.169 0.402 3.824 0.452 
2007 1.708 3.221 1.513 1.041 0.133 3.127 0.404 4.005 0.479 
2008 1.780 3.470 1.690 1.170 0.144 3.469 0.431 4.434 0.503 
2009 1.432 3.342 1.910 1.324 0.154 3.891 0.460 4.986 0.543 
2010 1.006 2.999 1.993 1.477 0.163 4.381 0.492 5.355 0.562 
2011 1.026 2.870 1.844 1.467 0.159 4.476 0.492 5.191 0.547 
2012 1.388 3.009 1.621 1.300 0.147 4.088 0.463 4.686 0.502 
2013 2.269 3.816 1.547 1.137 0.132 3.562 0.419 4.321 0.482 
2014 1.696 3.479 1.783 1.161 0.154 3.504 0.451 4.646 0.601 
2015 1.005 3.172 2.167 1.484 0.238 4.274 0.654 5.568 0.901 
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Table 14. Summary of catch and estimated discards (million lb) for Norton Sound red king crab. 

Assumed average crab weight is 2.5 lb for the winter commercial catch, 2.0 lb for the subsistence 

catch, and 1.0 lb for Winter subsistence discards. Summer and winter commercial discards were 

estimated from the model.  

  

Model 5. 
Year Summer 

Com 

Winter 

Com 

Winter 

Sub 

Discards 

Summer 

Discards 

Winter 

Sub 

Discards 

Winter 

com 

Total Catch/ 

MMB 

1977 0.52 0.000      0.000 0.020     0.000 0.000 0.54 0.029 
1978 2.09 0.024 0.025 0.038 0.008 0.000 2.185 0.129 
1979 2.93 0.001 0.000 0.049 0.000 0.000 2.98 0.244 
1980 1.19 0.000 0.000 0.025 0.000 0.000 1.215 0.179 
1981 1.38 0.000 0.001 0.069 0.000 0.000 1.45 0.312 
1982 0.23 0.000 0.003 0.020 0.001 0.000 0.254 0.071 
1983 0.37 0.001 0.021 0.036 0.006 0.000 0.434 0.104 
1984 0.39 0.002 0.022 0.036 0.005 0.000 0.455 0.098 
1985 0.43 0.003 0.017 0.037 0.002 0.000 0.489 0.095 
1986 0.48 0.005 0.014 0.031 0.004 0.000 0.534 0.096 
1987 0.33 0.003 0.012 0.020 0.002 0.000 0.367 0.066 
1988 0.24 0.001 0.005 0.013 0.001 0.000 0.26 0.045 
1989 0.25 0.001 0.012 0.012 0.002 0.000 0.277 0.050 
1990 0.19 0.009 0.024 0.009 0.004 0.000 0.236 0.045 
1991 0 0.010 0.015 0.000 0.002 0.000 0.027 0.005 
1992 0.07 0.019 0.023 0.003 0.003 0.001 0.119 0.026 
1993 0.33 0.004 0.002 0.014 0.000 0.000 0.35 0.084 
1994 0.32 0.014 0.008 0.014 0.001 0.001 0.358 0.103 
1995 0.32 0.019 0.011 0.016 0.002 0.001 0.369 0.129 
1996 0.22 0.004 0.003 0.016 0.001 0.000 0.244 0.099 
1997 0.09 0.000 0.001 0.010 0.001 0.000 0.102 0.041 
1998 0.03 0.002 0.017 0.004 0.012 0.000 0.065 0.020 
1999 0.02 0.007 0.015 0.002 0.003 0.000 0.047 0.011 
2000 0.3 0.008 0.011 0.014 0.004 0.000 0.337 0.077 
2001 0.28 0.003 0.001 0.015 0.000 0.000 0.299 0.076 
2002 0.25 0.006 0.004 0.019 0.003 0.000 0.282 0.074 
2003 0.26 0.017 0.008 0.022 0.005 0.001 0.313 0.079 
2004 0.34 0.001 0.002 0.024 0.001 0.000 0.368 0.089 
2005 0.4 0.005 0.008 0.024 0.003 0.000 0.44 0.108 
2006 0.45 0.000 0.002 0.035 0.001 0.000 0.488 0.124 
2007 0.31 0.008 0.021 0.030 0.011 0.001 0.381 0.092 
2008 0.39 0.014 0.019 0.039 0.009 0.001 0.472 0.102 
2009 0.4 0.012 0.010 0.035 0.002 0.001 0.46 0.090 
2010 0.42 0.012 0.014 0.027 0.002 0.001 0.476 0.087 
2011 0.4 0.008 0.013 0.020 0.003 0.000 0.444 0.084 
2012 0.47 0.023 0.015 0.027 0.004 0.001 0.54 0.113 
2013 0.35 0.057 0.015 0.032 0.014 0.005 0.473 0.107 
2014 0.39 0.037 0.007 0.044 0.002 0.004 0.484 0.100 
2015 0.40 0.103 0.019 0.030 0.005 0.006 0.563 0.099 
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Model 13 
Year Summer 

Com 

Winter 

Com 

Winter 

Sub 

Discards 

Summer 

Discards 

Winter 

Sub 

Discards 

Winter 

com 

Total Catch/ 

MMB 

1977 0.52 0.000      0.000 0.021     0.000 0.000 0.541 0.030 
1978 2.09 0.024 0.025 0.044 0.008 0.000 2.191 0.129 
1979 2.93 0.001 0.000 0.052 0.000 0.000 2.983 0.242 
1980 1.19 0.000 0.000 0.026 0.000 0.000 1.216 0.179 
1981 1.38 0.000 0.001 0.077 0.000 0.000 1.458 0.317 
1982 0.23 0.000 0.003 0.022 0.001 0.000 0.256 0.073 
1983 0.37 0.001 0.021 0.039 0.006 0.000 0.437 0.108 
1984 0.39 0.002 0.022 0.040 0.005 0.000 0.459 0.101 
1985 0.43 0.003 0.017 0.038 0.002 0.000 0.49 0.096 
1986 0.48 0.005 0.014 0.034 0.004 0.000 0.537 0.098 
1987 0.33 0.003 0.012 0.021 0.002 0.000 0.368 0.067 
1988 0.24 0.001 0.005 0.014 0.001 0.000 0.261 0.046 
1989 0.25 0.001 0.012 0.012 0.002 0.000 0.277 0.050 
1990 0.19 0.009 0.024 0.010 0.004 0.000 0.237 0.046 
1991 0 0.010 0.015 0.000 0.002 0.000 0.027 0.006 
1992 0.07 0.019 0.023 0.003 0.003 0.001 0.119 0.026 
1993 0.33 0.004 0.002 0.016 0.000 0.000 0.352 0.086 
1994 0.32 0.014 0.008 0.015 0.001 0.001 0.359 0.106 
1995 0.32 0.019 0.011 0.018 0.002 0.001 0.371 0.133 
1996 0.22 0.004 0.003 0.018 0.001 0.000 0.246 0.102 
1997 0.09 0.000 0.001 0.011 0.001 0.000 0.103 0.042 
1998 0.03 0.002 0.017 0.004 0.012 0.000 0.065 0.022 
1999 0.02 0.007 0.015 0.002 0.003 0.000 0.047 0.012 
2000 0.3 0.008 0.011 0.015 0.004 0.000 0.338 0.079 
2001 0.28 0.003 0.001 0.016 0.000 0.000 0.3 0.078 
2002 0.25 0.006 0.004 0.022 0.003 0.001 0.286 0.078 
2003 0.26 0.017 0.008 0.025 0.005 0.001 0.316 0.082 
2004 0.34 0.001 0.002 0.026 0.001 0.000 0.37 0.091 
2005 0.4 0.005 0.008 0.026 0.003 0.000 0.442 0.110 
2006 0.45 0.000 0.002 0.038 0.001 0.000 0.491 0.128 
2007 0.31 0.008 0.021 0.033 0.011 0.001 0.384 0.096 
2008 0.39 0.014 0.019 0.043 0.009 0.001 0.476 0.107 
2009 0.4 0.012 0.010 0.038 0.002 0.001 0.463 0.093 
2010 0.42 0.012 0.014 0.029 0.002 0.001 0.478 0.089 
2011 0.4 0.008 0.013 0.021 0.003 0.000 0.445 0.086 
2012 0.47 0.023 0.015 0.028 0.004 0.001 0.541 0.115 
2013 0.35 0.057 0.015 0.037 0.014 0.005 0.478 0.111 
2014 0.39 0.037 0.007 0.048 0.002 0.004 0.488 0.105 
2015 0.40 0.103 0.019 0.033 0.005 0.006 0.566 0.102 
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Executive Summary 

1. Stock
Golden king crab, Lithodes aequispinus, Aleutian Islands, east of 174° W longitude

(EAG) and west of 174° W longitude (WAG). 

2. Catches
The Aleutian Islands golden king crab commercial fishery developed in the early

1980s; the harvest peaked in 1986/87 at 5.900 and 8.800 million pounds, respectively,

for EAG and WAG. Catches have been steady since 1996/97 following

implementation of total allowable catches (TACs) of 3.000 (EAG) and 2.700 (WAG)

million pounds. The TACs were increased to 3.150 and 2.835 million pounds for the

two respective regions for the 2008/09 fishing year following an Alaska Board of

Fisheries (BOF) decision. These levels were below the limit TACs determined under

Tier 5 criteria (considering 1991–1995 mean catch as the limit catch) under the most

recent crab management plan. The TACs were further increased by another BOF

decision to 3.310 million pounds for EAG and 2.980 million pounds for WAG

beginning with the 2012/13 fishing year. The fishery has harvested close to TAC

levels since 1996/97. Catch rates (crab / pot-pull) increased in both EAG and WAG

fisheries in the mid-2000s. However, in recent years WAG catch rates have declined.

The below par fishery performance in WAG lead to reduction in TAC to 2.235

million pounds for the 2016/17 fishing season.

3. Stock biomass
Estimated mature male biomass (MMB) for EAG under all scenarios decreased from

high levels during the 1990s of the directed fishery, then systematically increased

during the 2000s and 2010s. Estimated MMB for WAG decreased during the late

1980s and 1990s, systematically increased during the 2000s, and decreased during

last few years since 2009. The low levels of MMB for EAG were observed in 1995–

1997 and in 1990s for WAG. Stock trends reflected the fishery standardized CPUE

trends in both regions.
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4. Recruitment 
The numbers of recruits to the model size groups under all scenarios have fluctuated 

in both EAG and WAG. For EAG, the model recruitment was high in 1987, 1988, 

2008, and 2011 to 2014; and lowest in 1986. An increasing trend in recruitment was 

observed since the early-1990s in EAG. The model recruitment for WAG was high in 

1985 and 1986, and lowest in 2011. After 1985 and 1986 peaks, the recruitment trend 

was low.  

5. Management performance 
The model was accepted at the September 2016 CPT and October 2016 SSC meetings for 

OFL determination for the 2017/18 fishery cycle. In addition, the CPT in January 2017 and 

SSC in February 2017 recommended using the Tier 3 method to compute OFL and ABC. 

Since it has not yet been used for making any management decision, past management 

performance by this model outcome cannot be assessed. However, we provide the 

management performance (status and catch specifications) tables with the Tier 3 

assessment results for scenario 9 for individual regions (EAG and WAG) and the 

entire Aleutian Islands (AI). The AI results can be compared with the prior years’ 

performance under Tier 5 assessment procedure (Pengilly 2016): 

 

Status and catch specifications (1000 t) of EAG golden king crab 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TAC

a
 

Retained 

Catch 

Total 

Catch 
OFL 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

2016/17 N/A N/A 1.501 Fishing
b
  Fishing

b 
   

2017/18
c 

3.524 9.306    4.486 3.365 3.589 

a. Total allowable catch, established in lb. and converted to t. 

b. Fishing in progress 

c. Tier 3 assessment scenario 9 results 

 

Status and catch specifications (million lb) of EAG golden king crab 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TAC

a Retained 

Catch 

Total 

Catch 
OFL 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

2016/17 N/A N/A 3.310 Fishing
b
 Fishing

b 
   

2017/18
c 

7.769 20.515    9.890 7.417 7.912 

a. Total allowable catch 

b. Fishing in progress 

c. Tier 3 assessment scenario 9 results 

 

Status and catch specifications (1000 t) of WAG golden king crab 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TAC

a
 

Retained 

Catch 

Total 

Catch 
OFL 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

2016/17 N/A N/A 1.014 Fishing
b
  Fishing

b 
   

2017/18
c 

2.520 4.927    1.532 1.149 1.226 

a. Total allowable catch, established in lb. and converted to t. 

b. Fishing in progress 

c. Tier 3 assessment scenario 9 results 
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Status and catch specifications (million lb) of WAG golden king crab 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TAC

a Retained 

Catch 

Total 

Catch 
OFL 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

2016/17 N/A N/A 2.235 Fishing
b
 Fishing

b 
   

2017/18
c 

5.555 10.863    3.378 2.534 2.702 

a. Total allowable catch 

b. Fishing in progress 

c. Tier 3 assessment scenario 9 results 

 

During the May 2017 meeting, the CPT noted that a single OFL and ABC are defined for 

AIGKC. However, separate models are available by area. The CPT considered two ways for 

computing an OFL for AIGKC.  

 

Approach 1: Apply the OFL control rule by area and sum the OFLs by area.  

 

Approach 2: Determine stock status for the stock by adding the estimates of current MMB and 

BMSY by area. This stock status is then used to determine the ratio of FOFL to F35% by area, which 

is then used to calculate the OFLs by area which are then added together to calculate an OFL for 

the entire stock. 

 

The CPT preferred the 2
nd

 approach because it relies on a single stock status determination. In 

contrast, use of the 1
st
 approach would lead to the EAG area being in Tier 3a and the WAG area 

being in Tier 3b, which would not lead to a unique Tier level. We computed the status and catch 

specifications following the two approaches: 

 

Status and catch specifications (1000 t) of Aleutian Islands golden king crab 

Year 
 

MSST 

Biomass 

(MMB) 
TAC 

Retained 

Catch
a
 

Total 

Catch
a
 

OFL ABCe 

2013/14 N/A N/A 2.853 2.894 3.192 5.69 5.12 

2014/15 N/A N/A 2.853 2.771 3.079 5.69 4.26 

2015/16 N/A N/A 2.853 2,729 3,073 5.69 4.26 

2016/17 N/A N/A 2.515 Fishing
b
 Fishing

b
 5.69 4.26 

2017/18
c
 6.044 14.233    6.018 4.815 

2017/18
d
 6.044 14.205    6.048 4.838 

a. Total retained catch plus estimated bycatch mortality of discarded bycatch during crab 

fisheries and groundfish fisheries. 

b. Fishing in progress 

c. Approach 1 above 

d. Approach 2 above 

e. The last two ABC estimates are based on 20% buffer whereas the other estimates are based on 

25% buffer 
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Status and catch specifications (million lb) of Aleutian Islands golden king crab 

Year 
 

MSST 

Biomass 

(MMB) 
TAC 

Retained 

Catch 

Total 

Catch
a
 

OFL ABCe 

2013/14 N/A N/A 6.290 6.38 7.04 12.54 11.28 

2014/15 N/A N/A 6.290 6.11 6.79 12.53 9.40 

2015/16 N/A N/A 6.290 6.016 6.775 12.53 9.40 

2016/17 N/A N/A 5.545 Fishing
b
 Fishing

b
 12.53 9.40 

2017/18
c
 13.325 31.378    13.268 10.614 

2017/18
d
 13.325 31.315    13.333 10.666 

a. Total retained catch plus estimated bycatch mortality of discarded bycatch during crab 

fisheries and groundfish fisheries. 

b. Fishing in progress 

c. Approach 1 above 

d. Approach 2 above 

e. The last two ABC estimates are  based on 20% buffer whereas the other estimates are based 

on 25% buffer 

 

 

6. Basis for the OFL 
We provide the OFL estimates under the Tier 3 approach for EAG, WAG, and the 

two regions pooled together (i.e., for the entire Aleutian Islands, AI), respectively.   

The length-based model developed for the Tier 3 analysis estimated MMB on 

February 15 each year for the period 1986 through 2016 and projected to February 

15, 2017 for OFL and ABC determination. The Tier 3 approach uses the mean 

number of recruits for the period 1987 – 2012 for OFL and ABC calculation.  

 

Total OFL and ABC estimates are provided for seven scenarios (1, 2, 3, 4, 9, 10, and 

11) for EAG, WAG, and AI, respectively in the following six tables. Following the 

May 2017 CPT suggestion, we also considered a separate scenario 9** for WAG to 

calculate the OFL and ABC for the entire Aleutian Islands under approach 2.  We 

treat scenario 1 as the base scenario for EAG and WAG. We recommend the OFL 

and ABC estimates for scenario 9 (knife-edge selectivity). Since the OFL and 

ABC have been set for the entire AI under Tier 5 procedure, we suggest 

implementing the combined OFL and ABC for AI. 
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EAG (Tier 3): 

Biomass, total OFL, and ABC for the next fishing season in million pounds. Current MMB = MMB on 15 Feb. 2017. 

Scenario Tier B35% 

Current  

MMB 

MMB/

B35% FOFL 

Recruitment Years 

to define B35% F35% 

OFL ABC 

(P*=0.49) 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

1 3a 14.177 18.820 1.33 0.64 1987–2012 0.64 8.787 8.753 6.591 7.030 

2 3a 14.309 19.050 1.33 0.63 1987–2012 0.63 8.873 8.837 6.654 7.098 

3 3a 14.818 20.203 1.36 0.61 1987–2012 0.61 9.641 9.601 7.231 7.713 

4 3a 13.791 17.987 1.30 0.66 1987–2012 0.66 8.301 8.268 6.226 6.641 

9 3a 15.539 20.515 1.32 0.75 1987–2012 0.75 9.890 9.852 7.417 7.912 

10 3a 14.265 18.840 1.32 0.62 1987–2012 0.62 8.556 8.523 6.417 6.845 

11 3a 15.577 20.507 1.32 0.73 1987–2012 0.73 9.672 9.635 7.254 7.738 
  

 

 

Biomass in 1000 t; total OFL and ABC for the next fishing season in t. 

Scenario Tier B35% 

Current 

MMB 

MMB/

B35% FOFL 

Recruitment Years to 

Define B35% F35% 

 

 

OFL 

ABC 

(P*=0.49) 

 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

1 3a 6.430 8.536 1.33 0.64 1987–2012 0.64 3,985.959 3,970.495 2,989.469 3,188.767 

2 3a 6.491 8.641 1.33 0.63 1987–2012 0.63 4,024.578 4,008.452 3,018.433 3,219.662 

3 3a 6.721 9.164 1.36 0.61 1987–2012 0.61 4,373.272 4,355.014 3,279.954 3,498.617 

4 3a 6.256 8.159 1.30 0.66 1987–2012 0.66 3,765.375 3,750.119 2,824.031 3,012.300 

9 3a 7.048 9.306 1.32 0.75 1987–2012 0.75 4,486.052 4,468.684 3,364.539 3,588.842 

10 3a 6.471 8.546 1.32 0.62 1987–2012 0.62 3,880.873 3,865.821 2,910.655 3,104.698 

11 3a 7.066 9.302 1.32 0.73 1987–2012 0.73 4,387.350 4,370.392 3,290.512 3,509.880 
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WAG (Tier 3): 

Biomass, total OFL, and ABC for the next fishing season in million pounds. Current MMB= MMB on 15 Feb. 2017. 

Scenario Tier B35% 

Current 

MMB 

MMB/

B35% FOFL 

Recruitment Years to 

Define B35% F35% 

 

OFL 

ABC 

(P*=0.49) 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

1 3b 10.214 9.671 0.95 0.54 1987–2012 0.57 2.862 2.842 2.146 2.289 

2 3b 10.099 9.535 0.94 0.54 1987–2012 0.58 2.767 2.747 2.075 2.213 

3 3b 10.226 9.680 0.95 0.54 1987–2012 0.57 2.861 2.840 2.145 2.288 

4 3b 9.866 9.031 0.92 0.49 1987–2012 0.54 2.445 2.427 1.834 1.956 

9 3b 11.111 10.863 0.98 0.66 1987–2012 0.68 3.378 3.355 2.534 2.702 

9** 3a 9.937 10.800 1.09 0.68 1993–1997 0.68 3.443 3.428 2.582 2.754 

10 3b 10.049 9.704 0.97 0.59 1987–2012 0.61 3.115 3.093 2.336 2.492 

11 3b 11.025 10.928 0.99 0.71 1987–2012 0.72 3.616 3.591 2.712 2.893 

 

 

Biomass in 1000 t; total OFL and ABC for the next fishing season in t. 

Scenario Tier B35% 

Current 

MMB 

MMB / 

B35% FOFL 

Recruitment Years to 

Define B35% F35% 

OFL ABC 

(P*=0.49) 

ABC 

(0.75*OFL) 

ABC 

(0.8*OFL) 

1 3b 4.633 4.387 0.95 0.54 1987–2012 0.57 1,298.130 1,288.987 973.598 1,038.504 

2 3b 4.581 4.325 0.94 0.54 1987–2012 0.58 1,254.898 1,245.940 941.173 1,003.918 

3 3b 4.638 4.391 0.95 0.54 1987–2012 0.57 1,297.539 1,288.389 973.155 1,038.032 

4 3b 4.475 4.097 0.92 0.49 1987–2012 0.54 1,108.982 1,100.974 831.737 887.186 

9 3b 5.040 4.927 0.98 0.66 1987–2012 0.68 1,532.280 1,521.602 1,149.210 1,225.824 

9** 3a 4.507 4.899 1.09 0.68 1993–1997 0.68 1,561.668 1,554.794 1,171.251 1,249.334 

10 3b 4.558 4.402 0.97 0.59 1987–2012 0.61 1,412.980 1,402.879 1,059.735 1,130.384 

11 3b 5.001 4.957 0.99 0.71 1987–2012 0.72 1,640.212 1,628.919 1,230.159 1,312.169 
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Aleutian Islands  (AI) 
Total OFL and ABC for the next fishing season in 

million pounds. 

 

Scenario OFL 
ABC ABC ABC 

(P*=0.49) (0.75*OFL) (0.8*OFL) 

1 11.649 11.595 8.737 9.319 

2 11.64 11.584 8.729 9.311 

3 12.502 12.441 9.376 10.001 

4 10.746 10.695 8.06 8.597 

9 13.268 13.207 9.951 10.614 

9** 13.333 13.280 9.999 10.666 

10 11.671 11.616 8.753 9.337 

11 13.288 13.226 9.966 10.631 

     

Aleutian Islands  (AI) 

Total OFL and ABC for the next fishing season in t. 

 

Scenario OFL 
ABC ABC ABC 

(P*=0.49) (0.75*OFL) (0.8*OFL) 

1 5,284.089 5,259.482 3,963.067 4,227.271 

2 5,279.476 5,254.392 3,959.606 4,223.580 

3 5,670.811 5,643.403 4,253.109 4,536.649 

4 4,874.357 4,851.093 3,655.768 3,899.486 

9 6,018.330 5,990.286 4,513.749 4,814.666 

9** 6,047.720 6,023.478 4,535.790 4,838.176 

10 5,293.853 5,268.700 3,970.390 4,235.082 

11 6,027.562 5,999.311 4,520.671 4,822.049 
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7. Probability density functions of OFL 

Assuming a lognormal distribution of total OFL, we determined the cumulative 

distributions of OFL and selected the median as the OFL. 

8. The basis for the ABC recommendation 
An x% buffer on the OFL; i.e., ABC = (1.0 - x/100)*OFL. We considered x = 20% and 25%. 

The CPT preferred 20%. 

 See also the section G on ABC  

9. A summary of results of any rebuilding analysis: 
Not applicable. 

 

A. Summary of Major Changes 

1. Changes (if any) to management of the fishery 
Propose changes to OFL and ABC under model based Tier 3 assessment. 

2. Changes to input data 
(a) Retained catch (1981/82–2015/16), total catch (1990/91–2015/16), and groundfish 

bycatch (1989/90–2015/16) biomass and size compositions were the same as in the 

September 2016 and January 2017 assessment. 

(b) Fish ticket retained CPUE were standardized by the GLM with the lognormal link 

function for the 1985/86–1998/98 period, which was the same as in the September 

2016 and January 2017 assessment. 

(c) For scenario 3, observer pot sample legal size crab CPUE data were extended back to 

1991/92 and standardized by the generalized linear model (GLM) with the negative 

binomial link function, separately for 1991/92–2004/05 and 2005/06–2015/16 periods.  

(d) Male maturity proportions by size classes were added.    

3. Changes to assessment methodology 
(a) The same model has been improved: 

(b) The ADMB cumulative gamma function was used instead of numerical approximation 

for recruit distribution estimation.   

(c) We removed the Tier 4 OFL fishing mortality penalty from the set of likelihood 

functions.   

(d) The equilibrium initial population and Tier 3 BMSY reference point estimation procedures 

used the mean number of recruits for 1987–2012. 
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(e) Francis re-weighting method was used to updating the input effective sample sizes for 

length composition data for all scenarios (Siddeek et al. 2016c, in press 2017). 

(a) Changes to assessment results 
 

Not applicable because the model has not been used previously. 

 

 

B. Response to September 2016 CPT comments 
 

Comment 1: The CPT recommended bringing likelihood profile on M, mean MMB, 

and MMB depletion to the May 2017 CPT meeting.  

  
Response:   

We have provided M profiles in Figures 4 to 6, mean MMB profile in Figure 7 and MMB 

depletion profile in Figure 8. The penalty functions for mean MMB and MMB depletion 

profile analysis are defined in Equations A.33 and A.34 respectively in Appendix A. 

We used finer incremental steps in the M profile calculation. 

Comment 2: Tables 1 (EAG) and 15 (WAG) should be modified to provide the 

retained catch, pot bycatch breakdown by males and females (make clear if 

mortality applied) and trawl bycatch followed by total catch. 

 

Response:  

We included Table 1a that lists the retained catch, bycatch (males and females lumped 

together), groundfish discard catch (males and females lumped together), and the total 

catch with details of what rates of mortality were applied during the 1990/91–2015/16 

period for the entire Aleutian Islands. Crab fishery bycatch data were recorded since 1990 

after introduction of observer sampling. We will delineate the data by EAG and WAG in 

the near future.  

 

Comment 3: The plots showing estimated selectivity curves should include both the 

estimates for pre- and post-rationalization periods. 

 

Response:   

We provided this separation in Figure 13 for EAG and Figure 32 for WAG.  

 

Comment 4. Continue the development of a spatial model that could be used to 

explore the implications of changed in fishing locations 

 

Response: 

Appendix F provides a preliminary analysis to exploring the potential impact of area 

shrinkage on the fishery and the stock dynamics. 
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Response to January 2017 CPT comments 
 

Comment 1. While the CPT accepts the approach of using a combined EAG/WAG model to 

estimate natural mortality, the team would also like to see evidence that tests have been done to show 

that the combined model gives precisely the same results as the two individual models, since only the 

individual models have undergone technical review. The assessment author should confirm that the 

combined profile (without the prior) has a minimum at 0.225 yr
-1

 because the step size for M was 

fairly small. 
 

Response: 

We have provided M profiles in Figures 4 (scenario 0a considered M penalty for M 

estimation), 5 (scenario 0b disregarded M penalty for M estimation), and 6 (scenario 1b 

disregarded M penalty for M estimation using separate EAG and WAG data sets). It 

appears that all results were close. The 95% confidence intervals under lognormal 

distribution assumption (formulas are given in Table 49) indicated highly overlapping 

intervals, Sc0a: 0.2143–0.2310, Sc0b: 0.2157–0.2329, EAG Sc1b: 0.2107–0.2313, and 

WAG Sc1b: 0.2155–0.2472.  We opted to use the M estimation from combined data that 

disregarded the M penalty for most of the scenarios.  

 

Comment 2. The likelihood profiles by data components for natural mortality showed that the 

WAG CPUE had a different profile than other data components, showing a strong improvement in 

fit at lower values of natural mortality. It would be good to confirm that this is correct. 
 

Response: With the improvement of the model, the total likelihood fits for EAG and 

WAG attained minimum around 0.224 yr
-1

.  The CPUE likelihood patterns for EAG and 

WAG behaved similarly although they did not attain the minima at the total likelihood 

minimum value.  

 

Comment 3. What the CPT actually wanted was to evaluate use of the retained catch CPUE time 

series for the period 1985–1998. Model scenario 4, which did include retained catch CPUE, suggested 

that it provided useful information in the early years of the fishery, and the CPT recommends that it 

be included in the base model for May. Examination of diagnostics for the observer CPUE data 

indicated there was justification for starting the observer CPUE time series in 1995, since the earlier 

data in 1991–1994 was based on fewer boats and different gear than was used subsequently. In 

addition, only the catcher-processor vessels carried observers prior to 1995. 

 

Response:  

(a)  We considered the 1995/96–2015/16 observer CPUE time series in the base and 

most other scenarios. 

(b) However, as per CPT suggestion, we considered one scenario (scenario 3) that 

included observer CPUE index from 1991–1994.  

 

Comment 4.  The CPT recommends that CVs for the recruitment estimates be examined and that 

only those recruitment estimates that are informed by data (i.e., recruit CVs less than sigma R) be 

used to obtain mean recruitment to initialize the model. 
 

Response: We examined the recruit standard deviation pattern (Figure 9) and selected the 

time period 1987–2012 based on recruit standard deviation values < 70% sigma R for 
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mean number of recruits estimation  to determining equilibrium abundance and BMSY 

reference points for EAG and WAG. 

 

Comment 5. The CPT recommends that dome-shaped selectivity models not be carried forward 

for the May meeting. 

 

Response: Done. 

 

Comment 6. The CPT agrees with the author’s recommendation that the Francis method be 

adopted as the preferred approach for selecting weights for length-composition data for AIGKC. 
 

Response: We used Francis re-weighting method for selecting weights for length 

composition data for all scenarios (Appendix D).  

 

Comment 7. The CPT recommends that the changes in the spatial pattern of fishing be evaluated 

further for the May CPT meeting based on plots by year (or blocks of years). 

 

Response:  Appendix F provides the spatial pattern of observer sample, effort , catch, and 

productivity in core and non-core areas by year during 1990–2015. The core and non-

core fishing areas were defined based on finer scaling of observer sampling locations 

(please see Appendix F for details). We also estimated CPUE indices, catch, fishing 

mortality and MMB trends using core data and compared those with the estimates from 

the full data set models. 
. 

 

 Comment 8. An F35% calculation requires vectors for maturity, selectivity, and natural 

mortality—all of which are available for AIGKC. Therefore the CPT recommends that AIGKC be 

placed in Tier 3. If the SSC agrees with this recommendation in February, there would be no need to 

develop OFL/ABC tables for Tier 4 in the May assessment document. 

 

Response:  We followed the Tier 3 approach. 

 

Comment 9. The CPT recommends that these maturity data be re-evaluated for the May CPT 

meeting to determine whether a maturity curve can be estimated reliably. 

 

Response:  We used the maturity proportions by size estimated from1991 ADFG pot 

survey maturity data in the model. It appears that a reliable maturity curve can be fitted. 

The maturity analysis is detailed in Appendix C.   
 

Comment 10. The CPT also discussed whether the primary abundance index for AIGKC as 

calculated from fishery data should be considered in recommending a Tier level. The CPT regards 

this as an important factor in assessment uncertainty, but recommends that this be considered when 

recommending a buffer for the ABC, not in determining the Tier level. 

 

Response:  Because of uncertainty in fisheries data, we provided the 20% and 25% buffer 

options for ABC calculation. The CPT in May 2017 selected the 20% buffer.  

 

Comment 11. CPT would prefer to see similar runs grouped together for May, as it is hard to 

compare 15 model runs on one graph (for example, Figure 29 on p. 95). 
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Response:  As per CPT suggestion we grouped the similar featured scenario plots as: 

Group 1: scenarios 1 (base), 2 (drop fishery CPUE index), 3 (extend observer CPUE 

index back to 1991/92), and 4 (three selectivity and catchability);  group 2: scenarios 1, 5 

(low bracketing of M ), and 6 (high bracketing of M); group3: scenarios 1 and 9 (knife-

edge maturity); group 4: scenarios 1, 10 (separately estimated M for EAG and WAG), 

and 11 (separately estimated M for EAG and WAG with knife-edge maturity).  

 

We adopted the following color scheme for scenarios that have multiple outputs: 

Scenarios 1: black, 2: orange, 3: red, 4: blue, 5: violet, 6: dark green, 9: green, 10: dark 

red, and 11: dark blue. 

 

Specifications of all scenarios are provided in Table T1. 
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Response to February 2017 SSC comments 
 

Comment 1: The ssc recommends that, pending completion of the CPT and SSC requests, the 

authors bring forward a Tier 3 analysis for AIGKC for consideration at the May CPT and June SSC 

meetings. 

 

Response: We did only Tier 3 analysis in this cycle.  

 

Comment 2: The SSC strongly encourages future efforts to develop a fishery-independent survey 

for this resource, in addition to continuing efforts to better understand the CPUE data through 

investigation of the annual spatial distribution of the fishery and changes in individual vessel 

participation. 

 

Response: 

(a) We are making every effort to expand the fishery independent survey currently 

being conducted in the EAG area. 

(b) Please see our response to January 2017 CPT comment 7. 

 

 Comment 3: The SSC generally supports the CPT recommendations, but recommends a slightly 

revised approach to the treatment of natural mortality.  The SSC requests that the author prepares a 

likelihood profile using a finer resolution (smaller step-size). The SSC requests that the author makes 

a run using both EAG and WAG data sets combined that includes a prior on natural mortality (0.18) 

with a CV of 50%.   
 
When the final preferred model has been developed, the SSC requests one additional run that does 

not use this prior on natural mortality in order to evaluate its effect. 

 

Response: 

(a) We considered two options: 1. including the M prior (Equation A.32 in Appendix 

A) and 2. Not including the M prior. The results appear not significantly different. 

Improvement of the model may have produced consistent outcome, which is 

encouraging (Figures 4 to 6). So, we opted to using the M estimate obtained 

without the M prior in all scenarios. 

(b) We used the finer resolution (smaller step-size of 0.025) to calculate the profiles. 

 

Comment 4: Finally, the author to perform jitter runs to avoid unexpected model behavior.  

 

Response:  We conducted 100 jitter runs following stock synthesis procedure for 

scenarios 1 and 9 for EAG and WAG, respectively. The convergence did not deviate 

from the original optimized positions for most runs, thus supporting global convergence 

(Appendix E). 

 

Comment 5: The SSC notes that the tuning of input-to-effective sample sizes for the McAllister-

Ianelli method appears to have been conducted at the level of individual year’s observations.  This is 

not consistent with general practice, or the conclusions from the 2015 CAPAM workshop, which 

recommended tuning the input values to the Harmonic mean effective sample size for all years by 

fishery or fleet. SSC supports the CPT recommendation to use the Francis method for future 

analyses. 
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Response: Our last assessment report on this topic was not clear to you. We apologize for 

that. Indeed, we used the harmonic mean as a single multiplier for the time series of input 

effective sample sizes under McAllister and Ianelli (1997) method. Anyway, in the 

current analysis, we used only the Francis method of iterated weighting of effective 

sample sizes for all scenarios including the M estimation scenarios (Appendix D). So, the 

confusion on using McAllister and Ianelli method does not arise now. 

 

Comment 6: Recruitments that are included in the BMSY calculations should have an estimated 

variance substantially less than sigma R, and should generally not include the terminal year’s 

estimates (2016 in this draft analysis) unless specifically warranted by informative data.  The SSC 

recommends the CPT and authors review the GPT guidance on making these calculations and strive 

for some consistency in their approach.   
 

Response: We used a subset of recruitment estimates that excluded the terminal year’s R 

for equilibrium abundance and BMSY reference points estimation (please see our response 

to January 2017 CPT comment 4).  
 

C. Introduction 

1. Scientific name: Golden king crab, Lithodes aequispinus. 

2. Distribution: In Alaska, golden king crab is distributed in the Aleutian Islands, on 

the continental slope of the eastern Bering Sea, and around the Gulf of Alaska to 

southeastern Alaska.   

3. Evidence of stock structure: There is no direct evidence of separate stock structure 

in the Aleutian Islands. But contrast between CPUE trends suggests different 

factors may influence stock productivity in EAG and WAG. 

4. Life history characteristics relevant to management: There is a paucity of 

information on golden king crab life history characteristics due in part to the deep 

depth distribution (~200–1000 m) and the asynchronous nature of life history 

events (Otto and Cummiskey 1985; Somerton and Otto 1986). The reproductive 

cycle is thought to last approximately 24 months and at any one time, ovigerous 

females can be found carrying egg clutches in highly disparate developmental 

states (Otto and Cummiskey 1985). Females carry large, yolk-rich, eggs, which 

hatch into lecithotrophic (non-feeding) larvae that are negatively phototactic 

(Adams and Paul 1999). Molting and mating are also asynchronous and protracted 

(Otto and Cummiskey 1985; Shirley and Zhou 1997) with some indications of 

seasonality (Hiramoto 1985). Molt increment for large males (adults) in Southeast 

Alaska is 16.3 mm CL per molt (Koeneman and Buchanan 1985), and was 
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estimated at 14.4 mm CL for legal males in the EAG (Watson et al. 2002). Annual 

molting probability of males decreases with increasing size, which results in a 

protracted inter-molt period and creates difficulty in determining annual molt 

probability (Watson et al. 2002). Male size-at-maturity varies among stocks 

(Webb 2014) and declines with increasing latitude from about 130 mm CL in the 

Aleutian Islands to 90 mm CL in Saint Matthew Island section (Somerton and 

Otto 1986). Along with a lack of annual survey data, limited stock-specific life 

history stock information prevents development of the standard length-based 

assessment model. 

 

5. Brief summary of management history and annual ADFG harvest strategy: Since 

1996, the Alaska Department of Fish and Game (ADF&G) has divided 

management of the Aleutian Islands golden king crab fishery at 174 W longitude 

(ADF&G 2002). Hereafter, the east of 174 W longitude stock segment is referred 

to as EAG and the west of 174 W longitude stock segment is referred to as 

WAG. The stocks in the two areas were managed with a constant annual guideline 

harvest level or total allowable (retained) catch (3.000 million pounds for EAG 

and 2.700 million pounds for WAG). In 2008, however, the total allowable catch 

was increased by the Board of Fisheries (BOF) to 3.150 and 2.830 million pounds 

for EAG and WAG, respectively (an approximately 5% increase in TAC). The 

TACs were further increased by another BOF decision to 3.310 million pounds 

for EAG and 2.980 million pounds for WAG beginning with the 2012/13 fishing 

year. The below par fishery performance in WAG in recent years lead to 

reduction in TAC to 2.235 million pounds for the 2016/17 fishing season. 

Additional management measures include a male-only fishery and a minimum 

legal size limit (152.4 mm CW, or approximately 136 mm CL), which is at least 

one annual molt increment larger than the 50% maturity length of 120.8 mm CL 

for males estimated by Otto and Cummiskey (1985). We re-evaluated the male 

maturity size using 1991 pot survey measurements of carapace length and chela 

height in EAG (Appendix C). The 50% male maturity length estimates varied 

from 108.5 mm CL (segmented regression analysis) to 109.72 mm CL (logistic 
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regression model fit) to 110.6 mm CL (assessment model fit). We used the 

maturity curve developed from the 1991 data for all scenarios except scenarios 9 

and 11 in which a knife-edge 50% maturity length of 111 mm CL was used for 

mature male biomass (MMB) estimation. Daily catch and catch-per-unit effort 

(CPUE) are determined in-season to monitor fishery performance and progress 

towards the respective TACs. Figures 1 to 3 provide the historical time series of 

catches, CPUE, and the geographic distribution of catch during the recent fishing 

season. Increases in CPUE were observed during the late 1990s through the early 

2000s, and with the implementation of crab rationalization in 2005. This is likely 

due to changes in gear in the late 1990s (crab fishermen, personal communication, 

July 1, 2008) and, after rationalization, to increased soak time (Siddeek et al. 

2015), and decreased competition owing to the reduced number of vessels fishing. 

Decreased competition could allow crab vessels to target only the most productive 

fishing areas.  

6. Summary of the history of the basis and estimates of MMBMSY or proxy MMBMSY: 

We estimated the proxy MMBMSY as B35% using the Tier 3 estimation procedure, 

which is explained in a subsequent section. 

 

D. Data 

1. Summary of new information:  

(a) Commercial fishery retained catch by size, estimated total catch by size, 

groundfish male discard catch by size, observer CPUE index, commercial 

fishery CPUE index, and tag-recapture data were updated to include 2015/16 

information in September 2016 and January 2017. The details are given in the 

pictorial table below. 

(b) Male maturity proportion by size-class from 1991 pot survey size 

measurements. 

 

2. Available catch and tagging data: 
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a. A time series of retained and total catch, groundfish fishery discard mortality, 

and pot fishery effort (Tables 1a for the entire Aleutian Islands and 1b for EAG 

and Table 25 for WAG). The estimation methods are described in Appendix B. 

b. Time series of pot fishery and observer nominal retained and total CPUE, 

observer sample size, estimated observer CPUE index (Table 2 for EAG and 

Table 26 for WAG), and estimated commercial fishery CPUE index (Table 3 

for EAG and Table 27 for WAG). The estimation methods, CPUE fits and 

diagnostic plots are described in Appendix B. 

c. Information on length compositions (Figures 10 to 12 for length compositions 

for EAG; and 29 to 31 for length compositions for WAG). 

d. Survey biomass estimates are not available for the area because no systematic 

surveys, covering the entire fishing area, have occurred. 

f. Other time series data: None. 

3. Length-weight relationship: W = alb where a= 3.725*10
-4

, b = 3.090. 

4. Information on any data sources available, but excluded from the assessment: 

None.  
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E. Analytic Approach 

1. History of modeling approaches for this stock 

A size structured assessment model based on only fisheries data has been under 

development for a number of years for the EAG and WAG golden king crab 

stocks. The model was accepted in 2016 for OFL and ABC setting for the 

2017/18 season. The CPT in January and SSC in February 2017 recommended to 

using the Tier 3 procedure to set the OFL and ABC. They also suggested to using 

the maturity data to estimate MMB. We followed these suggestions in this report. 

 

Model Description 

a. The underlying population dynamics model is male-only and length-based 

(Appendix A). This model combines commercial retained catch, total catch, 

groundfish fishery discarded catch, standardized observer legal size catch-per-

unit-effort (CPUE) indices, fishery retained catch size composition, total catch 

size composition, and tag recaptures by release-recapture length to estimate 

stock assessment parameters. The tagging data were used to calculate the size 

transition matrix. To estimate the male mature biomass (MMB), we used a 

maturity curve based on the new maturity data. To include a long time series 

of CPUE indices for stock abundance contrast, we also considered the 

1985/86–1998/99 legal size standardized CPUE indices as a separate 

likelihood component in the base (scenario 1) and a number of other scenarios 

(see Table T1). 

There were significant changes in fishing practice due to changes in 

management regulations (e.g., constant TAC since 1996/97 and crab 

rationalization since 2005/06), pot configuration (escape web on the pot door 

increased to 9-inch since 1999), and improved observer recording in Aleutian 

Islands golden king crab fisheries since 1998. These changes prompted us to 

consider two sets of catchability and total selectivity parameters with only one 

set of retention parameters for the periods 1985/86–2004/05 and 2005/06–

2015/16.  

1274



19 

 

However, in order to respond to a January 2017 CPT comment, we considered 

three catchabilities, three sets of total selectivity, and one set of retention 

curves in one scenario (scenario 4). 

We fitted the observer and commercial fishery CPUE indices with GLM 

estimated standard errors and an additional constant variance; the latter was 

estimated by the model fit. The assessment model predicted total and retained 

CPUEs. However, we compared only the predicted retained CPUE with the 

observer legal size crab CPUE indices in the likelihood function because 

observer recordings of legal size crabs are reliable.  

The data series used in the current assessment for EAG ranges from 1985/86 

to 2015/16 for retained catch biomass and size composition; 1995/96 to 

2015/16 for standardized legal size crab observer CPUE index; 1989/90 to 

2015/16 for groundfish fishery male bycatch biomass and size composition; 

1985/86 to 1998/99 for standardized crab fish ticket CPUE index; 1990/91 to 

2015/16 for total catch biomass and total catch length composition; 1991, 

1997, 2000, 2003, and 2006 releases and up to 2012 recapture time period for 

tagging  information, and male maturity proportion by size. 

 

The data series used for the WAG ranges are the same as those for EAG. 

 

b. Software: AD Model Builder (Fournier et al. 2012). 

  

c.–f. Details are given in Appendix A. 

g. Critical assumptions and consequences of assumption failures:  Because of the 

lack of an annual stock survey we relied heavily on standardized CPUE 

indices (Appendix B) and catch and size composition information to 

determine the stock abundance trends in both regions. We assumed that the 

observer and fish ticket CPUE indices are linearly related to exploitable 

abundance. We kept M constant at 0.224 yr
-1

. The M value was the combined 

estimates for EAG and WAG. We assumed directed pot fishery discard  

mortality proportion at 0.20 yr
-1

, overall groundfish fishery mortality 
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proportion at 0.65 yr
-1

 [mean of groundfish pot fishery mortality (0.5 yr
-1

) and 

groundfish trawl fishery mortality (0.8 yr
-1

)], groundfish fishery selectivity at 

full selection for all length classes (selectivity = 1.0). Any discard of legal size 

males in the directed pot fishery was not considered in this analysis. These 

fixed values invariably reduced the number of model parameters to be 

estimated and helped in convergence. We assumed different q’s (scaling 

parameter for standardized CPUE in the model, Equation A.14 in Appendix 

A) and logistic selectivity patterns (Equation A.9 in Appendix A) for different 

periods for the pot fishery. We also assumed a logistic maturity pattern in the 

model (Equation A.10 in Appendix A).  

h. Changes to any of the above since the previous assessment: Does not apply 

for this assessment since the model has not been used for previous assessment. 

i. Model code has been checked and validated. The code is available from the 

authors. 

 

2. Model Selection and Evaluation 

a. Description of alternative model configurations:  

We considered 11 scenarios overall for EAG and WAG (Table T1). We 

presented OFL and ABC results for selected seven scenarios separately for 

EAG, WAG, and the entire AI in the executive summary tables. We 

considered scenario 1 as the base scenario. It considers: 

i) Initial abundance by the equilibrium condition considering the mean 

number of recruits for 1987–2012: The equilibrium abundance was 

determined for 1960, projected it forward with only M and annual recruits 

until 1980, then retained catches removed during 1981–1984 and projected 

it to obtain the initial abundance in 1985 (see Equations A.4 and A.5 in 

Appendix A). 

ii) Observer CPUE indices for 1995/96–2015/16. 

iii) Fishery CPUE indices for 1985/86–1998/99. 

iv) Initial (Stage-1) weighting of effective sample sizes: number of days for 

retained and total catch size compositions and number of fishing trips for 
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groundfish discard size composition (the groundfish size composition was 

not used in the model fitting); and (Stage-2) iterative re-weighting of 

effective sample sizes by the Francis method (Appendix D).  

v) Two catchability and two sets of logistic total selectivity for the periods 

1985/86–2004/05 and 2005/06–2015/16, and a single set of logistic 

retention curve parameters.  

vi) Full selectivity (selectivity =1.0) for groundfish (trawl) bycatch. 

vii) Logistic maturity curve by size. 

viii) Stock dynamics M = 0.224 yr
-1

, pot fishery handling mortality = 0.2 yr
-1

; 

and mean groundfish bycatch handling mortality = 0.65 yr
-1

. 

ix) Size transition matrix using tagging data estimated by the normal 

probability function with the logistic molt probability sub-model. The tag-

recaptures were treated as Bernoulli trials (i.e., Stage-1 weighting). 

x) The time period, 1987/88–2012/13, was used to determine the mean 

number of recruits for B35% (a proxy for MMBMSY) estimation under Tier 3. 

The salient features and variations from the base scenario of all other scenarios 

are listed in Table T1. The list of fixed and estimable parameters are provided in 

Table A1 and detail weights with coefficient of variations (CVs) assigned to each 

type of data are listed in Table A2 of Appendix A. 

 

As per CPT and SSC requests, jittering of initial parameter values for scenarios 1 

and 9 were done to confirm model global convergence. The results indicated that 

global convergence was achieved for most of the runs (Appendix E).  

1277



22 

 

Table T1. Features of model scenarios. Initial condition was estimated by the equilibrium condition for all scenarios. Changes from 

scenario 1 specifications are highlighted by the light blue shade. 
Scenario Size-

composition 

weighting 

Catchability 

and logistic 

total 

selectivity sets 

Maturity CPUE data type Treatment of M and Tier 3 BMSY 

reference points 

Natural 

mortality (M yr
-1

) 

0a Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer from 1995/96–
2015/16 & Fish Ticket 

from 1985/86–1998/99 

Estimate a common M using the combined 

EAG and WAG data with an M prior 
0.223 

0b Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer from 1995/96–
2015/16 & Fish Ticket 

from 1985/86–1998/99 

Estimate a common M using the combined 

EAG and WAG data without an M prior 

0.224 

1b Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer from 1995/96–
2015/16 & Fish Ticket 

from 1985/86–1998/99 

Estimate separate M for each area using 

individual EAG or WAG data without an 

M prior 

EAG:  0.221 

WAG: 0.231 

1 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer from 1995/96–
2015/16 & Fish Ticket 

from 1985/86–1998/99 

Single M from combined EAG and WAG 

data; Tier 3 BMSY reference points based on 

average recruitment from 1987–2012 

0.224 

2 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Omit Fish Ticket CPUE 

likelihood 

Single M from combined EAG and WAG 

data; Tier 3 BMSY reference points based on 

average recruitment from 1987–2012 

0.224 

3 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer CPUE from 

1991/92–2015/16 & Fish 

Ticket  

Single M from combined EAG and WAG 

data; Tier 3 BMSY reference points based on 

average recruitment from 1987–2012 

0.224 
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4 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

3 Logistic curve Observer & Fish Ticket  Single M from combined EAG and WAG 

data; Tier 3 BMSY reference points based on 

average recruitment from 1987–2012 

0.224 

5 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer & Fish ticket Low bracketing value of M; Tier 3 BMSY 

reference points based on average 

recruitment from 1987–2012 

0.189 

6 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer & Fish ticket High bracketing value of M; Tier 3 BMSY 

reference points based on average 

recruitment from 1987–2012 

0.266 

7 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer & Fish ticket Single M from combined EAG and WAG 

data; Tier 3 BMSY reference points based on 

average recruitment from 1982–2016 

0.224 

8 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer & Fish ticket Single M from combined EAG and WAG 

data; Tier 3 BMSY reference points based on 

average recruitment from 1996–2016 

0.224 

9 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Knife-edge 

 111 mmCL 

Observer & Fish Ticket  Single M from combined EAG and WAG 

data; Tier 3 BMSY reference points based on 

average recruitment from 1987–2012 

0.224 

9** Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Knife-edge 

 111 mmCL 

Observer & Fish Ticket  Considered only for WAG for Approach 2 

OFL and ABC calculation; Single M from 

combined EAG and WAG data; Tier 3 

BMSY reference points based on average 

recruitment from 1993–1997 

0.224 
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10 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Logistic curve Observer & Fish Ticket   Separate M  from EAG and WAG data; 

Tier 3 BMSY reference points based on 

average recruitment from 1987–2012 

EAG: 0.221 

WAG: 0.231 

 

11 Stage-

1:Number of 

days/trips 

Stage-2: 

Francis method 

2 Knife-edge 

111 mmCL 

Observer & Fish Ticket Separate M  from EAG and WAG data; 

Tier 3 BMSY reference points based on 

average recruitment from 1987–2012 

EAG: 0.221 

WAG: 0.231 
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b. Progression of results: Model was previously not used, so, not applicable. 

c. Model was previously not used. So labeling the previous year approved model 

as model 0 is not applicable. 

d. Evidence of search for balance between realistic and simpler models: Unlike 

annually surveyed stocks, Aleutian Islands golden king crab stock biomass is 

difficult to track and several biological parameters are assumed based on 

knowledge from red king crab (e.g., handling mortality rate of 0.2 yr
-1

) due to 

a lack of species/stock specific information. We fixed a number of model 

parameters after initially running the model with free parameters to reduce the 

number of parameters to be estimated (e.g., groundfish bycatch selectivity 

parameters were fixed). The 11 scenarios also considered different 

configuration of parameters to select parsimonious models. The detailed 

results of the selected seven scenarios are provided in tables and figures. The 

total catch OFLs and the reduction in terminal (2015) MMB from the initial 

condition (i.e., virgin MMB in 1960) for the entire 11 scenarios for EAG and 

WAG are provided in Table 49. The reduction in terminal MMB from the 

initial condition is higher for WAG than EAG.  

e. Convergence status and criteria: ADMB default convergence criteria were 

used. 

f. Table of the sample sizes assumed for the size compositional data:  

We estimated the initial input effective sample sizes (i.e., Stage-1) either as 

number of fishing days for retained and total catch compositions and number 

of fishing trips for groundfish size composition (Note: we did not use the 

groundfish size composition in the model fit) for all scenarios. Then we 

estimated the Stage-2 effective sample sizes iteratively from Stage-1 input 

effective sample sizes using the Francis’ (2011, 2016) mean length based 

method (Appendix D). 

 We provide the initial input sample sizes (Stage-1) and Stage-2 effective 

sample sizes for scenarios 1 to 6 and 9 to 11 in Tables 4 to 12 for EAG and 

Tables 28 to 36 for WAG.  
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g. Provide the basis for data weighting, including whether the input effective 

sample sizes are tuned and the survey CV adjusted:  Described previously (f) 

and details are in Appendix D. 

h. Do parameter estimates make sense? The estimated parameter values are 

within the bounds and various plots suggest that the parameter values are 

reasonable for a fixed M value for these stocks.  

i. Model selection criteria: We used a number of diagnostic criteria to select the 

appropriate models for our recommendation: CPUE fits, observed vs. 

predicted tag recapture numbers by time at large and release size, retained and 

total catch, and groundfish bycatch fits. Figures are provided for the preferred 

scenarios in the Results section. 

j. Residual analysis: We illustrated residual fits by bubble plots for size 

composition predictions in various figures in the Results section.  

k. Model evaluation: Only one model with a number of scenarios is presented 

and the evaluations are presented in the Results section below.  

 

3. Results 

1. List of effective sample sizes and weighting factors:  

The Stage-1 and Stage-2 effective sample sizes are listed for various scenarios in 

Tables 4 to 12 for EAG and Tables 28 to 36 for WAG. The weights for different 

data sets are provided in Table A2 for various scenarios, respectively, for EAG 

and WAG (Appendix A). These weights (with the corresponding coefficient of 

variations) adequately fitted the length compositions and no further changes were 

examined.  

We used weighting factors for catch biomass, recruitment deviation, pot fishery F, 

and groundfish fishery F. We set the retained catch biomass to a large value 

(500.0) because retained catches are more reliable than any other data sets. We 

scaled the total catch biomass in accordance with the observer annual sample 

sizes with a maximum of 250.0. The total catches were derived from observer 

nominal total CPUE and effort. In some years, observer sample sizes were low 

(Tables 2 and 26). We chose a small groundfish bycatch weight (0.2) based on the 
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September 2015 CPT suggestion to lower its weight. We used the best fit criteria 

to choose the lower weight for the groundfish bycatch. Groundfish bycatch of 

Aleutian Islands golden king crab is very low.  We set the CPUE weights to 1.0 

for all scenarios. We included a constant (model estimated) variance in addition to 

input CPUE variance for the CPUE fit.  We used the Burnham et al. (1987) 

suggested formula for ln(CPUE) [and ln(MMB)] variance estimation (Equation 

A.15 of Appendix A). However, the estimated additional variance values were 

small for both observer and fish ticket CPUE indices for the two regions. 

Nevertheless, the CPUE index variances estimated from the negative binomial 

and lognormal GLMs were adequate to fit the model, as confirmed by the fit 

diagnostics (Fox and Weisberg 2011). Parameter estimates are provided in Tables 

13 and 14 for EAG and 37 and 38 for WAG for a subset (nine) of scenarios. The 

numbers of estimable parameters are listed in Table A1 of Appendix A. The 

weights with the corresponding coefficient of variations specifications are 

detailed in Tables A2 of Appendix A for EAG and WAG. 

2. Include tables showing differences in likelihood: Tables 24 and 48 list the 

total and component negative log likelihood values and their differences 

between scenarios of similar sample sizes and free parameters for EAG and 

WAG, respectively.  

3. Tables of estimates:  

a. The parameter estimates with coefficient of variation for nine scenarios 

which are a subset of eleven scenarios are summarized respectively in 

Tables 13 and 14 for EAG and 37 and 38 for WAG. We have also 

provided the boundaries for parameter searches in those tables. All 

parameter estimates were within the bounds.  

b. All scenarios considered molt probability parameters in addition to the 

linear growth increment and normally distributed growth variability 

parameters to determine the size transition matrix.  

c. The mature male and legal male abundance time series for representative 

nine scenarios among the eleven scenarios are summarized in Tables 15 to 
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23 (scenarios 1, 2, 3, 4, 5, 6, 9, 10, and 11) for EAG and Tables 39 to 47 

for WAG. 

d. The recruitment estimates for those nine scenarios are summarized in 

Tables 15 to 23 for EAG and Tables 39 to 47 for WAG. 

e. The likelihood component values and the total likelihood values for nine 

scenarios are summarized in Table 24 for EAG and Table 48 for WAG.  

Scenarios 3 (observer CPUE time series extended back to 1991/92) has the 

minimum among the total negative log likelihoods for models with base 

data and equal number of free parameters for EAG and WAG, 

respectively. 

4. Graphs of estimates:  

a. Total selectivity and retention curves of the pre- and post-rationalization 

periods for nine of the eleven scenarios are illustrated in Figure 13 for 

EAG and Figure 32 for WAG. Total selectivity for the pre-rationalization 

period was used in the tagging model. The groundfish bycatch selectivity 

appeared flat in the preliminary analysis, indicating that all size groups 

were vulnerable to the gear. This is also shown in the size compositions of 

groundfish bycatch (Figures 12 and 31 for EAG and WAG, respectively). 

Thus, we set the groundfish bycatch selectivity to 1.0 for all length-classes 

in the subsequent analysis. 

b. The mature male biomass time series for nine (a subset of eleven) 

scenarios are depicted in Figures 28 and 47 for EAG and WAG, 

respectively. Mature male biomass tracked the CPUE trends well for all 

scenarios for EAG and WAG. The biomass variance was estimated using 

Burnham et al. (1987) suggested formula (Equation A.15 in Appendix A). 

We determined the mature male biomass values on 15 February each year 

and considered the 1986–2016 time series of recruits for estimating mean 

number of recruits for B35% calculation under Tier 3 approach. 

c. The full selection pot fishery F over time for nine scenarios is shown in 

Figures 27 and 46 for EAG and WAG, respectively. The F peaked in late 

1980s and early to mid-1990s and systematically declined in the EAG. On 
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the other hand, the F peaked in late 1980s, 1990s and early 2000s, then 

declined in late 2000s and slightly increased since 2010 in the WAG. The 

increase in F in recent years may be due to a decline in abundance under 

constant high harvest allocation to WAG. 

d. F vs. MMB: We provide these plots for scenarios 1 and 9 for EAG and 

WAG in Figure 48.  

e. Stock-Recruitment relationship: None.  

f. The temporal changes in total number of recruits to the modeled 

population for nine scenarios are illustrated in Figure 15 for EAG and in 

Figure 34 for WAG. The recruitment distribution to the model size group 

(101–185 mm CL) is shown in Figures 16 and 35 for EAG and WAG, 

respectively for the nine scenarios. 

5. Evaluation of the fit to the data: 

g. Fits to catches: The fishery retained, total, and groundfish bycatch 

(observed vs. estimated) plots for nine scenarios are illustrated in Figures 

19 and 38 for EAG and WAG, respectively. The 1981/82–1984//85 

retained catch plots for nine scenarios are depicted in Figures 20 and 39 

for EAG and WAG, respectively. All predicted fits were very close to 

observed values, especially for retained catch and groundfish bycatch 

mortality. However, pre 1995 total catch data did not fit well. 

h. Survey data plot: We did not consider the pot survey data for the analysis.  

i. CPUE index data: The predicted vs. input CPUE indices for nine scenarios 

are shown in Figure 26 for EAG and Figure 45 for WAG. All scenarios 

appear to fit the CPUE indices satisfactorily for EAG. However, the 

scenario 3 fit (extended observer CPUE indices) overestimated the CPUE 

trend in late years of the pre-rationalization period for EAG. The CPUE 

variance was estimated using Burnham et al. (1987) suggested formula 

(Equation A.15 in Appendix A). 

j. Tagging data: The predicted vs. observed tag recaptures by length-class 

for years 1 to 6 recaptures are depicted in Figure 14 for EAG and Figure 

33 for WAG. The predictions appear reasonable. Note that we used the 
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EAG tagging information for size transition matrix estimation for both 

stocks (EAG and WAG). The size transition matrices estimated using 

EAG tagging data in the EAG and WAG models were similar.  

k. Molt probability: The predicted molt probabilities vs. CL for the nine 

scenarios are depicted in Figures 17 and 36 for EAG and WAG, 

respectively.  The fits appear to be satisfactory. 

l. Maturity curve: The observed and predicted maturity probability vs. CL 

for the nine scenarios are depicted in Figures 18 and 37 for EAG and 

WAG, respectively.  The fits appear to be satisfactory. We show the knife-

edge selection curve in the same figures as well. The model estimated 

50% maturity length under scenario 1 was 110.62 mm CL.  

m. Fit to catch size compositions: Retained, total, and groundfish discard 

length compositions are shown in Figures 10 to 12 for EAG and 29 to 31 

for WAG. The retained and total catch size composition fits appear 

satisfactory. But, the fits to groundfish bycatch size compositions are bad. 

Note that we did not use the groundfish size composition in any of the 

model scenario fits. 

We illustrate the standardized residual plots as bubble plots of size 

composition over time for retained catch (Figures 21, 23, 49, 51, 53, and 

55 for EAG, and 40, 42, 57, 59, 61, and 63 for WAG) and for total catch 

(Figures 22, 24, 50, 52, 54, and 56 for EAG, and 41, 43, 58, 60, 62, and 64 

for WAG) for selected scenarios (1, 9, 2, 3, 4, and 11). The retained catch 

bubble plots appear random for the selected scenarios. 

n. Marginal distributions for the fits to the composition data: We did not 

provide this plot in this report. 

o. Plots of implied versus input effective sample sizes and time series of 

implied effective sample sizes: We did not provide the plots, but provided 

the estimated values in Tables 4 to 12 for EAG and in Tables 28 to 36 for 

WAG, respectively. 

p. Tables of RMSEs for the indices: We did not provide this table in this 

report. 
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q. Quantile-quantile (Q–Q) plots: We did not provide this plot for model fits 

in this report. However, we provided this plot for the CPUE 

standardization fits in Appendix B.  

6. Retrospective and historical analysis: The retrospective fits for five scenarios 

(a subset of eleven scenarios) are shown in Figure 25 for EAG and in Figure 

44 for WAG. The retrospective fits were prepared for the whole time series 

1961 to 2016. The retrospective patterns did not show severe departure when 

five terminal year’s data were removed systematically and hence the current 

formulation of the model appears stable. A severe drop in modeled biomass 

from the initial MMB occurred when the fishery time series started in 1981.  

7. Uncertainty and sensitivity analysis: 

a. The main task was to determine a plausible size transition matrix to 

project the population over time. In a previous study, we investigated the 

sensitivity of the model to determining the size transition matrix by using 

or not using a molt probability function (Siddeek et al. 2016a). The model 

fit is better when the molt probability model is included. Therefore, we 

included a molt probability sub-model for the size transition matrix 

calculation in all scenarios. 

b. We also determined likelihood values at different M, mean MMB, and 

MMB depletion values and plotted component negative likelihood against 

M, mean MMB, and MMB depletion (Figures 4 to 8). We discussed the 

merit of M estimation within the model in the CPT and SSC comments 

section. 

c.  Conduct ‘jitter analysis’: We conducted the (random) jitter analysis on 

scenarios 1 and 9 model fitted parameters (details in Appendix E).  

 

F. Calculation of the OFL 

Specification of the Tier level: 

The Aleutian Islands golden king crab stocks are currently managed under a Tier 

5 (average catch OFL) control rule. Following January 2017 CPT and February 
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2017 SSC recommendations we proceeded to compute OFL and ABC under Tier 

3 estimation procedure.   

The critical assumptions for BMSY reference point estimation are: 

a. Natural mortality is constant. 

b. Growth transition matrix is fixed and estimated using tagging data with the molt 

probability sub-model. 

c. Total fishery selectivity and retention curves are length dependent and the 

2005/06–2015/16 period selectivity estimates are used.  

d. Groundfish bycatch fishery selectivity is kept constant at 1.0 for all length groups. 

e. Model estimated recruits (in millions of crab) are averaged for the time period 

1987 – 2012. 

f. Model estimated groundfish bycatch mortality values are averaged for the period 

2005 to 2014 (10 years). 

g. A size dependent maturity proportion is used for MMB estimation. 

 

Method:   We simulated the population abundance starting from the model estimated 

terminal year stock size by length, model estimated parameter values, a fishing mortality 

value (F), and adding a constant number of annual recruits. Once the stock dynamics 

were stabilized (we used the 99
th

 year estimates) for an F, we calculated the MMB/R for 

that F. We computed the relative MMB/R in percentage, (
𝑀𝑀𝐵

𝑅
)

𝑥%
 (where x% =  

𝑀𝑀𝐵𝐹
𝑅

𝑀𝑀𝐵0
𝑅

 ×

100  and 𝑀𝑀𝐵0/𝑅 is the virgin MMB/R) for different F values.  

F35% is the F value that produces the MMB/R value equal to 35% of 𝑀𝑀𝐵0/𝑅.  

B35% is estimated using the following formula: 

𝐵35% = (
𝑀𝑀𝐵

𝑅
)

35
× �̅�  , where �̅�   is the mean number of model estimated recruits for a 

selected period. 

 

𝐹𝑂𝐹𝐿 is determined using Equation A.31 in Appendix A. The OFL is estimated by an 

iterative procedure accounting for intervening total removals (see Appendix A for the 

formulas). 
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The FOFL ,  total catch OFL, and the retained catch portion of the OFL for coming year 

for scenarios 1 and 9 are:  

 

Scenario 1: 

EAG: FOFL = 0.64; OFL total catch = 3.986 thousand metric tons, retained catch portion 

of the OFL = 3.858 thousand metric tons. 

WAG: FOFL = 0.54; OFL total catch = 1.298 thousand metric tons; retained catch portion 

of the OFL = 1.213 thousand metric tons. 

AI: OFL total catch = 5.284 thousand metric tons. 

 

Scenario 9: 

EAG: FOFL = 0.75; OFL total catch = 4.486 thousand metric tons, retained catch portion 

of the OFL = 4.337 thousand metric tons. 

WAG: FOFL = 0.66; OFL total catch = 1.532 thousand metric tons; retained catch portion 

of the OFL = 1.429 thousand metric tons. 

AI: OFL total catch = 6.018 thousand metric tons. 

 

G. Calculation of the ABC 

We estimated the cumulative probability distribution of OFL assuming a log normal 

distribution of OFL. We calculated the OFL at the 0.5 probability and the ABC at the 

0.49 probability and considered an additional buffers by setting ABC =0.75*OFL and 

ABC =0.8*OFL. The ABC estimates with the 20% buffer for scenarios 1 and 9 are:  

 

Scenario 1: 

EAG: ABC = 3.189 thousand metric tons.  

WAG: ABC = 1.039 thousand metric tons. 

AI: ABC = 4.227 thousand metric tons. 

 

Scenario 9: 

EAG: ABC = 3.589 thousand metric tons.  

WAG: ABC = 1.226 thousand metric tons. 
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AI: ABC = 4.815 thousand metric tons. 

 

H. Rebuilding Analysis 

 Not applicable. 

 

I. Data Gaps and Research Priorities 

1. The recruit abundances were estimated from commercial catch sampling 

data. The implicit assumption in the analysis was that the estimated 

recruits come solely from the same exploited stock through growth and 

mortality. The current analysis did not consider the possibility that 

additional recruitment may occur through immigration from neighboring 

areas and possibly separate sub-stocks. Extensive tagging experiments or 

resource surveys are needed to investigate stock distributions.  

2. We estimated M in the model. However, an independent estimate of M is 

needed for comparison. Tagging is one possibility.  

3. An extensive tagging study will also provide independent estimates of 

molting probability and growth. We used the historical tagging data to 

determine the size transition matrix. 

4. An arbitrary 20% handling mortality rate on discarded males was used, 

which was obtained from the red king crab literature (Kruse et al. 2000; 

Siddeek 2002). An experimentally-based independent estimate of handling 

mortality is needed for golden king crab. 

5. The Aleutian king crab research foundation has recently initiated crab 

survey programs in the Aleutian Islands. This program needs to be 

strengthened and continued for golden king crab research to address some 

of the data gaps and establish a fishery independent data source.  

6. We have been using the length-weight relationship established based on 

late 1990s data for golden king crab. The Aleutian king crab research 

foundation program can help us to update this relationship by collecting 

new length weight information. 
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7. We have recently included the male maturity data in the model. The 

maturity data available to us were collected in 1984 and 1991. The 

foundation can help us to update the maturity information by collecting 

new data on size, chela height, and egg and clutch conditions. 
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Table 1a. Estimated annual total catch (t) of Aleutian Islands golden king crab during 1990–2015, 

partitioned by source of mortality: retained catch, estimated bycatch of males and females during 

crab fisheries, and estimated bycatch of males and females during groundfish fisheries. The crab 

fishery bycatch mortality rate of 0.2 and the groundfish fisheries (in federal reporting areas 541, 

542, and 543) bycatch mortality rates of 0.5 for fixed gear and 0.8 for trawl gear were applied. 

1990 refers to 1990/91 fishery. 

 
 

 

 

Total 

Year Retained Catch Crab  Groundfish Catch  

1990 3,161 1,254 — — 

1991 3,494 1,021 — — 

1992 2,854 1,187 — — 

1993 2,518 — 3.9 — 

1994 3,687 — 1.3 — 

1995 3,157 1,093 2.0 4,252 

1996 2,638 823 5.0 3,466 

1997 2,697 789 0.5 3,486 

1998 2,242 670 1.4 2,913 

1999 2,648 685 2.9 3,337 

2000 2,730 807 1.9 3,539 

2001 2,685 625 0.5 3,310 

2002 2,478 514 17.5 3,010 

2003 2,570 451 20.1 3,041 

2004 2,529 392 1.4 2,922 

2005 2,504 229 1.8 2,735 

2006 2,380 234 17.5 2,638 

2007 2,498 275 59.0 2,833 

2008 2,576 251 32.9 2,860 

2009 2,682 253 16.6 2,951 

2010 2,707 247 19.8 2,975 

2011 2,705 230 15.5 2,951 

2012 2,843 263 9.2 3,115 

2013 2,894 287 10.7 3,192 

2014 2,771 303 4.9 3,079 

2015 2,729 312 32.0 3,073 

Bycatch  

by Fishery Type   
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Table 1b. Time series of annual retained catch (1981–1984 values are in number of crabs and the 

rest in t), estimated total male catch (weight of crabs on the deck without applying any handling 

mortality), estimated groundfish fishery discard mortality of males (handling mortality rates of 

0.5 for pot gear and 0.8 for trawl gear were applied), and pot fishery effort (number of pot lifts) 

for the EAG golden king crab stock. The crab weights are for the size range ≥ 101mm CL.  NA: 

no observer sampling to compute catch. The directed fishery data included cost-recovery 

beginning in 2013. 1981 refers to 1981/82 fishery.  

Year 

Retained Catch 

Biomass  

Total Catch 

Biomass (t) 

Groundfish 

Discard 

Mortality (t) 

Pot Fishery Effort 

(no. pot lifts) 

1981 203,968    

1982 529,787    

1983 662,280    

1984 801,100    

1985 2,677   117,718 

1986 2,798   155,240 

1987 1,882   146,501 

1988 2,382   155,518 

1989 2,738  0.61 155,262 

1990 1,623 1,881 1.97 106,281 

1991 2,006 5,899 0.00 133,428 

1992 2,102 5,580 1.01 133,778 

1993 1,407 NA 0.95 106,890 

1994 2,017 2,266 0.29 191,455 

1995 2,197 3,734 0.78 177,773 

1996 1,605 2,059 0.04 113,460 

1997 1,464 2,548 0.10 106,403 

1998 1,398 2,797 0.76 83,378 

1999 1,321 2,280 0.35 79,129 

2000 1,343 2,555 0.47 71,551 

2001 1,385 2,097 1.46 62,639 

2002 1,228 1,800 0.68 52,042 

2003 1,278 1,816 0.43 58,883 

2004 1,252 1,619 0.12 34,848 

2005 1,253 1,713 0.28 24,569 

2006 1,365 1,621 0.70 26,195 

2007 1,307 1,790 0.69 22,653 

2008 1,396 1,787 0.86 24,466 

2009 1,423 1,750 1.14 26,298 

2010 1,388 1,719 2.41 25,851 

2011 1,418 1,736 1.15 17,915 

2012 1,470 1,927 3.60 20,827 

2013 1,518 1,818 2.02 21,388 

2014 1,524 1,939 2.30 17,002 

2015 1,658 2,102 0.19 19,376 
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Table 2. Time series of nominal annual pot fishery retained, observer retained, and observer total 

catch-per-unit-effort (CPUE, number of crabs per pot lift), observer sample size (number of 

sampled pots), and GLM estimated observer CPUE Index for the EAG golden king crab stock. 

Observer retained CPUE includes retained and non-retained legal size crabs.  

 

 

 

    

Year 

Pot 

Fishery 

Nominal 

Retained 

CPUE 

Obs. 

Nominal 

Retained 

CPUE 

Obs. 

Nominal  

Total 

CPUE 

Obs. 

Sample 

Size 

(no.pot 

lifts) 

Obs. 

CPUE 

Index 

1990 8.90 2.17 13.00 138  

1991 8.20 17.36 36.91 377  

1992 8.36 10.43 38.52 199  

1993 7.79 5.07 20.82 31  

1994 5.89 2.54 12.91 127  

1995 5.89 5.06 16.98 6,388 0.73 

1996 6.45 5.17 13.81 8,360 0.76 

1997 7.34 7.13 18.25 4,670 0.79 

1998 8.88 9.17 25.77 3,616 0.95 

1999 8.96 9.25 20.77 3,851 0.88 

2000 9.85 9.92 25.39 5,043 0.91 

2001 11.66 11.14 22.48 4,626 1.18 

2002 12.37 11.99 22.59 3,980 1.26 

2003 10.92 11.02 19.43 3,960 1.11 

2004 18.30 17.73 28.48 2,206 1.80 

2005 25.40 29.44 38.48 1,193 1.02 

2006 24.84 25.20 33.52 1,098 0.82 

2007 27.95 31.09 40.37 998 0.96 

2008 27.26 29.73 38.18 613 0.93 

2009 25.85 26.64 35.89 408 0.76 

2010 25.96 26.05 36.76 436 0.77 

2011 37.33 38.79 51.69 361 1.13 

2012 33.02 38.00 47.74 438 1.09 

2013 33.67 35.83 46.16 499 1.05 

2014 42.29 46.96 60.00 376 1.37 

2015 39.18 43.08 58.75 478 1.31 
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Table 3. Time series of GLM estimated CPUE indices and coefficient of variations (CV) for the 

fish ticket based retained catch-per-pot lift for the EAG golden king crab stock. The GLM was 

fitted to the 1985/86 to 1998/99 time series of data and used in scenario 4.  

 

 

  
 

Year 

CPUE 

Index 
CV 

1985/86 1.67 0.05 

1986/87 1.22 0.05 

1987/88 0.96 0.06 

1988/89 1.03 0.05 

1989/90 1.04 0.04 

1990/91 0.83 0.06 

1991/92 0.84 0.06 

1992/93 0.93 0.06 

1993/94 0.90 0.06 

1994/95 0.80 0.07 

1995/96 0.77 0.07 

1996/97 0.83 0.07 

1997/98 1.20 0.05 

1998/99 1.36 0.05 
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Table 4. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 1 model fit to EAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 51     

1986 11 10     

1987 61 54     

1988 352 314     

1989 792 706   9 4 

1990 163 145 22 11 13 6 

1991 140 125 48 24 NA NA 

1992 49 44 41 20 2 1 

1993 340 303 NA NA 2 1 

1994 319 285 34 17 4 2 

1995 879 784 1,117 558 5 2 

1996 547 488 509 254 4 2 

1997 538 480 711 355 8 4 

1998 541 483 574 287 15 7 

1999 463 413 607 303 14 6 

2000 436 389 495 247 16 7 

2001 488 435 510 255 13 6 

2002 406 362 438 219 15 7 

2003 405 361 416 208 17 8 

2004 280 250 299 149 10 4 

2005 266 237 232 116 12 5 

2006 234 209 143 71 14 6 

2007 199 178 134 67 17 8 

2008 197 176 113 56 15 7 

2009 170 152 95 47 16 7 

2010 183 163 108 54 26 12 

2011 160 143 107 53 13 6 

2012 187 167 99 49 18 8 

2013 193 172 122 61 17 8 

2014 168 150 99 49 16 7 

2015 190 169 125 62 9 4 
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Table 5. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 2 model fit to EAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 50     

1986 11 10     

1987 61 54     

1988 352 311     

1989 792 701   9 4 

1990 163 144 22 11 13 6 

1991 140 124 48 24 NA NA 

1992 49 43 41 20 2 1 

1993 340 301 NA NA 2 1 

1994 319 282 34 17 4 2 

1995 879 778 1,117 553 5 2 

1996 547 484 509 252 4 2 

1997 538 476 711 352 8 4 

1998 541 479 574 284 15 7 

1999 463 410 607 300 14 6 

2000 436 386 495 245 16 7 

2001 488 432 510 252 13 6 

2002 406 359 438 217 15 7 

2003 405 358 416 206 17 8 

2004 280 248 299 148 10 4 

2005 266 235 232 115 12 5 

2006 234 207 143 71 14 6 

2007 199 176 134 66 17 8 

2008 197 174 113 56 15 7 

2009 170 150 95 47 16 7 

2010 183 162 108 53 26 12 

2011 160 142 107 53 13 6 

2012 187 165 99 49 18 8 

2013 193 171 122 60 17 8 

2014 168 149 99 49 16 7 

2015 190 168 125 62 9 4 
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Table 6. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 3 model fit to EAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 51     

1986 11 10     

1987 61 54     

1988 352 313     

1989 792 704   9 4 

1990 163 145 22 12 13 6 

1991 140 124 48 25 NA NA 

1992 49 44 41 22 2 1 

1993 340 302 NA NA 2 1 

1994 319 284 34 18 4 2 

1995 879 782 1,117 592 5 2 

1996 547 486 509 270 4 2 

1997 538 478 711 377 8 4 

1998 541 481 574 304 15 7 

1999 463 412 607 321 14 6 

2000 436 388 495 262 16 7 

2001 488 434 510 270 13 6 

2002 406 361 438 232 15 7 

2003 405 360 416 220 17 8 

2004 280 249 299 158 10 5 

2005 266 237 232 123 12 5 

2006 234 208 143 76 14 6 

2007 199 177 134 71 17 8 

2008 197 175 113 60 15 7 

2009 170 151 95 50 16 7 

2010 183 163 108 57 26 12 

2011 160 142 107 57 13 6 

2012 187 166 99 52 18 8 

2013 193 172 122 65 17 8 

2014 168 149 99 52 16 7 

2015 190 169 125 66 9 5 
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Table 7. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 4 model fit to EAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 54     

1986 11 10     

1987 61 58     

1988 352 335     

1989 792 754   9 4 

1990 163 155 22 11 13 6 

1991 140 133 48 23 NA NA 

1992 49 47 41 20 2 1 

1993 340 324 NA NA 2 1 

1994 319 304 34 16 4 2 

1995 879 837 1,117 539 5 2 

1996 547 521 509 246 4 2 

1997 538 512 711 343 8 4 

1998 541 515 574 277 15 7 

1999 463 441 607 293 14 6 

2000 436 415 495 239 16 7 

2001 488 465 510 246 13 6 

2002 406 387 438 211 15 7 

2003 405 386 416 201 17 8 

2004 280 267 299 144 10 4 

2005 266 253 232 112 12 5 

2006 234 223 143 69 14 6 

2007 199 190 134 65 17 8 

2008 197 188 113 55 15 7 

2009 170 162 95 46 16 7 

2010 183 174 108 52 26 12 

2011 160 152 107 52 13 6 

2012 187 178 99 48 18 8 

2013 193 184 122 59 17 8 

2014 168 160 99 48 16 7 

2015 190 181 125 60 9 4 
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Table 8. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 5 model fit to EAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 50     

1986 11 10     

1987 61 53     

1988 352 308     

1989 792 692   9 4 

1990 163 143 22 11 13 6 

1991 140 122 48 24 NA NA 

1992 49 43 41 21 2 1 

1993 340 297 NA NA 2 1 

1994 319 279 34 17 4 2 

1995 879 769 1,117 567 5 2 

1996 547 478 509 258 4 2 

1997 538 470 711 361 8 4 

1998 541 473 574 291 15 7 

1999 463 405 607 308 14 6 

2000 436 381 495 251 16 7 

2001 488 427 510 259 13 6 

2002 406 355 438 222 15 7 

2003 405 354 416 211 17 8 

2004 280 245 299 152 10 4 

2005 266 233 232 118 12 5 

2006 234 205 143 73 14 6 

2007 199 174 134 68 17 8 

2008 197 172 113 57 15 7 

2009 170 149 95 48 16 7 

2010 183 160 108 55 26 12 

2011 160 140 107 54 13 6 

2012 187 164 99 50 18 8 

2013 193 169 122 62 17 8 

2014 168 147 99 50 16 7 

2015 190 166 125 63 9 4 
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Table 9. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 6 model fit to EAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 51     

1986 11 10     

1987 61 55     

1988 352 315     

1989 792 708   9 4 

1990 163 146 22 11 13 6 

1991 140 125 48 24 NA NA 

1992 49 44 41 20 2 1 

1993 340 304 NA NA 2 1 

1994 319 285 34 17 4 2 

1995 879 786 1,117 550 5 2 

1996 547 489 509 251 4 2 

1997 538 481 711 350 8 4 

1998 541 484 574 283 15 7 

1999 463 414 607 299 14 6 

2000 436 390 495 244 16 7 

2001 488 437 510 251 13 6 

2002 406 363 438 216 15 7 

2003 405 362 416 205 17 8 

2004 280 250 299 147 10 4 

2005 266 238 232 114 12 5 

2006 234 209 143 70 14 6 

2007 199 178 134 66 17 8 

2008 197 176 113 56 15 7 

2009 170 152 95 47 16 7 

2010 183 164 108 53 26 12 

2011 160 143 107 53 13 6 

2012 187 167 99 49 18 8 

2013 193 173 122 60 17 8 

2014 168 150 99 49 16 7 

2015 190 170 125 62 9 4 
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Table 10. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 9 model fit to EAG data. NA: not available. 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 51     

1986 11 10     

1987 61 54     

1988 352 314     

1989 792 706   9 4 

1990 163 145 22 11 13 6 

1991 140 125 48 24 NA NA 

1992 49 44 41 20 2 1 

1993 340 303 NA NA 2 1 

1994 319 285 34 17 4 2 

1995 879 784 1,117 558 5 2 

1996 547 488 509 254 4 2 

1997 538 480 711 355 8 4 

1998 541 483 574 287 15 7 

1999 463 413 607 303 14 6 

2000 436 389 495 247 16 7 

2001 488 435 510 255 13 6 

2002 406 362 438 219 15 7 

2003 405 361 416 208 17 8 

2004 280 250 299 149 10 4 

2005 266 237 232 116 12 5 

2006 234 209 143 71 14 6 

2007 199 178 134 67 17 8 

2008 197 176 113 56 15 7 

2009 170 152 95 47 16 7 

2010 183 163 108 54 26 12 

2011 160 143 107 53 13 6 

2012 187 167 99 49 18 8 

2013 193 172 122 61 17 8 

2014 168 150 99 49 16 7 

2015 190 169 125 62 9 4 
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Table 11. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 10 model fit to EAG data. NA: not available. 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 51     

1986 11 10     

1987 61 54     

1988 352 314     

1989 792 706   9 4 

1990 163 145 22 11 13 6 

1991 140 125 48 24 NA NA 

1992 49 44 41 20 2 1 

1993 340 303 NA NA 2 1 

1994 319 284 34 17 4 2 

1995 879 783 1,117 558 5 2 

1996 547 487 509 254 4 2 

1997 538 479 711 355 8 4 

1998 541 482 574 287 15 7 

1999 463 413 607 303 14 6 

2000 436 389 495 247 16 7 

2001 488 435 510 255 13 6 

2002 406 362 438 219 15 7 

2003 405 361 416 208 17 8 

2004 280 250 299 149 10 4 

2005 266 237 232 116 12 5 

2006 234 209 143 71 14 6 

2007 199 177 134 67 17 8 

2008 197 176 113 56 15 7 

2009 170 152 95 47 16 7 

2010 183 163 108 54 26 12 

2011 160 143 107 53 13 6 

2012 187 167 99 49 18 8 

2013 193 172 122 61 17 8 

2014 168 150 99 49 16 7 

2015 190 169 125 62 9 4 
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Table 12. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 11 model fit to EAG data. NA: not available. 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size (no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip 

Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample 

Size (no) 

1985 57 51     

1986 11 10     

1987 61 54     

1988 352 314     

1989 792 706   9 4 

1990 163 145 22 11 13 6 

1991 140 125 48 24 NA NA 

1992 49 44 41 20 2 1 

1993 340 303 NA NA 2 1 

1994 319 284 34 17 4 2 

1995 879 783 1,117 558 5 2 

1996 547 487 509 254 4 2 

1997 538 479 711 355 8 4 

1998 541 482 574 287 15 7 

1999 463 413 607 303 14 6 

2000 436 389 495 247 16 7 

2001 488 435 510 255 13 6 

2002 406 362 438 219 15 7 

2003 405 361 416 208 17 8 

2004 280 250 299 149 10 4 

2005 266 237 232 116 12 5 

2006 234 209 143 71 14 6 

2007 199 177 134 67 17 8 

2008 197 176 113 56 15 7 

2009 170 152 95 47 16 7 

2010 183 163 108 54 26 12 

2011 160 143 107 53 13 6 

2012 187 167 99 49 18 8 

2013 193 172 122 61 17 8 

2014 168 150 99 49 16 7 

2015 190 169 125 62 9 4 
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Table 13. Parameter estimates and coefficient of variations (CV) with the 2015 MMB (MMB on 15 Feb 2016) for scenarios 1, 2, 3, and 4 for the 

golden king crab data from the EAG, 1985/86–2015/16. Recruitment and fishing mortality deviations and initial size frequency determination 

parameters were omitted from this list.  

 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4  

Parameter Estimate CV Estimate CV Estimate CV Estimate CV Limits 

log_1  ( growth incr. intercept) 2.54 0.01 2.54 0.01 2.54 0.01 2.54 0.01 1.0, 4.5 

2   ( growth incr. slope) -8.24 0.21 -8.24 0.21 8.37 0.21 -7.65 0.23 -12.0,-5.0 

log_a  (molt prob.  slope) -2.52 0.02 -2.52 0.02 2.49 0.02 -2.56 0.03 -4.61,-1.39 

log_b  (molt prob. L50) 4.95 0.001 4.95 0.001 4.95 0.001 4.95 0.001 3.869,5.05 

  (growth variability std) 3.68 0.03 3.68 0.03 3.68 0.03 3.69 0.03 0.1,12.0 

log_total sel delta,  1985–94       2.98 0.05 0,4.4 

log_total sel delta,  1985–04 or 1995–04 3.36 0.02 3.37 0.02 3.35 0.02 3.48 0.02 0.,4.4 

log_ total sel delta,  2005-15 2.99 0.03 2.98 0.03 2.94 0.03 3.01 0.03 0.,4.4 

log_ ret. sel delta, 1985-15 1.85 0.02 1.85 0.02 1.85 0.02 1.86 0.02 0.,4.4 

log_maturity delta_mat 3.80 0.48 3.80 0.48 3.80 0.48 3.80 0.48 0,4.4 

log_maturity mat50 4.71 0.04 4.71 0.04 4.71 0.04 4.71 0.04 4.4,4.85 

log_tot sel 50, 1985–94       4.85 0.004 4.0,5.0 

log_tot sel 50, 1985–04 or 1995–04 4.84 0.002 4.84 0.003 4.84 0.002 4.87 0.004 4.0,5.0 

log_tot sel 50, 2005-15 4.92 0.002 4.92 0.002 4.91 0.002 4.93 0.002 4.0,5.0 

log_ret. sel 50, 1985-15 4.91 0.0003 4.91 0.0003 4.91 0.0003 4.91 0.0003 4.0,5.0 

log_βr  (rec.distribution par.) -1.08 0.18 -1.06 0.19 1.06 0.18 -1.05 0.20 -12.0, 12.0 

Logq1 (catchability  1985-94)       -0.68 0.13 -9.0, 2.25 

logq2 (catchability  1995-04) -0.63 0.12 -0.66 0.14 -0.59 0.13 -0.46 0.26 -9.0, 2.25 

logq3 (catchability 2005-15) -1.07 0.12 -1.09 0.13 -1.25 0.11 -0.97 0.15 -9.0, 2.25 

log_mean_rec  (mean rec.) 0.96 0.05 0.96 0.05 1.00 0.05 0.93 0.05 0.01, 5.0 

log_mean_Fpot (Pot fishery F) -1.11 0.06 -1.12 0.07 1.21 0.06 -1.04 0.08 -15.0, -0.01 

log_mean_Fground (GF byc. F) -9.35 0.10 -9.35 0.10 9.43 0.10 -9.30 0.10 -15.0, -1.6 

𝜎𝑒
2   (observer CPUE additional var) 0.018 0.38 0.02 0.37 0.024 0.39 0.018 0.38 0.0, 0.15 

𝜎𝑒
2   (fishery CPUE additional var) 0.052 0.42   0.038 0.43 0.051 0.43 0.0,1.0 

2015 MMB 10,597 0.32 10,749 0.32 11,605 0.32 10,036 0.32  
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Table 14. Parameter estimates and coefficient of variations (CV) with the 2015 MMB (MMB on 15 Feb 2016) for scenarios 5, 6, 9, 10, and 11 for 

the golden king crab data from the EAG, 1985/86–2015/16. Recruitment and fishing mortality deviations and initial size frequency determination 

parameters were omitted from this list.  

 Scenario 5 Scenario 6 Scenario 9 Scenario 10 Scenario 11  

Parameter Estimate CV Estimate CV Estimate CV Estimate CV Estimate CV Limits 

log_1  ( growth incr. intercept) 2.54 0.01 2.54 0.01 2.54 0.01 2.54 0.01 2.54 0.01 1.0, 4.5 

2   ( growth incr. slope) -8.31 0.21 -8.12 0.21 -8.24 0.21 -8.25 0.21 -8.25 -0.21 -12.0,-5.0 

log_a  (molt prob.  slope) -2.48 0.02 -2.55 0.02 -2.52 0.02 -2.52 0.02 -2.52 -0.02 -4.61,-1.39 

log_b  (molt prob. L50) 4.95 0.001 4.95 0.001 4.95 0.001 4.95 0.001 4.95 0.001 3.869,5.05 

  (growth variability std) 3.68 0.03 3.68 0.03 3.68 0.03 3.68 0.03 3.68 0.03 0.1,12.0 

log_total sel delta,  1985–04 3.38 0.02 3.34 0.02 3.36 0.02 3.37 0.02 3.37 0.02 0.,4.4 

log_ total sel delta,  2005-15 2.98 0.03 3.00 0.03 2.99 0.03 2.99 0.03 2.99 0.03 0.,4.4 

log_ ret. sel delta, 1985-15 1.85 0.02 1.86 0.02 1.85 0.02 1.85 0.02 1.85 0.02 0.,4.4 

log_maturity delta_mat 3.80 0.48 3.80 0.48   3.80 0.48   0,4.4 

log_maturity mat50 4.71 0.04 4.71 0.04   4.71 0.04   4.4,4.85 

log_tot sel 50, 1985–04 4.83 0.002 4.85 0.002 4.84 0.002 4.84 0.002 4.84 0.002 4.0,5.0 

log_tot sel 50, 2005-15 4.92 0.002 4.93 0.002 4.92 0.002 4.92 0.002 4.92 0.002 4.0,5.0 

log_ret. sel 50, 1985-15 4.91 0.0003 4.91 0.0003 4.91 0.0003 4.91 0.0003 4.91 0.0003 4.0,5.0 

log_βr  (rec.distribution par.) -1.07 0.19 -1.09 0.18 -1.08 0.18 -1.08 0.19 -1.08 -0.19 -12.0, 12.0 

logq2 (catchability  1985-04) -0.56 0.13 -0.71 0.11 -0.63 0.12 -0.62 0.12 -0.62 -0.12 -9.0, 2.25 

logq3 (catchability 2005-15) -1.02 0.12 -1.11 0.12 -1.07 0.12 -1.06 0.12 -1.06 -0.12 -9.0, 2.25 

log_mean_rec  (mean rec.) 0.72 0.06 1.22 0.04 0.96 0.05 0.94 0.05 0.94 0.05 0.01, 5.0 

log_mean_Fpot (Pot fishery F) -1.06 0.06 -1.17 0.06 -1.11 0.06 -1.11 0.06 -1.11 -0.06 -15.0, -0.01 

log_mean_Fground (GF byc. F) -9.24 0.10 -9.48 0.10 -9.35 0.10 -9.34 0.10 -9.34 -0.10 -15.0, -1.6 

𝜎𝑒
2   (observer CPUE additional 

var) 0.017 0.37 0.020 0.40 0.018 0.38 0.018 0.38 0.018 0.38 
0.0, 0.15 

𝜎𝑒
2   (fishery CPUE additional 

var) 0.051 0.42 0.052 0.43 0.052 0.42 0.052 0.42 0.052 0.42 

0.0,1.0 

2015 MMB 9,676 0.31 11,711 0.32 12,051 0.15 10,518 0.32 11,959 0.15  
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Table 15. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 1 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =18,488  

MMB35=6,276    

1985 1.77   9,843 0.06 

1986 1.06 6,617 0.28 8,359 0.04 

1987 4.45 6,412 0.26 6,535 0.04 

1988 4.08 6,102 0.31 5,424 0.05 

1989 1.91 5,118 0.34 4,880 0.07 

1990 2.95 5,376 0.32 4,537 0.06 

1991 3.94 5,515 0.32 4,785 0.06 

1992 2.34 5,275 0.33 4,533 0.05 

1993 2.10 5,444 0.32 4,627 0.05 

1994 2.63 5,087 0.31 5,065 0.04 

1995 2.49 4,536 0.32 4,546 0.04 

1996 2.40 4,645 0.32 3,919 0.04 

1997 3.29 5,006 0.32 4,075 0.05 

1998 3.03 5,475 0.32 4,213 0.05 

1999 3.27 6,176 0.32 4,703 0.06 

2000 3.09 6,809 0.32 5,419 0.06 

2001 2.34 7,183 0.31 6,139 0.06 

2002 3.07 7,711 0.30 6,783 0.07 

2003 2.62 8,037 0.30 7,203 0.07 

2004 2.22 8,186 0.30 7,578 0.08 

2005 3.38 8,470 0.29 7,881 0.08 

2006 2.60 8,602 0.29 7,867 0.08 

2007 2.46 8,689 0.30 8,103 0.09 

2008 4.19 9,164 0.29 8,324 0.09 

2009 2.81 9,473 0.30 8,337 0.10 

2010 2.66 9,698 0.30 8,887 0.10 

2011 3.56 10,031 0.29 9,338 0.10 

2012 3.50 10,362 0.30 9,448 0.10 

2013 2.91 10,530 0.30 9,699 0.10 

2014 3.25 10,697 0.31 10,057 0.11 

2015 2.84 10,597 0.32 10,205 0.13 

2016 2.61 10,533 0.32   
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Table 16. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 2 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =18,610  

MMB35=6,329    

1985 1.69   9,908 0.06 

1986 1.03 6,590 0.28 8,403 0.04 

1987 4.29 6,315 0.26 6,523 0.04 

1988 4.30 6,034 0.31 5,368 0.05 

1989 1.87 5,056 0.34 4,759 0.07 

1990 2.92 5,323 0.32 4,461 0.07 

1991 3.99 5,481 0.32 4,741 0.06 

1992 2.34 5,255 0.33 4,490 0.05 

1993 2.07 5,427 0.33 4,602 0.05 

1994 2.61 5,065 0.31 5,055 0.04 

1995 2.46 4,502 0.32 4,534 0.04 

1996 2.40 4,605 0.32 3,894 0.05 

1997 3.34 4,980 0.32 4,036 0.05 

1998 3.06 5,472 0.32 4,173 0.06 

1999 3.31 6,202 0.32 4,689 0.06 

2000 3.13 6,868 0.32 5,437 0.07 

2001 2.37 7,270 0.32 6,189 0.07 

2002 3.12 7,827 0.30 6,866 0.08 

2003 2.64 8,171 0.30 7,313 0.08 

2004 2.24 8,330 0.30 7,715 0.08 

2005 3.40 8,618 0.29 8,031 0.09 

2006 2.62 8,750 0.30 8,019 0.09 

2007 2.49 8,836 0.30 8,252 0.10 

2008 4.22 9,315 0.29 8,472 0.10 

2009 2.84 9,630 0.30 8,485 0.10 

2010 2.69 9,857 0.30 9,040 0.10 

2011 3.59 10,194 0.29 9,496 0.10 

2012 3.54 10,533 0.30 9,610 0.11 

2013 2.93 10,702 0.31 9,866 0.11 

2014 3.25 10,862 0.31 10,230 0.12 

2015 2.84 10,749 0.32 10,378 0.13 

2016 2.61 10,639 0.32   
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Table 17. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 3 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =19,355 

MMB35=6,546    

1985 1.80   9,911 0.06 

1986 1.07 6,628 0.28 8,375 0.04 

1987 4.41 6,403 0.26 6,536 0.04 

1988 4.08 6,088 0.31 5,423 0.05 

1989 1.89 5,094 0.34 4,875 0.07 

1990 3.00 5,362 0.32 4,527 0.06 

1991 3.92 5,499 0.32 4,759 0.06 

1992 2.45 5,295 0.33 4,522 0.05 

1993 2.17 5,505 0.32 4,628 0.05 

1994 2.71 5,202 0.31 5,104 0.04 

1995 2.61 4,722 0.32 4,643 0.04 

1996 2.54 4,905 0.32 4,081 0.05 

1997 3.53 5,374 0.32 4,309 0.05 

1998 3.29 5,979 0.32 4,533 0.06 

1999 3.56 6,835 0.32 5,151 0.06 

2000 3.39 7,632 0.32 6,026 0.07 

2001 2.58 8,143 0.31 6,914 0.07 

2002 3.33 8,786 0.30 7,720 0.07 

2003 2.80 9,179 0.30 8,260 0.08 

2004 2.37 9,356 0.30 8,725 0.08 

2005 3.61 9,664 0.29 9,064 0.09 

2006 2.81 9,812 0.29 9,045 0.09 

2007 2.68 9,916 0.30 9,290 0.10 

2008 4.43 10,415 0.28 9,526 0.10 

2009 2.95 10,721 0.30 9,555 0.10 

2010 2.81 10,924 0.30 10,132 0.10 

2011 3.75 11,233 0.29 10,565 0.11 

2012 3.63 11,530 0.30 10,634 0.11 

2013 3.00 11,644 0.31 10,858 0.12 

2014 3.38 11,759 0.31 11,178 0.13 

2015 2.95 11,605 0.32 11,260 0.15 

2016 2.70 11,291 0.32   
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Table 18.  Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with coefficient of variation 

(CV) for scenario 4 for golden king crab in the EAG. Legal male biomass was estimated on July 

1 (start of fishing year) of fishing year y. Mature male biomass for fishing year y was estimated 

on February 15 of year y+1, after the year y fishery total catch removal. Recruits estimates for 

1961 to 2016 are restricted to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =17,962 

MMB35=6,106    

1985 1.70   9,775 0.06 

1986 1.01 8,751 0.26 8,377 0.04 

1987 4.39 6,674 0.28 6,586 0.04 

1988 3.80 6,464 0.26 5,472 0.05 

1989 1.82 6,082 0.31 4,879 0.07 

1990 3.17 5,051 0.34 4,442 0.07 

1991 3.60 5,360 0.32 4,655 0.06 

1992 2.15 5,449 0.32 4,479 0.05 

1993 2.14 5,146 0.33 4,517 0.05 

1994 2.53 5,291 0.32 4,861 0.04 

1995 2.41 4,908 0.31 4,330 0.04 

1996 2.31 4,330 0.32 3,700 0.05 

1997 3.14 4,401 0.33 3,822 0.06 

1998 2.90 4,701 0.32 3,912 0.06 

1999 3.11 5,098 0.33 4,320 0.07 

2000 3.01 5,717 0.33 4,954 0.07 

2001 2.26 6,294 0.32 5,591 0.08 

2002 3.03 6,633 0.32 6,191 0.08 

2003 2.55 7,162 0.31 6,610 0.08 

2004 2.10 7,497 0.30 7,003 0.08 

2005 3.32 7,646 0.30 7,328 0.09 

2006 2.52 7,940 0.29 7,320 0.09 

2007 2.37 8,076 0.30 7,550 0.09 

2008 4.12 8,160 0.30 7,776 0.10 

2009 2.69 8,642 0.29 7,794 0.10 

2010 2.59 8,936 0.30 8,329 0.10 

2011 3.48 9,155 0.31 8,767 0.10 

2012 3.40 9,489 0.30 8,882 0.10 

2013 2.83 9,817 0.30 9,132 0.11 

2014 3.13 9,983 0.31 9,481 0.12 

2015 2.75 10,141 0.31 9,634 0.13 

2016 2.54 10,036 0.32   
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Table 19.  Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 5 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal.  Recruits estimates for 1961 to 2016 are 

restricted to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =20,065 

MMB35=6,783    

1985 1.52   9,377 0.05 

1986 0.90 6,213 0.28 7,976 0.04 

1987 3.94 6,019 0.26 6,242 0.04 

1988 3.56 5,694 0.30 5,211 0.05 

1989 1.64 4,737 0.34 4,686 0.07 

1990 2.57 4,993 0.32 4,315 0.06 

1991 3.42 5,093 0.32 4,566 0.06 

1992 2.02 4,851 0.33 4,313 0.05 

1993 1.82 5,053 0.32 4,370 0.04 

1994 2.26 4,707 0.31 4,818 0.03 

1995 2.13 4,145 0.32 4,321 0.04 

1996 2.04 4,229 0.32 3,683 0.04 

1997 2.76 4,516 0.32 3,815 0.04 

1998 2.52 4,901 0.32 3,920 0.05 

1999 2.71 5,506 0.32 4,336 0.05 

2000 2.53 6,054 0.31 4,974 0.05 

2001 1.93 6,400 0.31 5,612 0.06 

2002 2.52 6,897 0.30 6,192 0.06 

2003 2.11 7,207 0.30 6,605 0.07 

2004 1.78 7,368 0.30 6,975 0.07 

2005 2.72 7,625 0.28 7,272 0.07 

2006 2.08 7,738 0.29 7,277 0.08 

2007 1.99 7,829 0.29 7,480 0.08 

2008 3.38 8,228 0.28 7,682 0.09 

2009 2.27 8,510 0.30 7,694 0.09 

2010 2.15 8,741 0.30 8,183 0.09 

2011 2.90 9,064 0.29 8,615 0.09 

2012 2.86 9,391 0.29 8,749 0.09 

2013 2.36 9,585 0.30 9,007 0.10 

2014 2.61 9,764 0.30 9,374 0.11 

2015 2.24 9,676 0.31 9,555 0.13 

2016 2.06 9,857 0.31   
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Table 20.  Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 6 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =17,523 

MMB35=5,996    

1985 2.14   10,515 0.06 

1986 1.28 7,188 0.28 8,905 0.05 

1987 5.17 6,962 0.27 6,949 0.05 

1988 4.82 6,676 0.31 5,723 0.05 

1989 2.29 5,654 0.34 5,156 0.07 

1990 3.49 5,911 0.32 4,855 0.07 

1991 4.70 6,105 0.32 5,094 0.06 

1992 2.80 5,866 0.33 4,840 0.05 

1993 2.50 5,990 0.32 4,984 0.05 

1994 3.18 5,624 0.31 5,407 0.04 

1995 3.04 5,099 0.32 4,860 0.04 

1996 2.95 5,250 0.32 4,255 0.05 

1997 4.11 5,728 0.32 4,449 0.05 

1998 3.81 6,322 0.32 4,640 0.06 

1999 4.15 7,162 0.32 5,239 0.06 

2000 3.93 7,909 0.32 6,068 0.07 

2001 2.96 8,306 0.32 6,899 0.07 

2002 3.88 8,855 0.30 7,618 0.08 

2003 3.40 9,184 0.30 8,027 0.08 

2004 2.89 9,300 0.30 8,388 0.08 

2005 4.37 9,617 0.29 8,680 0.09 

2006 3.39 9,765 0.30 8,630 0.09 

2007 3.19 9,836 0.30 8,903 0.10 

2008 5.39 10,411 0.29 9,142 0.10 

2009 3.63 10,748 0.30 9,147 0.10 

2010 3.43 10,949 0.31 9,769 0.10 

2011 4.51 11,277 0.30 10,235 0.10 

2012 4.41 11,594 0.30 10,304 0.10 

2013 3.72 11,710 0.31 10,528 0.11 

2014 4.18 11,844 0.31 10,852 0.12 

2015 3.70 11,711 0.32 10,944 0.13 

2016 3.39 11,359 0.33   
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Table 21.  Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 9 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =20,164 

MMB35=6,879    

1985 1.77   9,843 0.06 

1986 1.06 7,556 0.04 8,359 0.04 

1987 4.45 6,924 0.05 6,535 0.04 

1988 4.08 7,067 0.05 5,424 0.05 

1989 1.91 6,288 0.06 4,880 0.07 

1990 2.95 6,251 0.05 4,537 0.06 

1991 3.94 6,349 0.04 4,785 0.06 

1992 2.34 6,373 0.04 4,533 0.05 

1993 2.10 6,439 0.03 4,627 0.05 

1994 2.63 5,884 0.04 5,065 0.04 

1995 2.49 5,317 0.04 4,546 0.04 

1996 2.40 5,457 0.04 3,919 0.04 

1997 3.29 5,774 0.05 4,075 0.05 

1998 3.03 6,436 0.05 4,213 0.05 

1999 3.27 7,208 0.06 4,703 0.06 

2000 3.09 7,955 0.06 5,419 0.06 

2001 2.34 8,408 0.07 6,139 0.06 

2002 3.07 8,800 0.07 6,783 0.07 

2003 2.62 9,232 0.07 7,203 0.07 

2004 2.22 9,379 0.08 7,578 0.08 

2005 3.38 9,520 0.08 7,881 0.08 

2006 2.60 9,870 0.08 7,867 0.08 

2007 2.46 9,927 0.09 8,103 0.09 

2008 4.19 10,257 0.09 8,324 0.09 

2009 2.81 10,946 0.09 8,337 0.10 

2010 2.66 11,107 0.09 8,887 0.10 

2011 3.56 11,310 0.10 9,338 0.10 

2012 3.50 11,773 0.10 9,448 0.10 

2013 2.91 12,044 0.11 9,699 0.10 

2014 3.25 12,119 0.13 10,057 0.11 

2015 2.84 12,051 0.15 10,205 0.13 

2016 2.61 11,910 0.17   
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Table 22.  Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 10 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =18,591 

MMB35=6,313    

1985 1.75   9,800 0.06 

1986 1.04 6,580 0.28 8,323 0.04 

1987 4.40 6,376 0.26 6,508 0.04 

1988 4.03 6,065 0.31 5,404 0.05 

1989 1.88 5,083 0.34 4,862 0.07 

1990 2.91 5,341 0.32 4,517 0.06 

1991 3.89 5,477 0.32 4,765 0.06 

1992 2.31 5,237 0.33 4,513 0.05 

1993 2.07 5,409 0.32 4,604 0.05 

1994 2.59 5,052 0.31 5,043 0.04 

1995 2.46 4,500 0.32 4,525 0.04 

1996 2.36 4,607 0.32 3,897 0.04 

1997 3.24 4,961 0.32 4,051 0.05 

1998 2.98 5,421 0.32 4,186 0.05 

1999 3.22 6,113 0.32 4,669 0.06 

2000 3.03 6,739 0.32 5,378 0.06 

2001 2.30 7,111 0.31 6,091 0.06 

2002 3.02 7,637 0.30 6,729 0.07 

2003 2.57 7,961 0.30 7,149 0.07 

2004 2.18 8,112 0.30 7,524 0.08 

2005 3.32 8,394 0.29 7,827 0.08 

2006 2.55 8,525 0.29 7,815 0.08 

2007 2.42 8,612 0.30 8,048 0.09 

2008 4.11 9,080 0.29 8,268 0.09 

2009 2.76 9,387 0.30 8,281 0.10 

2010 2.62 9,614 0.30 8,825 0.10 

2011 3.50 9,945 0.29 9,275 0.10 

2012 3.44 10,278 0.29 9,388 0.10 

2013 2.86 10,448 0.30 9,640 0.10 

2014 3.19 10,617 0.31 9,999 0.11 

2015 2.78 10,518 0.32 10,151 0.13 

2016 2.56 10,475 0.32   
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Table 23.  Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 11 for 

golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male 

Biomass ( ≥ 136 

mm CL) CV 

 

 

MMBeq =20,262 

MMB35=6,894    

1985 1.75   9,800 0.06 

1986 1.04 7,512 0.04 8,323 0.04 

1987 4.40 6,885 0.05 6,508 0.04 

1988 4.03 7,025 0.05 5,404 0.05 

1989 1.88 6,246 0.06 4,862 0.07 

1990 2.91 6,211 0.05 4,517 0.06 

1991 3.89 6,306 0.04 4,765 0.06 

1992 2.31 6,327 0.04 4,513 0.05 

1993 2.07 6,397 0.03 4,604 0.05 

1994 2.59 5,845 0.04 5,043 0.04 

1995 2.46 5,276 0.04 4,525 0.04 

1996 2.36 5,413 0.04 3,897 0.04 

1997 3.24 5,722 0.05 4,051 0.05 

1998 2.98 6,374 0.05 4,186 0.05 

1999 3.22 7,136 0.06 4,669 0.06 

2000 3.03 7,874 0.06 5,378 0.06 

2001 2.30 8,323 0.07 6,091 0.06 

2002 3.02 8,715 0.07 6,729 0.07 

2003 2.57 9,145 0.07 7,149 0.07 

2004 2.18 9,293 0.08 7,524 0.08 

2005 3.32 9,434 0.08 7,827 0.08 

2006 2.55 9,780 0.08 7,815 0.08 

2007 2.42 9,837 0.09 8,048 0.09 

2008 4.11 10,162 0.09 8,268 0.09 

2009 2.76 10,844 0.09 8,281 0.10 

2010 2.62 11,008 0.09 8,825 0.10 

2011 3.50 11,212 0.10 9,275 0.10 

2012 3.44 11,675 0.10 9,388 0.10 

2013 2.86 11,948 0.11 9,640 0.10 

2014 3.19 12,026 0.13 9,999 0.11 

2015 2.78 11,959 0.15 10,151 0.13 

2016 2.56 11,840 0.17   
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Table 24. Negative log-likelihood values of the fits for scenarios (Sc) 1 (base), 2 (drops retained catch CPUE), 3 (includes 1991-1994 observer 

CPUE), 4 (three catchability and total selectivity parameter sets), 5 (low bracketing value of M), 6 (high bracketing value of M), 9 (knife-edge 

maturity), 10 (EAG only data based M), and 11 (EAG only data based M with knife-edge maturity) for golden king crab in the EAG. Differences 

in likelihood values are given for scenarios with the same number of data points (base) and free parameters. Likelihood components with zero 

entry in the entire rows are omitted. RetdcatchB= retained catch biomass.  

 
Likelihood 

Component 

Sc 1 Sc  2 Sc 3 Sc 4 Sc 5 Sc 6 Sc 9 Sc 10 Sc11 Sc3–                                                                                                                                              

Sc 1 

Sc 5 – 

Sc 1 

Sc 6 – 

Sc 1 

Sc 10 – 

Sc 1 

Sc 11 – 

Sc 9 

Number of  

free 

parameters 139 138 139 

 

 

 

142 

 

 

 

139 

 

 

 

139 

 

 

 

137 

 

 

 

139 

 

 

 

137 

     

Data base base base base base 

 

 

 

base base base 

 

 

 

base  

   

 

Retlencomp -1152.09 -1151.47 -1150.71 -1164.02 -1148.80 -1152.06 -1152.09 -1151.96 -1151.96 1.38 3.29 0.03 0.13 0.13 

Totallencomp -1201.41 -1199.97 -1213.01 -1194.82 -1204.80 -1198.51 -1201.41 -1201.65 -1201.65 -11.6 -3.39 2.9 -0.24 -0.24 

Observer cpue -11.92 -11.86 -5.96 -12.21 -12.62 -10.93 -11.92 -11.99 -11.99 5.96 -0.7 0.99 -0.07 -0.07 

RetdcatchB 7.08 6.85 7.46 7.14 7.22 6.94 7.08 7.09 7.09 0.38 0.14 -0.14 0.01 0.01 

TotalcatchB 20.12 19.99 20.30 20.47 20.14 20.14 20.12 20.12 20.12 0.18 0.02 0.02 0.00 0.00 

GdiscdcatchB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rec_dev 5.77 6.10 6.13 5.83 7.50 5.20 5.77 5.86 5.86 0.36 1.73 -0.57 0.09 0.09 

Pot F_dev 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

Gbyc_F_dev 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 

Tag 2690.70 2690.59 2690.35 2688.91 2690.67 2690.72 2690.70 2690.70 2690.70 -0.35 -0.03 0.02 0.00 0.00 

Fishery cpue -0.52 - -2.54 -0.68 -0.57 -0.45 -0.52 -0.52 -0.52 -2.02 -0.05 0.07 0.00 0.00 

Maturity 0.17 0.17 0.17 0.17 0.17 0.17 - 0.17 - 0.00 0.00 0.00 0.00 - 

Total 357.95 360.43 352.23 350.83 358.96 361.25 357.78 357.87 357.70 -5.72 1.01 3.3 -0.08 -0.08 
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Table 25. Time series of annual retained catch (1981–1984 values are in number of crabs and the 

rest in t), estimated total male catch (weight of crabs on the deck without applying any handling 

mortality), estimated groundfish fishery discard mortality of males (handling mortality rates of 

0.5 for pot gear and 0.8 for trawl gear were applied), and pot fishery effort (number of pot lifts) 

for the WAG golden king crab stock.  The crab weights are for the size range ≥ 101mm CL. NA: 

no observer sampling to compute catch.  

Year 

Retained 

Catch 

Biomass  

Total Catch 

Biomass (t) 

Ground-fish 

Discard 

Mortality (t) 

Pot Fishery 

Effort (no. 

pot lifts) 

1981 38,436    

1982 1,114,351    

1983 1,288,357    

1984 188,782    

1985 1,996   118,563 

1986 4,200   277,780 

1987 2,496   160,229 

1988 2,441   166,409 

1989 3,028  0.08 202,541 

1990 1,621 3,684 0.57 108,533 

1991 1,347 2,565 0.03 101,429 

1992 1,019 1,517 0.43 69,443 

1993 661 2,814 0.00 127,764 

1994 1,606 4,942 0.12 195,138 

1995 1,178 2,128 0.71 115,248 

1996 1,223 1,763 1.03 99,267 

1997 1,055 1,793 0.37 86,811 

1998 926 1,085 1.85 35,975 

1999 1,227 2,087 1.42 107,040 

2000 1,369 2,228 0.80 101,239 

2001 1,275 2,133 0.43 105,512 

2002 1,207 1,889 0.92 78,979 

2003 1,238 1,855 0.31 66,236 

2004 1,254 1,874 0.95 56,846 

2005 1,223 1,772 3.43 30,116 

2006 1,041 1,539 2.27 26,870 

2007 1,222 1,602 1.50 29,950 

2008 1,199 1,721 6.43 26,200 

2009 1,324 1,666 4.30 26,489 

2010 1,328 1,579 2.47 29,994 

2011 1,323 1,506 2.24 26,326 

2012 1,395 1,812 3.73 32,716 

2013 1,431 1,891 3.85 41,835 

2014 1,248 1,583 2.45 41,548 

2015 1,166 1,548 1.43 41,108 
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Table 26. Time series of nominal annual pot fishery retained, observer retained, and observer 

total catch-per-unit-effort (CPUE, number of crabs per pot lift), observer sample size (number of 

sampled pots), and GLM estimated observer CPUE Index for the WAG golden king crab stock. 

Observer retained CPUE includes retained and non-retained legal size crabs.  

 

 

 

Year 

Pot Fishery 

Nominal 

Retained 

CPUE 

Obs. 

Nominal 

Retained 

CPUE 

Obs. 

Nominal  

Total 

CPUE 

Obs. 

Sample Size 

(no.pot lifts) 

Obs. CPUE 

Index 

1990 6.98 11.83 26.67 340  

1991 7.43 7.78 19.17 857  

1992 5.90 6.39 16.83 690  

1993 4.43 6.54 17.23 174  

1994 4.08 6.71 19.23 1,270  

1995 4.65 4.96 14.28 5,598 1.17 

1996 6.07 5.42 13.54 7,194 0.95 

1997 6.56 6.52 15.03 3,985 0.96 

1998 11.40 9.41 23.09 1,876 1.07 

1999 6.32 5.93 14.49 4,523 0.91 

2000 6.97 6.40 16.64 4,740 0.85 

2001 6.51 5.99 14.66 4,454 0.83 

2002 8.42 7.47 17.37 2,509 0.92 

2003 10.22 9.29 18.17 3,334 1.16 

2004 12.06 11.14 22.45 2,619 1.27 

2005 21.23 23.89 36.23 1,365 1.18 

2006 19.64 24.01 33.47 1,183 1.10 

2007 20.05 21.04 32.46 1,082 1.00 

2008 22.43 24.57 38.16 979 1.15 

2009 23.72 26.55 34.08 892 1.23 

2010 20.88 22.35 29.05 867 1.08 

2011 23.40 23.79 31.13 837 1.11 

2012 20.57 22.82 30.76 1,109 1.07 

2013 16.42 16.96 25.01 1,223 0.81 

2014 15.29 15.28 22.67 1,137 0.72 

2015 14.71 15.74 22.14 1,296 0.74 
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Table 27. Time series of GLM estimated CPUE indices and coefficient of variations (CV) for the 

fish ticket based retained catch-per-pot lift for the WAG golden king crab stock. The GLM was 

fitted to the 1985/86 to 1998/99 time series of data.  

 

  
 

Year 

CPUE 

Index 
CV 

1985 2.02 0.03 

1986 1.72 0.03 

1987 1.21 0.04 

1988 1.35 0.03 

1989 1.14 0.03 

1990 0.87 0.04 

1991 0.72 0.06 

1992 0.72 0.06 

1993 0.68 0.08 

1994 0.82 0.05 

1995 0.88 0.05 

1996 0.84 0.04 

1997 0.77 0.04 

1998 1.05 0.04 
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Table 28. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 1 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 23     

1986 23 12     

1987 8 4     

1988 286 144     

1989 513 258   7 5 

1990 205 103 190 93 6 5 

1991 102 51 104 51 1 1 

1992 76 38 94 46 3 2 

1993 378 190 62 30 NA NA 

1994 367 185 119 58 2 2 

1995 705 355 907 443 5 4 

1996 817 412 1,061 519 8 6 

1997 984 496 1,116 545 6 5 

1998 613 309 638 312 14 11 

1999 915 461 1,155 565 18 14 

2000 1,029 518 1,205 589 11 8 

2001 898 452 975 477 11 8 

2002 628 316 675 330 16 12 

2003 688 347 700 342 8 6 

2004 449 226 488 239 9 7 

2005 337 170 220 108 6 5 

2006 337 170 321 157 14 11 

2007 276 139 257 126 17 13 

2008 318 160 258 126 19 15 

2009 362 182 292 143 24 18 

2010 328 165 222 109 13 10 

2011 295 149 252 123 14 11 

2012 288 145 241 118 18 14 

2013 327 165 236 115 17 13 

2014 305 154 219 107 18 14 

2015 287 145 243 119 10 8 

 

 
 

  

1323



30 

 

Table 29. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 2 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 23     

1986 23 12     

1987 8 4     

1988 286 144     

1989 513 258   7 5 

1990 205 103 190 88 6 5 

1991 102 51 104 48 1 1 

1992 76 38 94 44 3 2 

1993 378 190 62 29 NA NA 

1994 367 184 119 55 2 2 

1995 705 354 907 421 5 4 

1996 817 410 1,061 492 8 6 

1997 984 494 1,116 518 6 5 

1998 613 308 638 296 14 11 

1999 915 459 1,155 536 18 14 

2000 1,029 517 1,205 559 11 8 

2001 898 451 975 453 11 8 

2002 628 315 675 313 16 12 

2003 688 345 700 325 8 6 

2004 449 225 488 227 9 7 

2005 337 169 220 102 6 5 

2006 337 169 321 149 14 11 

2007 276 139 257 119 17 13 

2008 318 160 258 120 19 14 

2009 362 182 292 136 24 18 

2010 328 165 222 103 13 10 

2011 295 148 252 117 14 11 

2012 288 145 241 112 18 14 

2013 327 164 236 110 17 13 

2014 305 153 219 102 18 14 

2015 287 144 243 113 10 8 
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Table 30. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 3 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 23     

1986 23 12     

1987 8 4     

1988 286 146     

1989 513 262   7 5 

1990 205 105 190 92 6 5 

1991 102 52 104 50 1 1 

1992 76 39 94 45 3 2 

1993 378 193 62 30 NA NA 

1994 367 188 119 58 2 2 

1995 705 360 907 438 5 4 

1996 817 418 1,061 513 8 6 

1997 984 503 1,116 539 6 5 

1998 613 313 638 308 14 11 

1999 915 468 1,155 558 18 14 

2000 1,029 526 1,205 582 11 8 

2001 898 459 975 471 11 8 

2002 628 321 675 326 16 12 

2003 688 352 700 338 8 6 

2004 449 230 488 236 9 7 

2005 337 172 220 106 6 5 

2006 337 172 321 155 14 11 

2007 276 141 257 124 17 13 

2008 318 163 258 125 19 15 

2009 362 185 292 141 24 18 

2010 328 168 222 107 13 10 

2011 295 151 252 122 14 11 

2012 288 147 241 116 18 14 

2013 327 167 236 114 17 13 

2014 305 156 219 106 18 14 

2015 287 147 243 117 10 8 
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Table 31. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 4 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 24     

1986 23 12     

1987 8 4     

1988 286 150     

1989 513 268   7 5 

1990 205 107 190 80 6 5 

1991 102 53 104 44 1 1 

1992 76 40 94 40 3 2 

1993 378 198 62 26 NA NA 

1994 367 192 119 50 2 2 

1995 705 369 907 384 5 4 

1996 817 427 1,061 449 8 6 

1997 984 515 1,116 472 6 5 

1998 613 321 638 270 14 11 

1999 915 479 1,155 489 18 14 

2000 1,029 538 1,205 510 11 8 

2001 898 470 975 413 11 8 

2002 628 329 675 286 16 12 

2003 688 360 700 296 8 6 

2004 449 235 488 206 9 7 

2005 337 176 220 93 6 5 

2006 337 176 321 136 14 11 

2007 276 144 257 109 17 13 

2008 318 166 258 109 19 14 

2009 362 189 292 124 24 18 

2010 328 172 222 94 13 10 

2011 295 154 252 107 14 11 

2012 288 151 241 102 18 14 

2013 327 171 236 100 17 13 

2014 305 160 219 93 18 14 

2015 287 150 243 103 10 8 
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Table 32. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 5 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 23     

1986 23 12     

1987 8 4     

1988 286 143     

1989 513 257   7 5 

1990 205 103 190 94 6 5 

1991 102 51 104 51 1 1 

1992 76 38 94 46 3 2 

1993 378 190 62 31 NA NA 

1994 367 184 119 59 2 2 

1995 705 354 907 447 5 4 

1996 817 410 1,061 523 8 6 

1997 984 493 1,116 551 6 5 

1998 613 307 638 315 14 11 

1999 915 459 1,155 570 18 14 

2000 1,029 516 1,205 594 11 9 

2001 898 450 975 481 11 9 

2002 628 315 675 333 16 12 

2003 688 345 700 345 8 6 

2004 449 225 488 241 9 7 

2005 337 169 220 109 6 5 

2006 337 169 321 158 14 11 

2007 276 138 257 127 17 13 

2008 318 159 258 127 19 15 

2009 362 182 292 144 24 19 

2010 328 164 222 110 13 10 

2011 295 148 252 124 14 11 

2012 288 144 241 119 18 14 

2013 327 164 236 116 17 13 

2014 305 153 219 108 18 14 

2015 287 144 243 120 10 8 
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Table 33. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 6 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 22     

1986 23 11     

1987 8 4     

1988 286 143     

1989 513 256   7 5 

1990 205 102 190 92 6 4 

1991 102 51 104 50 1 1 

1992 76 38 94 46 3 2 

1993 378 188 62 30 NA NA 

1994 367 183 119 58 2 1 

1995 705 351 907 440 5 4 

1996 817 407 1,061 514 8 6 

1997 984 490 1,116 541 6 4 

1998 613 305 638 309 14 10 

1999 915 456 1,155 560 18 13 

2000 1,029 513 1,205 584 11 8 

2001 898 448 975 473 11 8 

2002 628 313 675 327 16 12 

2003 688 343 700 339 8 6 

2004 449 224 488 236 9 7 

2005 337 168 220 107 6 4 

2006 337 168 321 156 14 10 

2007 276 138 257 125 17 13 

2008 318 158 258 125 19 14 

2009 362 180 292 142 24 18 

2010 328 163 222 108 13 10 

2011 295 147 252 122 14 10 

2012 288 144 241 117 18 13 

2013 327 163 236 114 17 13 

2014 305 152 219 106 18 13 

2015 287 143 243 118 10 7 
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Table 34. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 9 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 23     

1986 23 12     

1987 8 4     

1988 286 144     

1989 513 258   7 5 

1990 205 103 190 93 6 5 

1991 102 51 104 51 1 1 

1992 76 38 94 46 3 2 

1993 378 190 62 30 NA NA 

1994 367 185 119 58 2 2 

1995 705 355 907 443 5 4 

1996 817 412 1,061 519 8 6 

1997 984 496 1,116 545 6 5 

1998 613 309 638 312 14 11 

1999 915 461 1,155 565 18 14 

2000 1,029 518 1,205 589 11 8 

2001 898 452 975 477 11 8 

2002 628 316 675 330 16 12 

2003 688 347 700 342 8 6 

2004 449 226 488 239 9 7 

2005 337 170 220 108 6 5 

2006 337 170 321 157 14 11 

2007 276 139 257 126 17 13 

2008 318 160 258 126 19 15 

2009 362 182 292 143 24 18 

2010 328 165 222 109 13 10 

2011 295 149 252 123 14 11 

2012 288 145 241 118 18 14 

2013 327 165 236 115 17 13 

2014 305 154 219 107 18 14 

2015 287 145 243 119 10 8 
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Table 35. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 10 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 23     

1986 23 12     

1987 8 4     

1988 286 144     

1989 513 258   7 5 

1990 205 103 190 93 6 5 

1991 102 51 104 51 1 1 

1992 76 38 94 46 3 2 

1993 378 190 62 30 NA NA 

1994 367 185 119 58 2 2 

1995 705 355 907 443 5 4 

1996 817 411 1,061 518 8 6 

1997 984 495 1,116 545 6 5 

1998 613 309 638 311 14 11 

1999 915 461 1,155 564 18 14 

2000 1,029 518 1,205 588 11 8 

2001 898 452 975 476 11 8 

2002 628 316 675 329 16 12 

2003 688 346 700 342 8 6 

2004 449 226 488 238 9 7 

2005 337 170 220 107 6 5 

2006 337 170 321 157 14 11 

2007 276 139 257 125 17 13 

2008 318 160 258 126 19 14 

2009 362 182 292 142 24 18 

2010 328 165 222 108 13 10 

2011 295 148 252 123 14 11 

2012 288 145 241 118 18 14 

2013 327 165 236 115 17 13 

2014 305 154 219 107 18 14 

2015 287 144 243 119 10 8 
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Table 36. The initial input number of days/trips and stage-2 effective sample sizes iteratively 

estimated by Francis method for retained, total, and groundfish discard catch size compositions of 

golden king crab for scenario 11 model fit to WAG data. NA: not available. 

 

Year Initial 

Input 

Retained 

Days 

Sample 

Size (no) 

Stage-2 

Retained 

Effective 

Sample 

Size (no) 

Initial 

Input 

Total 

Days 

Sample 

Size 

(no) 

Stage-2 

Total 

Effective 

Sample 

Size (no) 

Initial Input 

Groundfish 

Trip Sample 

Size (no) 

Stage-2 

Groundfish 

Effective 

Sample Size 

(no) 

1985 45 23     

1986 23 12     

1987 8 4     

1988 286 144     

1989 513 258   7 5 

1990 205 103 190 93 6 5 

1991 102 51 104 51 1 1 

1992 76 38 94 46 3 2 

1993 378 190 62 30 NA NA 

1994 367 185 119 58 2 2 

1995 705 355 907 443 5 4 

1996 817 411 1,061 518 8 6 

1997 984 495 1,116 545 6 5 

1998 613 309 638 311 14 11 

1999 915 461 1,155 564 18 14 

2000 1,029 518 1,205 588 11 8 

2001 898 452 975 476 11 8 

2002 628 316 675 329 16 12 

2003 688 346 700 342 8 6 

2004 449 226 488 238 9 7 

2005 337 170 220 107 6 5 

2006 337 170 321 157 14 11 

2007 276 139 257 125 17 13 

2008 318 160 258 126 19 14 

2009 362 182 292 142 24 18 

2010 328 165 222 108 13 10 

2011 295 148 252 123 14 11 

2012 288 145 241 118 18 14 

2013 327 165 236 115 17 13 

2014 305 154 219 107 18 14 

2015 287 144 243 119 10 8 
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Table 37. Parameter estimates and coefficient of variations (CV) with the 2015 MMB (MMB on 15 Feb 2016) for scenarios 1, 2, 3, and 4 for the 

golden king crab data from the WAG, 1985/86–2015/16. Recruitment and fishing mortality deviations and initial size frequency determination 

parameters were omitted from this list.  

 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4  

Parameter Estimate CV Estimate CV Estimate CV Estimate CV Limits 

log_1  ( growth incr. intercept) 2.54 0.01 2.54 0.01 2.54 0.01 2.55 0.01 1.0, 4.5 

2   ( growth incr. slope) -7.82 0.22 -7.68 0.22 -7.81 0.22 -8.17 0.21 -12.0,-5.0 

log_a  (molt prob.  slope) -2.62 0.03 -2.64 0.03 -2.62 0.03 -2.54 0.03 -4.61,-1.39 

log_b  (molt prob. L50) 4.95 0.001 4.95 0.001 4.95 0.001 4.96 0.001 3.869,5.05 

  (growth variability std) 3.69 0.03 3.69 0.03 3.69 0.03 3.68 0.03 0.1,12.0 

log_total sel delta,  1985–94       3.34 0.05 0,4.4 

log_total sel delta,  1985–04 or 1995–04 3.39 0.01 3.40 0.01 3.39 0.01 3.42 0.02 0.,4.4 

log_ total sel delta,  2005-15 2.88 0.03 2.91 0.03 2.89 0.03 2.89 0.03 0.,4.4 

log_ ret. sel delta, 1985-15 1.78 0.02 1.78 0.02 1.78 0.02 1.77 0.02 0.,4.4 

log_maturity delta_mat 3.80 0.48 3.80 0.48 3.80 0.48 3.80 0.48 0,4.4 

log_maturity mat50 4.71 0.04 4.71 0.04 4.71 0.04 4.71 0.04 4.4,4.85 

log_tot sel 50, 1985–94       4.77 0.01 4.0,5.0 

log_tot sel 50, 1985–04 or 1995–04 4.87 0.002 4.87 0.002 4.87 0.002 4.88 0.003 4.0,5.0 

log_tot sel 50, 2005-15 4.90 0.002 4.90 0.002 4.90 0.002 4.90 0.002 4.0,5.0 

log_ret. sel 50, 1985-15 4.92 0.0002 4.92 0.0002 4.92 0.0002 4.92 0.0002 4.0,5.0 

log_βr  (rec.distribution par.) -1.03 0.16 -1.03 0.17 -1.03 0.16 -0.97 0.18 -12.0, 12.0 

Logq1 (catchability  1985-94)       -0.37 0.15 -9.0, 2.25 

logq2 (catchability  1995-04) -0.09 0.76 0.04 2.15 -0.06 1.22 0.20 0.42 -9.0, 2.25 

logq3 (catchability 2005-15) -0.48 0.21 -0.43 0.24 -0.48 0.21 -0.38 0.26 -9.0, 2.25 

log_mean_rec  (mean rec.) 0.79 0.06 0.80 0.06 0.79 0.06 0.75 0.06 0.01, 5.0 

log_mean_Fpot (Pot fishery F) -0.73 0.09 -0.72 0.09 -0.73 0.09 -0.71 0.09 -15.0, -0.01 

log_mean_Fground (GF byc. F) -8.44 0.11 -8.42 0.11 -8.44 0.11 -8.33 0.11 -15.0, -1.6 

𝜎𝑒
2   (observer CPUE additional var) 0.021 0.37 0.018 0.38 0.021 0.36 0.016 0.38 0.0, 0.15 

𝜎𝑒
2   (fishery CPUE additional var) 0.016 0.65   0.021 0.70 0.002 0.91 0.0,1.0 

2015 MMB 4,332 0.35 4,228 0.35 4,334 0.35 3,865 0.35  
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Table 38. Parameter estimates and coefficient of variations (CV) with the 2015 MMB (MMB on 15 Feb 2016) for scenarios 5, 6, 9, 10, and 11 for 

the golden king crab data from the WAG, 1985/86–2015/16. Recruitment and fishing mortality deviations and initial size frequency determination 

parameters were omitted from this list.  

 Scenario 5 Scenario 6 Scenario 9 Scenario 10 Scenario 11  

Parameter Estimate CV Estimate CV Estimate CV Estimate CV Estimate CV Limits 

log_1  ( growth incr. intercept) 2.54 0.01 2.54 0.01 2.54 0.01 2.54 0.01 2.54 0.01 1.0, 4.5 

2   ( growth incr. slope) -7.90 0.21 -7.71 0.22 -7.82 0.22 -7.80 0.22 -7.80 0.22 -12.0,-5.0 

log_a  (molt prob.  slope) -2.59 0.03 -2.64 0.03 -2.62 0.03 -2.62 0.03 -2.62 0.03 -4.61,-1.39 

log_b  (molt prob. L50) 4.95 0.001 4.95 0.001 4.95 0.001 4.95 0.001 4.95 0.001 3.869,5.05 

  (growth variability std) 3.69 0.03 3.69 0.03 3.69 0.03 3.69 0.03 3.69 0.03 0.1,12.0 

log_total sel delta,  1985–04 3.42 0.01 3.37 0.01 3.39 0.01 3.39 0.01 3.39 0.01 0.,4.4 

log_ total sel delta,  2005-15 2.89 0.03 2.88 0.03 2.88 0.03 2.88 0.03 2.88 0.03 0.,4.4 

log_ ret. sel delta, 1985-15 1.77 0.02 1.78 0.02 1.78 0.02 1.78 0.02 1.78 0.02 0.,4.4 

log_maturity delta_mat 3.80 0.48 3.80 0.48   3.80 0.48   0,4.4 

log_maturity mat50 4.71 0.04 4.71 0.04   4.71 0.04   4.4,4.85 

log_tot sel 50, 1985–04 4.86 0.002 4.87 0.002 4.87 0.002 4.87 0.002 4.87 0.002 4.0,5.0 

log_tot sel 50, 2005-15 4.89 0.002 4.90 0.002 4.90 0.002 4.90 0.002 4.90 0.002 4.0,5.0 

log_ret. sel 50, 1985-15 4.91 0.0002 4.92 0.0002 4.92 0.0002 4.92 0.0002 4.92 0.0002 4.0,5.0 

log_βr  (rec.distribution par.) -1.02 0.17 -1.03 0.16 -1.03 0.16 -1.03 0.16 -1.03 0.16 -12.0, 12.0 

logq2 (catchability  1985-04) -0.04 1.82 -0.15 0.45 -0.09 0.76 -0.10 0.68 -0.10 0.68 -9.0, 2.25 

logq3 (catchability 2005-15) -0.42 0.23 -0.55 0.20 -0.48 0.21 -0.49 0.21 -0.49 0.21 -9.0, 2.25 

log_mean_rec  (mean rec.) 0.58 0.07 1.03 0.05 0.79 0.06 0.83 0.05 0.83 0.05 0.01, 5.0 

log_mean_Fpot (Pot fishery F) -0.69 0.09 -0.79 0.09 -0.73 0.09 -0.74 0.09 -0.74 0.09 -15.0, -0.01 

log_mean_Fground (GF byc. F) -8.34 0.11 -8.56 0.11 -8.44 0.11 -8.46 0.11 -8.46 0.11 -15.0, -1.6 

𝜎𝑒
2   (observer CPUE additional 

var) 0.020 0.37 0.023 0.37 0.021 0.37 0.021 0.37 0.021 0.37 
0.0, 0.15 

𝜎𝑒
2   (fishery CPUE additional 

var) 0.020 0.65 0.013 0.64 0.016 0.65 0.016 0.65 0.016 0.65 

0.0,1.0 

2015 MMB 3,824 0.35 4,999 0.35 5,005 0.17 4,438 0.35 5,128 0.17  
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Table 39. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 1 for 

golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year 

Recruits to the 

Model ( ≥ 101 mm 

CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) CV 

Legal Male Biomass 

( ≥ 136 mm CL) CV 

 
 

MMBeq =13,306 

MMB35=4,722    

1985 4.14   8,743 0.10 

1986 3.74 7,099 0.31 8,312 0.08 

1987 2.86 6,462 0.33 5,949 0.07 

1988 1.98 5,518 0.33 5,614 0.05 

1989 2.64 3,914 0.34 4,990 0.04 

1990 2.06 3,580 0.34 3,181 0.06 

1991 1.65 3,364 0.34 2,923 0.05 

1992 2.19 3,571 0.33 2,873 0.05 

1993 1.71 4,022 0.32 2,999 0.05 

1994 2.07 3,467 0.32 3,566 0.03 

1995 2.01 3,439 0.33 2,901 0.04 

1996 1.84 3,434 0.33 2,852 0.04 

1997 1.97 3,531 0.33 2,901 0.04 

1998 2.02 3,817 0.32 2,989 0.04 

1999 2.40 3,880 0.32 3,271 0.04 

2000 2.70 4,034 0.33 3,213 0.04 

2001 2.77 4,428 0.33 3,243 0.04 

2002 2.72 4,943 0.33 3,609 0.05 

2003 1.92 5,204 0.33 4,172 0.05 

2004 2.48 5,455 0.31 4,703 0.06 

2005 2.50 5,710 0.31 4,908 0.07 

2006 2.70 6,200 0.30 5,094 0.07 

2007 1.88 6,288 0.31 5,537 0.07 

2008 1.62 6,162 0.30 5,849 0.06 

2009 2.07 5,903 0.29 5,896 0.06 

2010 1.75 5,580 0.29 5,512 0.06 

2011 1.27 5,089 0.30 5,191 0.06 

2012 2.06 4,667 0.29 4,838 0.06 

2013 2.26 4,392 0.31 4,215 0.07 

2014 1.54 4,230 0.34 3,764 0.09 

2015 2.27 4,332 0.35 3,781 0.13 

2016 2.21 4,990 0.36   
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Table 40. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) CV for scenario 2 for golden 

king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) of 

fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year y+1, 

after the year y fishery total catch removal.  Recruits estimates for 1961 to 2016 are restricted to 

1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =13,158 

MMB35=4,685    

1985 3.19   10,255 0.09 

1986 3.83 7,527 0.29 9,478 0.06 

1987 2.68 6,632 0.31 6,477 0.06 

1988 1.94 5,548 0.32 5,814 0.05 

1989 2.80 3,929 0.33 5,030 0.05 

1990 2.09 3,615 0.34 3,147 0.06 

1991 1.66 3,423 0.34 2,927 0.06 

1992 2.02 3,590 0.33 2,921 0.06 

1993 1.69 4,007 0.32 3,064 0.05 

1994 2.05 3,412 0.32 3,574 0.04 

1995 1.97 3,356 0.33 2,846 0.04 

1996 1.81 3,335 0.33 2,770 0.04 

1997 1.95 3,421 0.33 2,800 0.04 

1998 1.98 3,696 0.32 2,875 0.04 

1999 2.35 3,744 0.32 3,149 0.04 

2000 2.63 3,873 0.33 3,084 0.04 

2001 2.70 4,237 0.33 3,092 0.05 

2002 2.68 4,728 0.33 3,424 0.05 

2003 1.93 4,988 0.33 3,952 0.06 

2004 2.46 5,246 0.32 4,465 0.06 

2005 2.48 5,511 0.31 4,682 0.07 

2006 2.68 6,009 0.31 4,885 0.07 

2007 1.88 6,111 0.31 5,340 0.07 

2008 1.61 6,003 0.31 5,662 0.06 

2009 2.06 5,761 0.29 5,726 0.06 

2010 1.73 5,452 0.29 5,365 0.06 

2011 1.25 4,971 0.30 5,060 0.06 

2012 2.03 4,553 0.29 4,719 0.06 

2013 2.24 4,279 0.31 4,104 0.07 

2014 1.54 4,124 0.34 3,651 0.09 

2015 2.25 4,228 0.35 3,664 0.12 

2016 2.22 4,914 0.36   
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Table 41. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 3 for 

golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =13,317 

MMB35=4,724    

1985 4.10   8,799 0.11 

1986 3.69 7,104 0.31 8,359 0.08 

1987 2.86 6,448 0.32 5,972 0.07 

1988 1.99 5,497 0.33 5,605 0.05 

1989 2.72 3,915 0.34 4,964 0.04 

1990 2.10 3,603 0.34 3,156 0.06 

1991 1.63 3,398 0.34 2,928 0.05 

1992 2.15 3,600 0.33 2,909 0.05 

1993 1.69 4,038 0.32 3,042 0.05 

1994 2.07 3,470 0.32 3,594 0.03 

1995 2.00 3,433 0.33 2,905 0.04 

1996 1.84 3,425 0.33 2,846 0.04 

1997 1.97 3,520 0.33 2,890 0.04 

1998 2.02 3,807 0.32 2,977 0.04 

1999 2.40 3,870 0.32 3,259 0.04 

2000 2.70 4,023 0.33 3,203 0.04 

2001 2.77 4,417 0.33 3,231 0.05 

2002 2.73 4,933 0.33 3,595 0.05 

2003 1.93 5,199 0.33 4,159 0.06 

2004 2.48 5,454 0.31 4,693 0.06 

2005 2.50 5,711 0.31 4,903 0.07 

2006 2.70 6,200 0.31 5,094 0.07 

2007 1.88 6,287 0.31 5,539 0.07 

2008 1.61 6,160 0.30 5,849 0.06 

2009 2.07 5,900 0.29 5,894 0.06 

2010 1.75 5,577 0.29 5,509 0.06 

2011 1.26 5,085 0.30 5,187 0.06 

2012 2.06 4,664 0.29 4,834 0.06 

2013 2.27 4,391 0.31 4,211 0.07 

2014 1.54 4,232 0.34 3,761 0.09 

2015 2.27 4,334 0.35 3,780 0.13 

2016 2.21 4,993 0.36   
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Table 42. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) CV for scenario 4 for golden 

king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) of 

fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year y+1, 

after the year y fishery total catch removal.  Recruits estimates for 1961 to 2016 are restricted to 

1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =12,936 

MMB35=4,659    

1985 3.66   9,110 0.06 

1986 4.83 7,086 0.30 8,597 0.05 

1987 3.02 6,534 0.32 5,980 0.06 

1988 2.31 5,748 0.32 5,855 0.04 

1989 2.36 4,079 0.32 5,401 0.04 

1990 1.85 3,623 0.33 3,631 0.05 

1991 1.60 3,304 0.32 3,262 0.05 

1992 1.90 3,357 0.31 3,022 0.05 

1993 1.74 3,740 0.31 3,007 0.04 

1994 1.92 3,075 0.32 3,433 0.03 

1995 1.81 2,958 0.33 2,675 0.04 

1996 1.83 2,947 0.33 2,551 0.04 

1997 1.75 3,017 0.33 2,547 0.04 

1998 1.85 3,274 0.32 2,650 0.04 

1999 2.13 3,274 0.33 2,914 0.04 

2000 2.37 3,334 0.34 2,814 0.04 

2001 2.51 3,639 0.34 2,783 0.05 

2002 2.59 4,115 0.33 3,058 0.05 

2003 1.96 4,428 0.33 3,551 0.05 

2004 2.31 4,721 0.32 4,082 0.06 

2005 2.24 4,980 0.31 4,358 0.06 

2006 2.53 5,468 0.31 4,607 0.07 

2007 1.85 5,600 0.31 5,048 0.06 

2008 1.55 5,530 0.30 5,363 0.06 

2009 1.93 5,307 0.29 5,441 0.06 

2010 1.73 5,042 0.29 5,091 0.06 

2011 1.19 4,600 0.30 4,806 0.06 

2012 1.86 4,179 0.29 4,506 0.06 

2013 2.15 3,902 0.31 3,901 0.06 

2014 1.47 3,758 0.34 3,447 0.08 

2015 2.13 3,865 0.35 3,478 0.11 

2016 2.12 4,576 0.35   
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Table 43. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 5 for 

golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal.  Recruits estimates for 1961 to 2016 are 

restricted to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =14,656 

MMB35=5,146    

1985 3.49   8,621 0.10 

1986 3.28 6,634 0.30 8,131 0.08 

1987 2.48 6,020 0.32 5,714 0.06 

1988 1.71 5,147 0.33 5,364 0.05 

1989 2.32 3,602 0.33 4,774 0.04 

1990 1.76 3,272 0.34 3,006 0.05 

1991 1.40 3,064 0.34 2,749 0.05 

1992 1.87 3,255 0.33 2,690 0.05 

1993 1.46 3,709 0.32 2,813 0.05 

1994 1.78 3,172 0.32 3,378 0.03 

1995 1.72 3,137 0.33 2,728 0.03 

1996 1.57 3,125 0.33 2,676 0.04 

1997 1.70 3,213 0.33 2,714 0.04 

1998 1.74 3,495 0.32 2,792 0.04 

1999 2.05 3,545 0.32 3,073 0.03 

2000 2.29 3,657 0.33 3,021 0.04 

2001 2.33 3,988 0.33 3,029 0.04 

2002 2.27 4,438 0.33 3,349 0.05 

2003 1.59 4,673 0.33 3,856 0.05 

2004 2.03 4,884 0.31 4,337 0.05 

2005 2.04 5,097 0.31 4,520 0.06 

2006 2.22 5,544 0.30 4,677 0.06 

2007 1.54 5,642 0.31 5,087 0.06 

2008 1.34 5,562 0.30 5,376 0.06 

2009 1.73 5,347 0.29 5,442 0.05 

2010 1.45 5,070 0.29 5,108 0.05 

2011 1.06 4,642 0.30 4,826 0.05 

2012 1.72 4,248 0.29 4,512 0.05 

2013 1.85 3,952 0.31 3,934 0.06 

2014 1.24 3,774 0.34 3,490 0.08 

2015 1.86 3,824 0.35 3,468 0.12 

2016 1.79 4,547 0.35   
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Table 44. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 6 for 

golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =12,419 

MMB35=4,421    

1985 5.01   9,039 0.10 

1986 4.46 7,762 0.32 8,635 0.08 

1987 3.40 7,075 0.33 6,284 0.07 

1988 2.37 6,026 0.33 5,960 0.05 

1989 3.11 4,343 0.34 5,289 0.04 

1990 2.51 4,002 0.34 3,422 0.06 

1991 2.00 3,775 0.34 3,160 0.06 

1992 2.65 4,003 0.33 3,119 0.05 

1993 2.07 4,448 0.32 3,248 0.05 

1994 2.50 3,874 0.32 3,818 0.04 

1995 2.44 3,858 0.33 3,136 0.04 

1996 2.24 3,866 0.33 3,093 0.04 

1997 2.38 3,974 0.33 3,159 0.04 

1998 2.44 4,268 0.32 3,261 0.04 

1999 2.92 4,354 0.32 3,544 0.04 

2000 3.31 4,572 0.33 3,483 0.04 

2001 3.42 5,056 0.33 3,545 0.05 

2002 3.39 5,659 0.33 3,977 0.06 

2003 2.43 5,948 0.33 4,615 0.06 

2004 3.16 6,251 0.31 5,208 0.07 

2005 3.20 6,562 0.31 5,432 0.07 

2006 3.44 7,111 0.31 5,652 0.08 

2007 2.40 7,185 0.31 6,140 0.07 

2008 2.04 6,990 0.31 6,486 0.07 

2009 2.58 6,668 0.29 6,508 0.06 

2010 2.18 6,280 0.29 6,053 0.06 

2011 1.58 5,698 0.30 5,679 0.06 

2012 2.54 5,238 0.29 5,274 0.07 

2013 2.87 4,993 0.31 4,590 0.08 

2014 1.96 4,846 0.34 4,127 0.10 

2015 2.85 4,999 0.35 4,190 0.13 

2016 2.80 5,558 0.36   
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Table 45. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 9 for 

golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =14,528 

MMB35=5,137    

1985 4.14   8,743 0.10 

1986 3.74 8,346 0.05 8,312 0.08 

1987 2.86 7,724 0.04 5,949 0.07 

1988 1.98 6,628 0.04 5,614 0.05 

1989 2.64 4,607 0.05 4,990 0.04 

1990 2.06 4,312 0.05 3,181 0.06 

1991 1.65 4,060 0.05 2,923 0.05 

1992 2.19 4,177 0.04 2,873 0.05 

1993 1.71 4,763 0.03 2,999 0.05 

1994 2.07 4,064 0.04 3,566 0.03 

1995 2.01 4,067 0.04 2,901 0.04 

1996 1.84 4,085 0.04 2,852 0.04 

1997 1.97 4,162 0.04 2,901 0.04 

1998 2.02 4,487 0.04 2,989 0.04 

1999 2.40 4,534 0.04 3,271 0.04 

2000 2.70 4,734 0.04 3,213 0.04 

2001 2.77 5,233 0.05 3,243 0.04 

2002 2.72 5,848 0.05 3,609 0.05 

2003 1.92 6,206 0.06 4,172 0.05 

2004 2.48 6,323 0.06 4,703 0.06 

2005 2.50 6,630 0.06 4,908 0.07 

2006 2.70 7,175 0.06 5,094 0.07 

2007 1.88 7,370 0.06 5,537 0.07 

2008 1.62 7,141 0.05 5,849 0.06 

2009 2.07 6,723 0.05 5,896 0.06 

2010 1.75 6,420 0.05 5,512 0.06 

2011 1.27 5,893 0.06 5,191 0.06 

2012 2.06 5,292 0.07 4,838 0.06 

2013 2.26 5,061 0.09 4,215 0.07 

2014 1.54 5,021 0.13 3,764 0.09 

2015 2.27 5,005 0.17 3,781 0.13 

2016 2.21 5,814 0.19   
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Table 46. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 10 for 

golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =13,112 

MMB35=4.647    

1985 4.28   8,780 0.10 

1986 3.85 7,201 0.31 8,357 0.08 

1987 2.95 6,558 0.33 6,000 0.07 

1988 2.04 5,598 0.33 5,668 0.05 

1989 2.71 3,981 0.34 5,037 0.04 

1990 2.13 3,646 0.34 3,218 0.06 

1991 1.70 3,428 0.34 2,960 0.05 

1992 2.26 3,638 0.33 2,912 0.05 

1993 1.76 4,089 0.32 3,039 0.05 

1994 2.14 3,531 0.32 3,606 0.03 

1995 2.08 3,505 0.33 2,938 0.04 

1996 1.90 3,501 0.33 2,890 0.04 

1997 2.03 3,600 0.33 2,941 0.04 

1998 2.08 3,887 0.32 3,032 0.04 

1999 2.48 3,953 0.32 3,313 0.04 

2000 2.79 4,117 0.33 3,255 0.04 

2001 2.87 4,525 0.33 3,289 0.05 

2002 2.82 5,054 0.33 3,665 0.05 

2003 2.00 5,320 0.33 4,241 0.06 

2004 2.58 5,579 0.31 4,782 0.06 

2005 2.60 5,843 0.31 4,991 0.07 

2006 2.81 6,342 0.31 5,182 0.07 

2007 1.96 6,428 0.31 5,633 0.07 

2008 1.68 6,292 0.31 5,950 0.06 

2009 2.15 6,022 0.29 5,993 0.06 

2010 1.81 5,690 0.29 5,598 0.06 

2011 1.32 5,184 0.30 5,268 0.06 

2012 2.13 4,756 0.29 4,907 0.06 

2013 2.36 4,487 0.31 4,275 0.07 

2014 1.60 4,328 0.34 3,822 0.09 

2015 2.36 4,438 0.35 3,847 0.13 

2016 2.30 5,081 0.36   
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Table 47. Annual abundance estimates of model recruits (millions of crabs), legal male biomass 

(t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenario 11 for 

golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) 

of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year 

y+1, after the year y fishery total catch removal. Recruits estimates for 1961 to 2016 are restricted 

to 1985–2016. Equilibrium MMBeq and MMB35 are also listed. 

Year Recruits to the 

Model ( ≥ 101 

mm CL) 

Mature Male 

Biomass 

( ≥ 121 mm CL) 

CV Legal Male 

Biomass ( ≥ 136 

mm CL) 

CV 

 

 

MMBeq =14,340 

MMB35=5,099    

1985 4.28   8,780 0.10 

1986 3.85 8,472 0.05 8,357 0.08 

1987 2.95 7,840 0.04 6,000 0.07 

1988 2.04 6,724 0.04 5,668 0.05 

1989 2.71 4,685 0.05 5,037 0.04 

1990 2.13 4,389 0.05 3,218 0.06 

1991 1.70 4,136 0.05 2,960 0.05 

1992 2.26 4,255 0.04 2,912 0.05 

1993 1.76 4,842 0.03 3,039 0.05 

1994 2.14 4,138 0.04 3,606 0.03 

1995 2.08 4,143 0.04 2,938 0.04 

1996 1.90 4,163 0.04 2,890 0.04 

1997 2.03 4,242 0.04 2,941 0.04 

1998 2.08 4,568 0.04 3,032 0.04 

1999 2.48 4,617 0.04 3,313 0.04 

2000 2.79 4,829 0.05 3,255 0.04 

2001 2.87 5,345 0.05 3,289 0.05 

2002 2.82 5,976 0.05 3,665 0.05 

2003 2.00 6,343 0.06 4,241 0.06 

2004 2.58 6,465 0.06 4,782 0.06 

2005 2.60 6,783 0.06 4,991 0.07 

2006 2.81 7,340 0.06 5,182 0.07 

2007 1.96 7,535 0.06 5,633 0.07 

2008 1.68 7,293 0.06 5,950 0.06 

2009 2.15 6,860 0.05 5,993 0.06 

2010 1.81 6,547 0.06 5,598 0.06 

2011 1.32 6,005 0.06 5,268 0.06 

2012 2.13 5,393 0.07 4,907 0.06 

2013 2.36 5,168 0.10 4,275 0.07 

2014 1.60 5,136 0.13 3,822 0.09 

2015 2.36 5,128 0.17 3,847 0.13 

2016 2.30 5,922 0.20   
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Table 48. Negative log-likelihood values of the fits for scenarios (Sc) 1 (base), 2 (drops retained catch CPUE), 3 (includes 1991-1994 observer 

CPUE), 4 (three catchability and total selectivity parameter sets), 5 (low bracketing value of M), 6 (high bracketing value of M), 9 (knife-edge 

maturity), 10 (WAG only data based M), and 11 (WAG only data based M with knife-edge maturity) for golden king crab in the WAG. 

Differences in likelihood values are given for scenarios with the same number of data points (base) and free parameters. Likelihood components 

with zero entry in the entire rows are omitted. RetdcatchB= retained catch biomass.  

 
Likelihood 

Component 

Sc 1 Sc  2 Sc 3 Sc 4 Sc 5 Sc 6 Sc 9 Sc 10 Sc11 Sc3–                                                                                                                                              

Sc 1 

Sc 5 – 

Sc 1 

Sc 6 – 

Sc 1 

Sc 10 – 

Sc 1 

Sc 11 – 

Sc 9 

Number of  

free parameters 139 138 139 

 

 

 

142 

 

 

 

139 

 

 

 

139 

 

 

 

137 

 

 

 

139 

 

 

 

137 

     

Data base base base base base 

 

 

 

base base base 

 

 

 

base  

   

 

Retlencomp -1103.6 -1106.21 -1106.66 -1113.50 -1102.73 -1101.23 -1103.60 -1103.42 -1103.42 -3.06 0.87 2.37 0.18 0.18 

Totallencomp -1347.65 -1342.09 -1345.97 -1333.15 -1349.49 -1346.04 -1347.65 -1347.34 -1347.34 1.68 -1.84 1.61 0.31 0.31 

Observer cpue -10.48 -12.22 -12.22 -13.04 -11.09 -9.71 -10.48 -10.36 -10.36 -1.74 -0.61 0.77 0.12 0.12 

RetdcatchB 4.76 5.47 4.92 4.86 4.79 4.74 4.76 4.75 4.75 0.16 0.03 -0.02 -0.01 -0.01 

TotalcatchB 43.03 43.59 43.24 34.40 43.18 42.71 43.03 42.99 42.99 0.21 0.15 -0.32 -0.04 -0.04 

GdiscdcatchB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rec_dev 4.59 4.25 4.57 5.22 5.13 4.48 4.59 4.54 4.54 -0.02 0.54 -0.11 -0.05 -0.05 

Pot F_dev 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 

Gbyc_F_dev 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 

Tag 2692.35 2692.91 2692.40 2698.88 2692.25 2692.23 2692.35 2692.34 2692.34 0.05 -0.1 -0.12 -0.01 -0.01 

Fishery cpue -7.96 - -6.43 -18.11 -6.63 -9.29 -7.96 -8.20 -8.20 1.53 1.33 -1.33 -0.24 -0.24 

Maturity 0.17 0.17 0.17 0.17 0.17 0.17 - 0.17 - 0.00 0.00 0.00 0.00 - 

Total 275.26 285.93 274.08 265.78 275.65 278.13 275.10 275.54 275.37 -1.18 0.39 2.87 0.28 0.27 
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Table 49. Predicted total catch OFL (t), B35%, and terminal MMB ratio for various scenarios for EAG and WAG, respectively. Sc = scenario; 

MMB2015 / MMBinitial = ratio of terminal MMB relative to initial MMB (= MMB1960).  

 

                                      EAG WAG                                              

Sc Tier 3 

Total 

Catch 

OFL (t) 

B35% 

 (t) 

MMB2015  

/ 

MMBinitial 

Tier 3 

Total 

Catch 

OFL (t) 

B35% 

 (t) 

MMB2015  / 

MMBinitial 

M yr-1 Remarks 

1 3,986 6,430 

 

 

0.57 

1,298 4,633 

 

 

0.33 

 

 

0.224 

Base scenario: 1960 equilibrium initial size composition, 1995/96–

2015/16 observer CPUE, 1985/86–1998/99 Fishery CPUE, time 

period for mean R calculation for equilibrium initial abundance 

and BMSY reference point calculations 1987–2012,  maturity curve, 

Francis re-weighting,    

2 4,025 6,491 

 

 

0.58 1,255 4,581 

 

0.32 

 

0.224 

 

Dropped Fishery CPUE 

3 4,373 6,721 

 

 

0.60 1,298 4,638 

 

 

0.33 

 

 

0.224 

 

Added 1991/92–1994/95 observer CPUE  

4 3,765 6,256 

 

0.56 1,109 4,475 

 

0.30 

 

0.224 

Three catchability and asymptotic total selectivity for 1985/86–

1994/95, 1995/96–2004/05, and 2005/06–2015/16 

 

5 2,914 6,987 

 

0.48 836 5,060 

 

0.26 

 

0.189 

Low bracketing value of M:  [=M*exp(-1.96*SEM)] 

 

6 5,562 6,117 

 

0.67 1,972 4,329 

 

0.40 

 

0.266 

High bracketing value of M:  [=M*exp(+1.96*SEM)] 

 

7 3,986 6,164 

 

0.57 1,225 5,010 

 

0.33 

 

0.224 
BMSY reference points based on average recruitment for 

1982–2016 

 

8 3,986 6,391 

 

0.57 1,301 4,617 

 

0.33 

 

0.224 
BMSY reference points based on average recruitment for 

1996–2016 

 

9 4,486 7,048 

 

0.60 1,532 5,040 

 

0.34 

 

0.224 

 

Knife-edge maturity 111 mm CL 

 

9** - - 

 

- 1,561 4,507 

 

0.34 

 

0.224 
Knife-edge maturity 111 mm CL; BMSY reference points based 

on average recruitment for 1993–1997 

 

10 3,881 6,471 

 

0.57 1,413 4,558 

 

0.34 

  

Individual M estimates: WAG: 0.231, EAG: 0.221 

 

11 4,387 7,066 

 

0.59 1,640 5,001 

 

0.36 

 Knife-edge maturity 111 mm CL; Individual M estimates: WAG: 

0.231, EAG: 0.221. 
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Figure 1. Historical commercial harvest (from fish tickets; metric tons) and catch-per-unit effort 

(CPUE, number of crabs per pot lift) of golden king crab in the EAG, 1985/86–2015/16 fisheries 

(note: 1985 refers to the 1985/86 fishing year). 

 
Figure 2. Historical commercial harvest (from fish tickets; metric tons) and catch-per-unit effort 

(CPUE, number of crabs per pot lift) of golden king crab in the WAG, 1985/86–2015/16 fisheries 

(note: 1985 refers to the 1985/86 fishing year). 
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Figure 3. Catch distribution by statistical area.in 2015/16. 
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Figure 4. Total and components negative log-likelihoods vs. M for scenario 0a model fit for EAG 

and WAG combined data. The M estimate was obtained using an M penalty. The M estimate was 

0.2225 yr
-1

 (⏈ 0.0191 yr
-1

). The negative log likelihood values were estimated for fixed 

proportions of estimated M without using an M penalty and they were zero adjusted.  
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Figure 5. Total and components negative log-likelihoods vs. M for scenario 0b model fit for 

EAG and WAG combined data. The M estimate was obtained without using an M penalty. The M 

estimate was 0.2242 yr
-1

 (⏈ 0.0196 yr
-1

). The negative log likelihood values were estimated for 

fixed proportions of estimated M without using an M penalty and they were zero adjusted.  
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Figure 6. Total and components negative log-likelihoods vs. M for scenario 1b model separate fit 

to EAG data and WAG data. The M estimate was obtained without using an M penalty. The M 

estimate for EAG was 0.2208 yr
-1

 (⏈ 0.0238 yr
-1

) and that for WAG was 0.2308 yr
-1

 (⏈ 

0.0350yr
-1

). The negative log likelihood values were estimated for fixed proportions of estimated 

M without using an M penalty and they were zero adjusted.  
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Figure 7. Total and components negative log-likelihoods vs. mean MMB for scenario 1 model fit 

to EAG and WAG data, respectively. The negative log likelihood values were estimated for fixed 

proportions of the scenario 1 estimate of mean MMB and they were zero adjusted.  
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Figure 8. Total and components negative log-likelihoods vs. MMB depletion (i.e., 

MMB2015/MMB1960) for scenario 1 model fit to EAG and WAG data, respectively. The negative 

log likelihood values were estimated for fixed proportions of the scenario 1 estimate of MMB 

depletion and they were zero adjusted.  
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Figure 9. Standard deviation of recruit_dev plot for EAG and WAG. The mean recruit for years with 

standard deviation less than 0.7 sigma R was used to initialize model.  We selected the 1987–2012 period 

for mean recruit estimation.  

 

 

1353



 
Figure 10. Predicted (line) vs. observed (bar) retained catch relative length frequency 

distributions under scenarios 1 (black line), 2 (orange line), 3 (red line), 4 (blue line), 5 (violet 

line), 6 (dark green line), 9 (green line), 10 (dark red line), and 11 (dark blue line) for golden king 

crab in the EAG, 1985/86 to 2015/16.  This color scheme is used in all other graphs. 

 

Figure 11. Predicted (line) vs. observed (bar) total catch relative length frequency distributions 

under scenarios 1 to 11 for golden king crab in the EAG, 1990/91 to 2015/16.  
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Figure 12. Predicted (line) vs. observed (bar) groundfish (or trawl) discarded bycatch relative 

length frequency distributions under scenarios 1 to 11 for golden king crab in the EAG, 1989/90 

to 2015/16. Note that this data set was not used in the model fitting. 
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Figure 13. Estimated total (black solid line) and retained selectivity (red dotted line) for pre- and 

post- rationalization periods under scenarios 1 to 11 fits to golden king crab data in the EAG. 
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Figure 14. Observed (open circles) vs. predicted (solid line) tag recaptures by size bin for years 1 

to 6 recaptures under scenario 1 for EAG golden king crab. 
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Figure 15. Estimated number of male recruits (crab size ≥ 101 mm CL) to the assessment model 

under scenarios (Sc) 1 to 11 for EAG golden king crab data, 1961–2016.  Top left: scenarios 1 to 

4; top right: scenarios 1, 5, and 6; bottom left: scenarios 1 and 9; and bottom right: scenarios 1, 

10, and 11. This grouping scheme was used in a number of subsequent figures. The number of 

recruits are centralized using (R-mean R)/mean R for comparing different scenarios’ results.  
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Figure 16. Recruit size distribution to the assessment model under scenarios (Sc) 1 to 11 for EAG 

golden king crab.  

 

Figure 17. Estimated molt probability vs. carapace length of golden king crab for scenarios (Sc) 1 

to 11 in the EAG.  
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Figure 18. Estimated maturity probability vs. carapace length of golden king crab for scenarios 

(Sc) 1 to 11 in the EAG.  
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Figure 19. Observed (open circle) vs. predicted (solid line) retained catch (top left in each 

scenario set), total catch (top right in each scenario set), and groundfish bycatch (bottom left in 

each scenario set) of golden king crab for scenarios (Sc) 1 to 11, in EAG, 1985–2015.  
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Figure 20. Observed (open circle) vs. predicted (solid line) retained catch of golden king crab for 

scenarios (Sc) 1 to 11 fits in the EAG, 1981–1984. Note: Input retained catches to the model 

during pre-1985 fishery period were in number of crabs.   
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Figure 21. Bubble plot of standardized residuals of retained catch length composition for 

scenario 1 fit for EAG golden king crab, 1985/86–2015/16. Green circles are the positive and 

pink circles are the negative standardized residuals. The area of the circle is the relative 

magnitude of the residual. 

 

Figure 22 Bubble plot of standardized residuals of total catch length composition for scenario 1 

fit for EAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles 

are the negative standardized residuals. The area of the circle is the relative magnitude of the 

residual. 
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Figure 23. Bubble plot of standardized residuals of retained catch length composition for 

scenario 9 fit for EAG golden king crab, 1985/86–2015/16. Blue circles are the positive and pink 

circles are the negative standardized residuals. The area of the circle is the relative magnitude of 

the residual. 

 

Figure 24. Bubble plot of standardized residuals of total catch length composition for scenario 9 

fit for EAG golden king crab, 1990/91–2015/16. Blue circles are the positive and pink circles are 

the negative standardized residuals. The area of the circle is the relative magnitude of the 

residual. 
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Figure 25. Retrospective fits of MMB by the model following removal of terminal year data 

under scenarios (Sc) 1 to 9 for golden king crab in the EAG, 1960–2015. 
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Figure 26. Comparison of input CPUE indices (open circles with +/- 2 SE) with predicted CPUE 

indices (colored solid lines) under scenarios (Sc) 1 to 11 for EAG golden king crab data, 

1985/86–2015/16. Model estimated additional standard error was added to each input standard 

error. 
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Figure 27. Trends in pot fishery full selection total fishing mortality of golden king crab for 

scenarios (Sc) 1 to 11 model fits in the EAG, 1981–2015. 
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Figure 28. Trends in golden king crab mature male biomass for scenarios (Sc) 1 to 11 fits in the 

EAG, 1960/61–2015/16. Scenario 1 estimates have two standard errors confidence limits.  
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Figure 29. Predicted (line) vs. observed (bar) retained catch relative length frequency 

distributions under scenarios 1 (black line), 2 (orange line), 3 (red line), 4 (blue line), 5 (violet 

line), 6 (dark green line), 9 (green line), 10 (dark red line), and 11 (dark blue line) for golden king 

crab in the WAG, 1985/86 to 2015/16.  This color scheme is used in all other graphs. 

 
Figure 30. Predicted (line) vs. observed (bar) total catch relative length frequency distributions 

under scenarios 1 to 11 for golden king crab in the WAG, 1990/91 to 2015/16.  
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Figure 31. Predicted (line) vs. observed (bar) groundfish (or trawl) discarded bycatch relative 

length frequency distributions under scenarios 1 to 11 for golden king crab in the WAG, 1989/90 

to 2015/16. Note that this data set was not used in the model fitting. 
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Figure 32. Estimated total (black solid line) and retained selectivity (red dotted line) for pre- and 

post- rationalization periods under scenarios 1 to 11 fits to golden king crab data in the WAG. 
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Figure 33. Observed (open circles) vs. predicted (solid line) tag recaptures by size bin for years 1 

to 6 recaptures under scenario 1 for WAG golden king crab. 
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Figure 34. Estimated number of male recruits (crab size ≥ 101 mm CL) to the assessment model 

under scenarios (Sc) 1 to 11 for WAG golden king crab data, 1961–2016.  Top left: scenarios 1 to 

4; top right: scenarios 1, 5, and 6; bottom left: scenarios 1 and 9; and bottom right: scenarios 1, 

10, and 11.The number of recruits are centralized using (R-mean R)/mean R for comparing 

different scenarios’ results.  
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Figure 35. Recruit size distribution to the assessment model under scenarios (Sc) 1 to 11 for 

WAG golden king crab.  

 
Figure 36. Estimated molt probability vs. carapace length of golden king crab for scenarios (Sc) 1 

to 11 in the WAG.  
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Figure 37. Estimated maturity probability vs. carapace length of golden king crab for scenarios 

(Sc) 1 to 11 in the WAG.  
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Figure 38. Observed (open circle) vs. predicted (solid line) retained catch (top left in each 

scenario set), total catch (top right in each scenario set), and groundfish bycatch (bottom left in 

each scenario set) of golden king crab for scenarios (Sc) 1 to 11, in WAG, 1985–2015.  
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Figure 39. Observed (open circle) vs. predicted (solid line) retained catch of golden king crab for 

scenarios (Sc) 1 to 11 fits in the WAG, 1981–1984. Note: Input retained catches to the model 

during pre-1985 fishery period were in number of crabs.   
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Figure 40. Bubble plot of standardized residuals of retained catch length composition for 

scenario 1 fit for WAG golden king crab, 1985/86–2015/16. Green circles are the positive and 

pink circles are the negative standardized residuals. The area of the circle is the relative 

magnitude of the residual. 

 

 

 
 

Figure 41. Bubble plot of standardized residuals of total catch length composition for scenario 1 

fit for WAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles 

are the negative standardized residuals. The area of the circle is the relative magnitude of the 

residual. 
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Figure 42. Bubble plot of standardized residuals of retained catch length composition for 

scenario 9 fit for WAG golden king crab, 1985/86–2015/16. Blue circles are the positive and pink 

circles are the negative standardized residuals. The area of the circle is the relative magnitude of 

the residual.

 

Figure 43. Bubble plot of standardized residuals of total catch length composition for scenario 9 

fit for WAG golden king crab, 1990/91–2015/16. Blue circles are the positive and pink circles are 

the negative standardized residuals. The area of the circle is the relative magnitude of the 

residual. 
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Figure 44. Retrospective fits of MMB by the model following removal of terminal year data 

under scenarios (Sc) 1 to 9 for golden king crab in the WAG, 1960–2015. 
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Figure 45. Comparison of input CPUE indices (open circles with +/- 2 SE) with predicted CPUE 

indices (colored solid lines) under scenarios (Sc) 1 to 11 for WAG golden king crab data, 

1985/86–2015/16. Model estimated additional standard error was added to each input standard 

error. 
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Figure 46. Trends in pot fishery full selection total fishing mortality of golden king crab for 

scenarios (Sc) 1 to 11 model fits in the WAG, 1981–2015. 
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Figure 47. Trends in golden king crab mature male biomass for scenarios (Sc) 1 to 11 fits in the 

WAG, 1960/61–2015/16. Scenario 1 estimates have two standard errors confidence limits.  
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Figure 48.  Relationships between full fishing mortalities for the directed pot fishery and 

mature male biomass on Feb. 15 during 1985–2015 under scenarios 1 and 9 for EAG and 

WAG. Average of recruitment from 1987 to 2012 was used to estimate B35%. Pot and 

groundfish handling mortality rates were assumed to be 0.2 and 0.65, respectively. 
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Figure 49. Bubble plot of standardized residuals of retained catch length composition for scenario 2 fit 

for EAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 50. Bubble plot of standardized residuals of  total catch length composition for scenario 2 fit for 

EAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Figure 51. Bubble plot of standardized residuals of retained catch length composition for scenario 3 fit 

for EAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 52. Bubble plot of standardized residuals of  total catch length composition for scenario 3 fit for 

EAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Figure 53. Bubble plot of standardized residuals of retained catch length composition for scenario 4 fit 

for EAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 54. Bubble plot of standardized residuals of  total catch length composition for scenario 4 fit for 

EAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Figure 55. Bubble plot of standardized residuals of retained catch length composition for scenario 11 fit 

for EAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 56. Bubble plot of standardized residuals of  total catch length composition for scenario 11 fit for 

EAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Figure 57. Bubble plot of standardized residuals of retained catch length composition for scenario 2 fit 

for WAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 58. Bubble plot of standardized residuals of  total catch length composition for scenario 2 fit for 

WAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Figure 59. Bubble plot of standardized residuals of retained catch length composition for scenario 3 fit 

for WAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 60. Bubble plot of standardized residuals of  total catch length composition for scenario 3 fit for 

WAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Figure 61. Bubble plot of standardized residuals of retained catch length composition for scenario 4 fit 

for WAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 62. Bubble plot of standardized residuals of  total catch length composition for scenario 4 fit for 

WAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Figure 63. Bubble plot of standardized residuals of retained catch length composition for scenario 11 fit 

for WAG golden king crab, 1985/86–2015/16. Green circles are the positive and pink circles are the 

negative standardized residuals. The area of the circle is the relative magnitude of the residual. 

 

Figure 64. Bubble plot of standardized residuals of  total catch length composition for scenario 11 fit for 

WAG golden king crab, 1990/91–2015/16. Green circles are the positive and pink circles are the negative 

standardized residuals. The area of the circle is the relative magnitude of the residual. 
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Appendix A:  Integrated model  

 

Aleutian Islands Golden King Crab (Lithodes aequispinus) Stock Assessment Model 

Development- East of 174
  

W (EAG) and west of 174
 
W (WAG) Aleutian Island stocks 

 

Basic population dynamics 

The annual [male] abundances by size are modeled using the equation: 

 

𝑁𝑡+1,𝑗 = ∑ [𝑁𝑡,𝑖𝑒
−𝑀𝑗

𝑖=1 − (�̂�𝑡,𝑖 + �̂�𝑡,𝑖 + 𝑇�̂�𝑡,𝑖)𝑒
(𝑦𝑡−1)𝑀]𝑋𝑖,𝑗 + 𝑅𝑡+1,𝑗                      (A.1) 

 

where  i,tN  is the number of [male] crab in length class i on 1 July (start of fishing year) 

of year t; i,tĈ , i,tD̂
 
, and �̂�𝑟𝑡,𝑖 are respectively the predicted fishery retained, pot fishery 

discard dead, and groundfish fishery discard dead catches in length class i during year t; 

�̂�𝑡,𝑖 is estimated from the intermediate total (�̂�𝑡,𝑖 𝑡𝑒𝑚𝑝) catch and the retained (�̂�𝑡,𝑖) catch 

by Equation A.2c. 
,i jX  is the probability of length-class i growing into length-class j 

during the year; yt  is elapsed time period from 1 July to the mid –point of fishing period 

in year t; M is instantaneous rate of natural mortality; and 𝑅𝑡+1,𝑗 recruitment to length 

class j in year t+1. 

 

The catches are predicted using the equations 

  

�̂�𝑡,𝑗,𝑡𝑒𝑚𝑝 = 
𝐹𝑡𝑠𝑡,𝑗

𝑇

𝑍𝑡,𝑗
 𝑁𝑡,𝑗𝑒

−𝑦𝑡𝑀(1 − 𝑒−𝑍𝑡,𝑗)                             (A.2a) 

 

�̂�𝑡,𝑗 = 
𝐹𝑡𝑠𝑡,𝑗

𝑇 𝑠𝑡,𝑗
𝑟

𝑍𝑡,𝑗
 𝑁𝑡,𝑗𝑒

−𝑦𝑡𝑀(1 − 𝑒−𝑍𝑡,𝑗)                                                                    (A.2b) 

 

�̂�𝑡,𝑗 =  0.2(�̂�𝑡,𝑗,𝑡𝑒𝑚𝑝 − �̂�𝑡,𝑗)                    (A.2c) 

 

𝑇�̂�𝑡,𝑗 =  0.65
𝐹𝑡
𝑇𝑟𝑠𝑗

𝑇𝑟

𝑍𝑡,𝑗
 𝑁𝑡,𝑗𝑒

−𝑦𝑡𝑀(1 − 𝑒−𝑍𝑡,𝑗)                            (A.2d) 

 

 

�̂�𝑡,𝑗 = �̂�𝑡,𝑗 + �̂�𝑡,𝑗                                           (A.2e) 

 

 

where 
,t jZ is total fishery-related mortality on animals in length-class j during year t: 

       𝑍𝑡,𝑗 = 𝐹𝑡𝑠𝑡,𝑗
𝑇 𝑠𝑡,𝑗

𝑟 + 0.2𝐹𝑡𝑠𝑡,𝑗
𝑇 (1 − 𝑠𝑡,𝑗

𝑟 ) + 0.65 𝐹𝑡
𝑇𝑟𝑠𝑗

𝑇𝑟                             (A.3) 

 

tF  is the full selection fishing mortality in the pot fishery, 𝐹𝑡
𝑇𝑟 is the full selection fishing 

mortality in the trawl fishery, 𝑠𝑡,𝑗
𝑇 is the total selectivity for animals in length-class j by the 

pot fishery during year t, 𝑠𝑗
𝑇𝑟 is the selectivity for animals in length-class j by the trawl 
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fishery, 𝑠𝑡,𝑗
𝑟  is the probability of retention for animals in length-class j by the pot fishery 

during year t. Pot bycatch mortality of 0.2 and groundfish bycatch mortality of 0.65 

(average of trawl (0.8) and fish pot (0.5) mortality) were assumed. 

 

The initial conditions are computed as the equilibrium initial condition using the 

following relations:  

 

The equilibrium stock abundance is 

 

N = X.S.N + R                                            (A.4) 

 

The equilibrium abundance in 1960, N1960 , is 

 

𝑁1960 = (𝐈 − 𝐗𝐒)
−1𝑅                       (A.5) 

where X is the growth matrix, S is a matrix with diagonal elements given by 
Me

, I is the 

identity matrix, and 𝑅 is the product of average recruitment and relative proportion of 

total recruitment to each size-class. 

 

We used the mean number of recruits from 1987 to 2012 in equation (A.5) to obtain the 

equilibrium solution under only natural mortality in year 1960, and then projected the 

equilibrium abundance under natural mortality with recruitment estimated for each year 

after 1960 up to 1985 with removal of retained catches during 1981/82 to 1984/85. 

  

Growth Matrix 

The growth matrix X is modeled as follows: 

 

𝑋𝑖,𝑗 = {

0                                 𝑖𝑓 𝑗 < 𝑖

𝑃𝑖,𝑗 + (1 − 𝑚𝑖)      𝑖𝑓 𝑗 = 𝑖

𝑃𝑖,𝑗                               𝑖𝑓 𝑗 > 𝑖
                                       

(A.6) 

where: 

 

𝑃𝑖,𝑗 = 𝑚𝑖

{
 
 

 
 ∫ 𝑁 (𝑥 |𝜇𝑖 , 𝜎

2) 𝑑𝑥                                      𝑖𝑓  𝑗 = 𝑖
𝑗2− 𝐿𝑖
−∞

∫ 𝑁 (𝑥 |𝜇𝑖, 𝜎
2) 𝑑𝑥

𝑗2− 𝐿𝑖
𝑗1− 𝐿𝑖

                             𝑖𝑓  𝑖 < 𝑗 < 𝑛  

∫ 𝑁 (𝑥 |𝜇𝑖 , 𝜎
2) 𝑑𝑥                                     𝑖𝑓   𝑖 = 𝑛

∞

𝑗1− 𝐿𝑖

, 
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                  𝑁(𝑥|𝜇𝑖 , 𝜎
2) =

1

√2𝜋𝜎2
𝑒
−(
𝑥−𝜇𝑖

√2𝜎
)2

, and 

μi  is the mean growth increment for crabs in size-class i: 

μi = 1 + 2 ∗ �̅�i.                                                                             (A.7) 

1    ,  2 ,     and 𝜎 are estimable parameters, and j1 and j2 are the lower and upper limits 

of the receiving length-class j (in mm CL), and �̅�i  is the mid-point of the contributing 

length interval i. The quantity 𝑚𝑖 is the molt probability for size-class i: 

mi =
1

1 + ec(i−d)
             (A.8) 

where c and d are parameters. 

Selectivity and retention 

a) Selectivity and retention are both assumed to be logistic functions of length. 

Selectivity depends on the fishing period for the pot fishery: 

 

𝑆𝑖 = 
1

1+ 𝑒
[−ln (19)

𝜏𝑖−𝜃50
𝜃95−𝜃50

]
         (A.9) 

     
 

where 95 and 50 are the parameters of the selectivity/ retention pattern (Mark Maunder, 

unpublished generic crab model). In the program, we re-parameterized the denominator 

(95 - 50 ) to log (𝑑𝑒𝑙𝑡𝑎𝜃) so that the difference is always positive. 

 

Maturity 

 
Maturity is assumed to be a logistic function of length formulated similar to Eq (A.9), 

 

𝑀𝑎𝑡𝑖 = 
1

1+ 𝑒
[−ln (19)

𝜏𝑖−𝑚𝑎𝑡50
𝑚𝑎𝑡95−𝑚𝑎𝑡50

]
        (A.10) 

 

where mat95 and mat50 are the parameters of the maturity curve. In the program, we re-

parameterized the denominator (mat95 - mat50 ) to log (𝑑𝑒𝑙𝑡𝑎_𝑚𝑎𝑡) so that the difference 

is always positive.  

 

Recruitment 

Recruitment to length–class i during year t is modeled as 𝑅𝑡,𝑖 = �̅�𝑒𝜖𝑖Ω𝑖 where Ω𝑖 is a 

normalized gamma function 
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𝑔𝑎𝑚𝑚𝑎(𝑥|𝛼𝑟 , 𝛽𝑟) =
𝑥𝛼𝑟−1𝑒

𝑥
𝛽𝑟

𝛽𝑟
𝛼𝑟⎾(𝛼𝑟)

          (A.11) 

 

with αr and βr (restricted to the first six length classes). 

 

Parameter estimation 

Table A1 lists the parameters of the model indicating which are estimated and which are 

pre-specified. The objective function includes contributions related to the fit of the model 

to the available data and penalties (priors on the various parameters).  

 

Tables A2 lists parameter values  (with the corresponding coefficient of variations in 

parentheses) used to weight the components of the objective functions for EAG and 

WAG. 

 

 

Likelihood components
 Catches 

The contribution of the catch data (retained, total, and groundfish discarded) to the 

objective function is given by: 

2

, ,
ˆ{ n( ) n( )}catch

r r t j j t j j

t j j

LL C w c C w c              (A.12a) 

𝐿𝐿𝑇
𝑐𝑎𝑡𝑐ℎ = 𝜆𝑇 ∑ {ln (∑ �̂�𝑡,𝑗𝑤𝑗 + 𝑐)𝑗𝑡 − ln (∑ 𝑇𝑡,𝑗𝑤𝑗 + 𝑐)}

2
𝑗              (A.12b) 

 

𝐿𝐿𝐺𝐷
𝑐𝑎𝑡𝑐ℎ = 𝜆𝐺𝐷 ∑ {ln (∑ 𝑇�̂�𝑡,𝑗𝑤𝑗 + 𝑐)𝑗𝑡 − ln (∑ 𝑇𝑟𝑡,𝑗𝑤𝑗 + 𝑐)}

2
𝑗                  (A.12c)      

 

where r, T, and GD are weights assigned to likelihood components for the retained, pot 

total, and groundfish discard catches; 
jw  is the average mass of a crab is length-class j; 

,t jC , 𝑇𝑡,𝑗, and 𝑇𝑟𝑡,𝑗are, respectively, the observed numbers of crab in size class j for 

retained, pot total, and groundfish fishery discarded crab during year t, and c is a small 

constant value. We assumed c = 0.001. 

An additional retained catch likelihood (using Equation A.12a without w) for the retained 

catch in number of crabs during 1981/82 to 1984/85 was also considered in all scenarios.   

Catch-rate indices 

The catch-rate indices are assumed to be lognormally distributed about the model 

prediction. Account is taken of variation in addition to that related to sampling variation: 

 

𝐿𝐿𝑟
𝐶𝑃𝑈𝐸 = 𝜆𝑟,𝐶𝑃𝑈𝐸 {0.5∑ ln [2𝜋(𝜎𝑟,𝑡

2 + 𝜎𝑒
2)]𝑡 + ∑

(𝑙𝑛(𝐶𝑃𝑈𝐸𝑡
𝑟+𝑐)− ln (𝐶𝑃𝑈𝐸𝑡

𝑟+𝑐)̂ )
2

2(𝜎𝑟,𝑡
2 + 𝜎𝑒

2)𝑡 }  (A.13) 
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where r

tCPUE  is the standardized retain catch-rate index for year t, 
,r t  is standard error 

of the logarithm of r

tCPUE , and 𝐶𝑃𝑈𝐸𝑡
𝑟̂  is the model-estimate of r

tCPUE : 

   

 𝐶𝑃𝑈𝐸𝑡
𝑟̂  = 𝑞𝑘 ∑ 𝑆𝑗

𝑇
𝑗 𝑆𝑗

𝑟 (𝑁𝑡,𝑗 − 0.5[𝐶𝑡,�̂� + 𝐷𝑡,�̂� + 𝑇𝑟𝑡,�̂� ])𝑒
−𝑦𝑡𝑀                (A.14) 

 

in which 𝑞𝑘 is the catchability coefficient during the k-th time period (e.g., pre- and post-

rationalization time periods), e  is the extent of over-dispersion, c is a small constant to 

prevent zero values (we assumed c = 0.001), and 𝜆𝑟,𝐶𝑃𝑈𝐸 is the weight assigned to the 

catch-rate data. We used the same likelihood formula (A.14) for fish ticket retained catch 

rate indices for scenario 3 model. 

 

Following Burnham et al. (1987), we computed the ln(CPUE) variance by: 

 

 𝜎𝑟,𝑡  
2 = ln (1 + 𝐶𝑉𝑟,𝑡

2 )                     (A.15) 

 

Length-composition data 

The length-composition data are included in the likelihood function using the robust 

normal for proportions likelihood, i.e., generically: 

 
2

, ,

2
,

ˆ( )2

, 2
0.5 n(2 ) n exp 0.01t j t j

t j

P PLF

r t j

t j t j

LL



    

  
                                  (A.16) 

where 
,t jP  is the observed proportion of crabs in length-class j in the catch during year t, 

,
ˆ
t jP  is the model-estimate corresponding to 

,t jP , i.e.: 

�̂�𝑡,𝑗
𝑟 = 

�̂�𝑡,𝑗

∑ �̂�𝑡,𝑗
𝑛
𝑗

 

 

                            

�̂�𝑡,𝑗
𝑇 = 

�̂�𝑡,𝑗

∑ �̂�𝑡,𝑗
𝑛
𝑗

 

 

�̂�𝑡,𝑗
𝐺𝐹 = 

𝑇�̂�𝑡,𝑗

∑ 𝑇�̂�𝑡,𝑗
𝑛
𝑗

 

 

   (A.17) 
2

,t j
 

is the variance of
,t jP : 

2

, , ,

0.1
(1 ) /t j t j t j tP P S

n


 
   
       (A.18)

 

and tS  is the effective sample size for year t and n is the number of size classes. 
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Note: The likelihood calculation for retained length composition starts from length-class 

6 (mid length 128 mm CL) because the length-classes 1 to 5 mostly contain zero data.  

Tagging data  

Let 
, ,j t yV be the number of males that were released in year t that were in length-class j 

when they were released and were recaptured after y years, and , ,j t yV  be the vector of 

recaptures by length-class from the males that were released in year t that were in length-

class j when they were released and were recaptured after y years. The multinomial 

likelihood of the tagging data is then: 

 

 

 𝑙𝑛𝐿 =  𝜆𝑦,𝑡𝑎𝑔 ∑ ∑ ∑ ∑ 𝜌𝑗,𝑡,𝑦,𝑖𝑙𝑛�̂�𝑗,𝑡,𝑦,𝑖𝑖𝑦𝑡𝑗       (A.19) 

 

where 𝜆𝑦,𝑡𝑎𝑔 is the weight assigned to the tagging data for recapture year y, 
, , ,

ˆ
j t y i  is the 

proportion in length-class i of the recaptures of males which were released during year t 

that were in length-class j when they were released and were recaptured after y years: 

 
( )

, ,
ˆ [ ]

jT y

j t y s  X        (A.20) 

 

where 
( )j

  is a vector with 
, ,j t yV  at element j and 0 otherwise, X is the growth matrix, 

and 𝑠𝑇 is the total selectivity vector (Punt et al. 1997).  

This likelihood function is predicted on the assumption that all recaptures are in the 

pot fishery and the reporting rate is independent of the size of crab. The expected number 

of recaptures in length-class l is given by: 

,

, ,

' , '

'

[ ]

[ ]

t

l j l

l j k tt
t j kl j l

l

s
r V

s
 



X

X

    (A.21) 

The last term, 
, ,j k t

k

V , is the number of recaptured male crab that were released in 

length-class j after t time-steps. The term 
,

, ,

' , '

'

[ ]

[ ]

t

l j l

j k tt
j kl j l

l

s
V

s
 


X

X
 is the predicted number 

of animals recaptured in length-class l that were at liberty for t time-steps. 

 

Maturity proportion likelihood 

𝐿𝐿𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 = 𝜆𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 ∑ (�̂�𝑗 − 𝑃𝑗)
2

𝑗       (A.22) 

 

where msturity is the weight assigned to the maturity likelihood component; 𝑃𝑗  and  �̂�𝑗 are 

the observed and expected maturity proportions respectively of male crab in size class j. 

We assumed 𝜆𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦  = 1.0. 

 

Penalties 
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Penalties are imposed on the deviations of annual pot fishing mortality about mean pot 

fishing mortality, annual trawl fishing mortality about mean trawl fishing mortality, 

recruitment about mean recruitment, and the posfunction (fpen): 

2

1 ( n n )F t

t

P F F          (A.23) 

2

2 ( n n )Tr

Tr Tr

tF
t

P F F          (A.24) 

2

3 ( n )R t

t

P             (A.25) 

 

𝑃5 = 𝜆𝑝𝑜𝑠𝑓𝑛 ∗ 𝑓𝑝𝑒𝑛                                                                       (A.26) 

 

 

Standardized Residual of Length Composition 

   𝑆𝑡𝑑. 𝑅𝑒𝑠𝑡,𝑗 = 
𝑃𝑡,𝑗−𝑃𝑡,�̂�

√2𝜎𝑡,𝑗
2

         (A.27) 

Output Quantities 

 

Harvest rate 

 

Total pot fishery harvest rate:  

  Et =
∑ (Ĉj,t+ D̂j,t)
n
j=1

∑ Nj,t
n
j=1

               (A.28)  

 

Exploited legal male biomass at the start of year t: 

,

n
T r

t j j j t j

j legal size

LMB s s N w


 
         (A.29) 

where 𝑤𝑗 is the weight of an animal in length-class j. 

 

Mature male biomass on 15 February spawning time (NPFMC 2007) in the following 

year:  

 

MMBt = ∑ {Nj,te
−y′M − (Ĉj,t

n
j=mature size + D̂j,t + Tr̂j,t)e

(yt−y′)M}wj                       (A.30) 

 

where 𝑦′is the elapsed time from 1 July to 15 February in the following year. 

 

For estimating the next year limit harvest levels from current year stock abundances, a  

FOFL value is needed. Current crab management plan specifies five different Tier 

formulas for different stocks depending on the strength of information available for a 

stock, for computing  FOFL (NPFMC 2007). For the golden king crab, the following Tier 

3 formula is applied to compute FOFL: 

 

If,  

MMBcurrent > B35%, FOFL = F35%  
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If, 

 MMBcurrent ≤ B35%  and  MMBcurrent  > 0.25B35% , 

 

FOFL = F35%  
(
MMBcurrent

B35%
= α)

(1−α)
                     (A.31) 

 

If, 

MMBcurrent  ≤ 0.25B35% , 

 

FOFL = 0.  
 

where α is a parameter, MMBcurrent  is the mature male biomass in the current year and 

B35%  is the proxy MMBMSY for Tier 3 stocks. We assumed α  = 0.1. 

 

Because projected MMBt (i.e., MMBcurrent  )  depends on the intervening retained and 

discard catch (i.e., tMMB
is estimated after the fishery), an iterative procedure is applied 

using Equations A.30 and A.31 with retained and discard catch predicted from Equations 

A.2b-d. The next year limit harvest catch is estimated using Equations A.2b-d with the 

estimated  FOFL   value. 

 
Additional Penalty Functions for Profiles 

 

 

M estimation: 

 

We used the following penalty function (P6) to estimate M for scenario 0a : 

P6 = 
0.5

ln (1+CV2)
[(ln(M) − ln (0.18))2]      (A.32) 

 

where a CV of 50% is assigned to the penalty and 0.18yr
-1

 is the M value used for king 

crab stock assessments. 

For M profile investigation, we disregarded the M penalty and estimated total and 

component negative log likelihood values at fixed input M values varied by ± 0.30 

proportion of the base scenario estimate. 

 

Mean MMB profile: 

If the current_phase = 1, 

   P7 = a1(meanMMB −  meanMMBinput)
2
 

 

If the current_phase > 1 and the current_phase <= selectivity_phase,  (A.33) 

   P7 = a2(meanMMB −  meanMMBinput)
2
 

 

If the current_phase > selectivity_phase, 
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   P7 = a3(meanMMB − meanMMBinput)
2
 

 

where a1, a2, and a3 are weights 0.05 (for EAG) or 0.01 (for WAG), 0.25 (for EAG) or 

0.02 (for WAG), and 1.5 (for EAG) or 0.025 (for WAG), respectively. The superscript 

‘input” refers to a fixed input value. The fixed input values were varied by ± 0.25 

proportion of the scenario 1 estimate.  
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MMB depletion rate profile: 

 

If the current_phase = 1, 

   P8 = b1(MMBdepletion − MMBdepletion
input

)
2

 

 

If the current_phase > 1 and the current_phase <= selectivity_phase,  (A.34) 

   P8 = b2(MMBdepletion − MMBdepletion
input

)
2

 

 

If the current_phase > selectivity_phase, 

   P8 = b3(MMBdepletion − MMBdepletion
input

)
2

 

 

Where b1, b2, and b3 are weights 0.05, 0.25, and 15,000, respectively. The superscript 

‘input” refers to a fixed input value.  MMBdepletion = 
MMB2015

MMB1960
. The fixed input values 

were varied by ± 0.25 proportion of the scenario 1 estimate. 
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Table A1. Pre-specified and estimated parameters of the population dynamics model 

Parameter Number of parameters 

Initial conditions:  

Length specific equilibrium abundance,  
𝑁1960,𝑙 

17 (estimated)  

Fishing mortalities:  

Pot fishery, tF  1985–2015 (estimated) 

Mean pot fishery fishing mortality, F  1 (estimated) 

Groundfish fishery, Tr

tF  1989–2015 (the mean F for 1989 to 

1994 was used to estimate trawl 

discards back to 1985 (estimated) 

   Mean groundfish fishery fishing mortality, 
TrF  1 (estimated) 

Selectivity and retention:  

Pot fishery total selectivity, 𝜃50
𝑇  2 or 3 (1985–2004; 2005+) (estimated) 

Pot fishery total selectivity difference, 𝑑𝑒𝑙𝑡𝑎𝜃𝑇 2 or 3 (1985–2004; 2005+) (estimated) 

Pot fishery retention, 𝜃50
𝑟  1 (1985+) (estimated) 

Pot fishery retention selectivity difference, 𝑑𝑒𝑙𝑡𝑎𝜃𝑟 1 (1985+) (estimated) 

Groundfish fishery selectivity  fixed at 1 for all size-classes 

Maturity: 

   maturity, mat50 

   maturity difference, 𝑑𝑒𝑙𝑡𝑎_𝑚𝑎𝑡 
Growth: 

 

1 (estimated) 

1 (estimated) 

 

 Expected growth increment, 1 2,   2 (estimated) 

Variability in growth increment, 𝜎 

Molt probability (size transition matrix with tag 

data), a 

Molt probability (size transition matrix with tag 

data), b 

1 (estimated) 

1 (estimated) 

 

1 (estimated) 

Natural mortality, M 1 (pre-specified, 0.224yr
-1

 ) 

Recruitment:  

Number of recruiting length-classes 

Mean recruit length 

 

Distribution to length-class, 𝛽𝑟  

Median recruitment, �̅� 

5 (pre-specified) 

1 (pre-specified, 110 mmCL) 

 

1 (estimated) 

1 (estimated) 

Recruitment deviations, t  56 (1961–2016) (estimated) 

Fishery catchability, q 

 

2 (1985–2004; 2005+) or 3 (1985–

1994; 1995–2004; 2005+) (estimated) 

Additional CPUE indices standard deviation, 𝜎𝑒 1 (estimated) 

Likelihood weights (coefficient of variation) Pre-specified, varies by scenario 
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Table A2. Specifications for the weights with corresponding coefficient of variations* in parentheses for each scenario for EAG and 

WAG. select. phase = selectivity phase. 

Weight 

Value 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 

Catch:        

Retained catch for 

1981–1984 and/or 

1985–2015, r  

500 (0.032) 500  500  500  500  500  500  

Total catch for 1990–

2015, T 

Number of 

sampled pots 

scaled to a 

max 250 

Number of 

sampled pots 

scaled to a 

max 250 

Number of 

sampled pots 

scaled to a 

max 250 

Number of 

sampled pots 

scaled to a 

max 250 

Number of 

sampled pots 

scaled to a 

max 250 

Number of 

sampled pots 

scaled to a 

max 250 

Number of 

sampled pots 

scaled to a 

max 250 

Groundfish bycatch 

for 1989–2015, GD 

0.2  (3.344)              0.2              0.2              0.2             0.2               0.2               0.2   

Catch-rate:        

Observer legal size 

crab catch-rate for 

1995–2015, 
,r CPUE   

 

 

1(0.805) 

 

 

1 

 

 

(1991–

2015)1 

 

 

1 

 

 

1 

 

 

1 

 

 

1 

Fish ticket retained 

crab catch-rate for 

1985–1998 , 
,r CPUE        

1(0.805)  1 1 1 1 1 

Penalty weights:        

Pot fishing mortality 

dev, F  

Initially 1000, 

relaxed to 

0.001 at 

phases ≥ 

select. phase 

Initially 1000, 

relaxed to 

0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 
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Table A2 Scenarios 1 to 7 continued.       

Groundfish fishing 

mortality dev, TrF
  

Initially 1000, 

relaxed to 

0.001 at 

phases ≥ 

select.  phase 

Initially 1000, 

relaxed to 

0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Initially 

1000, relaxed 

to 0.001 at 

phases ≥ 

select. phase 

Recruitment, R  2 (0.533) 2 2 2 2 2 2 

Posfunction (to keep  

abundance estimates 

always positive),  

𝜆𝑝𝑜𝑠𝑓𝑛 

1000 (0.022) 1000 1000 1000 1000 1000 1000 

Maturity 1(0.805) 1 1 1 1 1 1 

Tagging likelihood EAG 

individual tag 

returns 

EAG tag data EAG tag data EAG tag data EAG tag data EAG tag data EAG tag data 

 

 

 

∗  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛, 𝐶𝑉 =  √exp [
1

2𝑊
] − 1,      w =weight 
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Table A2 continued. 

Weight Value 

Scenario 8 Scenario 9 Scenario 10 Scenario 11 

Catch:     

Retained catch. r  500 (0.032) 500  500  500 

Total catch, T Number of sampled 

pots scaled to a max 

250 

Number of 

sampled pots 

scaled to a max 

250 

Number of 

sampled pots 

scaled to a max 

250 

Number of 

sampled pots 

scaled to a max 

250 

Groundfish bycatch, GD 0.2 (3.344) 0.2 0.2 0.2 

Catch-rate:     

Observer legal size crab catch-

rate, 
,r CPUE         

 

1(0.805) 

 

1 

 

1 

 

1 

Fish ticket retained crab catch-

rate, 
,r CPUE        

1(0.805) 1 1 1 

Penalty weights:     

Pot fishing mortality dev, F  Initially 1000, 

relaxed to 0.001 at 

phases ≥ select.phase 

Initially 1000, 

relaxed to 0.001 at 

phases ≥ 

select.phase 

Initially 1000, 

relaxed to 0.001 at 

phases ≥ select.  

phase 

Initially 1000, 

relaxed to 0.001 

at phases ≥ 

select. phase 

Trawl fishing mortality dev, 

TrF
  

Initially 1000, 

relaxed to 0.001  at 

phases ≥ select. 

phase 

Initially 1000, 

relaxed to 0.001 at 

phases ≥ select.  

phase 

Initially 1000, 

relaxed to 0.001 at 

phases ≥ select.  

phase 

Initially 1000, 

relaxed to 0.001 

at phases ≥ 

select. phase 

Recruitment, R  2(0.533) 2 2 2 

Posfunction (to keep  

abundance estimates always 

positive),  𝜆𝑝𝑜𝑠𝑓𝑛 

1000 (0.022) 1000 1000 1000 
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Table A2 Scenarios 8 to 11 continued.    

Maturity 1(0.805) fixed 1 fixed 

Tagging likelihood EAG tag data EAG tag data EAG tag data EAG tag data 
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Appendix B: Catch and CPUE data  

The commercial catch and length frequency distribution were estimated from 

ADF&G landing records and dockside sampling (Bowers et al. 2008, 2011). The 

annual retained catch, total catch, and groundfish (or trawl) discarded mortality are 

provided in Table 1 for EAG and Table 15 for WAG. The weighted length frequency 

data were used to distribute the catch into 5-mm size intervals. The length frequency 

data for a year were weighted by each sampled vessel’s catch as follows. The i-th 

length-class frequency was estimated as: 

 

                                                ∑ 𝐶𝑗
𝑘
𝑗=1

𝐿𝐹𝑗,𝑖

∑ 𝐿𝐹𝑗,𝑖
𝑛
𝑖=1

                                        (B.1) 

 

where k = number of sampled vessels in a year, LFj,i = number of crabs in the i-th 

length-class in the sample from j-th vessel, n = number of size classes, Cj = number of 

crabs caught by j-th vessel. Then the relative frequency for the year was calculated 

and applied to the annual retained catch (in number of crabs) to obtain retained catch 

by length-class. 

 

The annual total catch (in number of crabs) was estimated by the observer nominal 

(unstandardized) total CPUE considering all vessels multiplied by the total fishing 

effort (number of pot lifts). The weighted length frequency of the observer samples 

across the fleet was estimated using Equation B.1. Observer measurement of crab 

ranged from 20 to 220 mm CL. To restrict the total number of crabs to the model 

assumed size range (101–185+ mm CL), the proportion of observer total relative 

length frequency corresponding to this size range was multiplied by the total catch 

(number of crabs). This total number of crabs was distributed into length-classes 

using the weighted relative length frequency. Thus, crab sizes < 101 mm CL were 

excluded from the model. In addition, all crab >185 mm CL were pooled into a plus 

length class. Note that the total crab catch by size that went into the model did not 

consider retained and discard components separately. However, once the model 

estimated the annual total catch, then retained catch was deducted from this total and 
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multiplied by handling mortality [we used a 20% handling  mortality (Siddeek et al. 

2005) to obtain the directed fishery discarded (dead) catch]. 

 

Observer data have been collected since 1988 (Moore et al. 2000; Barnard et al. 2001; 

Barnard and Burt 2004; Gaeuman 2011), but data were not comprehensive in the initial 

years, so a shorter time series of data for the period 1990/91–2014/15 was selected for 

this analysis. During 1990/91–1994/95, observers were only deployed on catcher-

processor vessels. During 1995/96–2004/05, observers were deployed on all fishing 

vessels during fishing activity. Observers have been deployed on all fishing vessels 

since 2005/06, but catcher-only vessels are only required to carry observers for a 

minimum of 50% of their fishing activity during a season; catcher-processor vessels 

are still required to carry observers during all fishing activity. Onboard observers 

count and measure all crabs caught and categorize catch as females, sublegal males, 

retained legal males, and non-retained legal males in a sampled pot. Prior to the 

2009/10 season, depending on season, area, and type of fishing vessel, observers were 

also instructed to sample additional pots in which all crab were only counted and 

categorized as females, sublegal males, retained legal males, and non-retained legal 

males, but were not measured. Annual mean nominal CPUEs of retained and total 

crabs were estimated considering all sampled pots within each season (Tables 2 and 

26). For model-fitting following a September 2016 CPT meeting suggestion, the 

CPUE time series was restricted to 1991/92–2015/16. Length-specific CPUE data 

collected by observers provides information on a wider size range of the stock than 

did the commercial catch length frequency data obtained from mostly legal-sized 

landed males.  

 

There were significant changes in fishing practice due to changes in management 

regulations (e.g., since 1996/97 constant TAC and since 2005/06 crab rationalization), 

pot configuration (escape web on the pot door increased to 9” since 1999), and 

improved observer recording in Aleutian Islands golden king crab fisheries since 

1998. These changes prompted us to consider two separate observer CPUE time 
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series, 1995/96–2004/05 and 2005/06–2015/16, to estimate CPUE indices for model 

input. For scenario 3 model, we extended the observer time series to 1991/92. 

 

To include a long time series of CPUE indices for stock abundance contrast, we also 

considered the 1985/86–1998/99 legal size standardized CPUE as a separate 

likelihood component in a number of scenarios. Because of the lack of soak time data 

previous to 1990, we estimated the CPUE index considering a limited set of 

explanatory variables (e.g., vessel, captain, area, month) and fitting the lognormal 

GLM to fish ticket data (Tables 3 and 27).  

 

When using CPUE indices in the model fit, we compared the predicted with the 

observed legal male CPUE in the observer CPUE likelihoods because legal male 

(retained plus non-retained) data are more reliable than total in the observer samples.  

 

Observer CPUE index: 

The CPUE standardization followed the GLM fitting procedure (Maunder and Punt 

2004; Starr 2012; Siddeek et al. 2016b). We considered the negative binomial GLM 

on positive and zero catches to select the explanatory variables. The response variable 

CPUE is the observer sample catch record for a pot haul. The negative binomial 

model uses the log link function for the GLM fit. Therefore, we assumed the null 

model to be 

 

                                         ln(CPUEi) = Yearyi             (B.2) 

where Year is a factorial variable. 

The maximum set of model terms offered to the stepwise selection procedure was: 

 

ln(CPUEI) = Yearyi + ns(Soaksi, df) + Monthmi
+ Areaai + Vesselvi +

Captainci + Geargi + ns(Depthdi, df) + ns(VesSoakvsi, df) ,                              (B.3)                                                                                                            

 

where Soak is in unit of days and is numeric; Month, Area code, Vessel code, Captain 

code, and Gear code are factorial variables; Depth in fathom is a numeric variable; 
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VesSoak is a numeric variable computed as annual number of vessels times annual 

mean soak days (to account for other vessels’ effect on CPUE); ns=cubic spline, and 

df = degree of freedom. 

 

We used a log link function and a dispersion parameter () in the GLM fitting 

process.  We used the R
2
 criterion for predictor variable selection (Siddeek et al. 

2016b).   

The R
2
 formula for explanatory variable selection is as follows: 

𝑅2 =
(𝑛𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒−𝑎𝑑𝑑𝑒𝑑𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑚𝑜𝑑𝑒𝑙𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒)

𝑛𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒
                  (B.4) 

 

An arbitrary R
2
 minimum increment of 0.01 was set to select the model terms. 

 

First we determined the dispersion parameter () by a grid search method (Fox and 

Weisberg, 2011). The best  value was obtained at the minimum AIC: 

 

Table B.1. Dispersion parameter search. 

 

 Time Period  AIC 

EAG 1991/92–2004/05 

1995/96–2004/05 

2005/06–2015/16 

1.33 

1.33 

2.29 

202,505 

198,234 

53,444 

 

WAG 

 

1991/92–2004/05 

1995/96–2004/05 

2005/06–2015/16 

 

0.96 

0.98 

1.13 

 

201,561 

189,242 

86,201 

  

 Then we used the optimized dispersion parameter value in the GLM model for 

individual predictor variable fit to determine appropriate df value based on the 

minimum AIC: 
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Table B.2. Predictor variable degree of freedom search. 

 Time Period Predictor 

Variable 

df AIC 

EAG 1991/92–2004/05 

 

 

1995/96–2004/05 

 

 

2005/06–2015/16 

 

 

Soak 

Depth 

VesSoak 

Soak 

Depth 

VesSoak 

Soak 

Depth 

VesSoak 

3 

16 

9 

3 

16 

9 

16 

11 

6 

212,364 

213,899 

209,795 

207,312 

208,794 

204,269 

54,093 

54,334 

54,102 

 

WAG 

 

1991/92–2004/05 

 

 

1995/96–2004/05 

 

 

 

2005/06–2015/16 

 

 

Soak 

Depth 

VesSoak 

Soak 

Depth 

VesSoak 

 

Soak 

Depth 

VesSoak 

 

8 

39 

9 

8 

38 

8 

 

17 

10 

8 

 

205,932 

209,130 

208,622 

193,547 

196,717 

196,063 

 

86,648 

86,685 

86,416 

 

 

The final models for EAG were: 

For scenario 3: 
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ln(CPUE) = Year + Gear + Captain + ns(Soak, 3)                         (B.5)  

for the 1991/92–2004/05 period [=1.33, R2 = 0.2328  with ns(Soak, 3) forced in] 

 

For other scenarios: 

ln(CPUE) = Year + Gear + Captain + ns(Soak, 3)                         (B.6)  

for the 1995/96–2004/05 period [=1.33, R2 = 0.2417  with ns(Soak, 3) forced in] 

 

ln(CPUE) = Year + Captain + ns(Soak, 16) + 𝐺𝑒𝑎𝑟              (B.7) 

for the 2005/06–2015/16 period ( = 2.29, R2 = 0.1237). 

 

The final models for WAG were: 

For scenario 3: 

ln(CPUE) = Year + Captain + ns(Soak, 8) + 𝐺𝑒𝑎𝑟                         (B.8)  

for the 1991/92–2004/05 period [=0.96, R2 = 0.1721] 

 

For other scenarios: 

ln(CPUE) = Year + Captain + Gear + ns(Soak, 8)                         (B.9)  

for the 1995/96–2004/05 period [=0.98, R2 = 0.1783] 

 

ln(CPUE) = Year + Gear + ns(Soak, 17)         (B.10) 

for the 2005/06–2015/16 period [=1.13, R2 = 0.0562withns(Soak, 17)forcedin] 

 

Figures B.1 and B.15 depict the trends in nominal and standardized CPUE indices for 

the two CPUE time series for EAG and WAG, respectively. Figures B.2-B.5 and 

B.16-B.19 show the diagnostic plots for the fits for EAG and WAG, respectively. The 

deviance and QQ plots support good fits to EAG and WAG data by GLM using the 

negative binomial error distribution. Figures B.6-B.14 and B.20-B.27 depict CDI 

plots of the predictor variables for EAG and WAG, respectively. 

 

Fish Ticket CPUE index: 
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We also fitted the lognormal GLM for the fish ticket retained CPUE time series 

1985/86–1998/99 offering Year, Month, Vessel, Captain, and Area as explanatory 

variables. The final model for EAG was: 

ln(CPUE) = Year + Captain + Vessel + Month, R2 = 0.4541                (B.11) 

 

and those for WAG was: 

ln(CPUE) = Year + Captain + Vessel, R2 = 0.4561                         (B.12) 

 

The R
2
 values for the fish ticket data fits are much higher compared to that for 

observer data fits. 

Figures B.28 and B.30 depict the trends in nominal and standardized CPUE indices 

for the fish ticket CPUE time series for EAG and WAG, respectively. Figures B.29 

and B.31 show the Q–Q plots for the fits for EAG and WAG, respectively. The Q–Q 

plots support reasonable fits to EAG and WAG data by GLM using the lognormal 

error distribution.  
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Figure B.1. Trends in non-standardized [arithmetic (nominal)] and standardized (negative 

binomial GLM) CPUE indices with +/- 2 SE for Aleutian Islands golden king crab observer data 

from EAG (east of 174 ° W longitude). Top panel: 1991/92–2004/05, middle panel:  1995/96–

2004/05,  and bottom panel: 2005/06–2015/16. Standardized indices: black line and non-

standardized indices: red line.  
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Figure B.2. Deviance residuals vs. explanatory and response variables of the best negative 

binomial fit model for legal male crab CPUE. Deviance residuals for factor variables are shown 

as box plots and only the linear part of the cubic splines are specified on the x-axis for soak time 

variable. Observer data from EAG for 1991/92–2004/05 (top) and 1995/96–2004/05 (bottom) 

periods were used. The solid green lines are the loess smoother through the plotted values.  
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Figure B.3. Deviance residuals vs. explanatory and response variables of the best negative 

binomial fit model for legal male crab CPUE. Deviance residuals for factor variables are shown 

as box plots and only the linear part of the cubic splines are specified on the x-axis for soak time 

variable. Observer data from EAG for 2005/06–2015/16 period were used. The solid green lines 

are the loess smoother through the plotted values.  
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Figure B.4. Studentized residual plots for negative binomial GLM fit to EAG golden king crab 

observer CPUE data for legal size male crab. Top panel is for 1991/92–2004/05 and bottom panel 

is for 1995/96–2004/05.  
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Figure B.5. Studentized residual plots for negative binomial GLM fit to EAG golden king crab 

observer CPUE data for legal size male crab in 2005/06–2015/16.  
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Figure B.6. CDI plot for Captain for the negative binomial fit to 1991/92–2004/05 data for EAG.  

 

 
Figure B.7. CDI plot for Gear for the negative binomial fit to 1991/92–2004/05 data for EAG.  
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Figure B.8. CDI plot for Soak for the negative binomial fit to 1991/92–2004/05 data for EAG.  

 

 

 
 

Figure B.9. CDI plot for Captain for the negative binomial fit to 1995/96–2004/05 data for EAG.  
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Figure B.10. CDI plot for Gear for the negative binomial fit to 1995/96–2004/05 data for EAG.  
 

 

 

 

Figure B.11. CDI plot for Soak for the negative binomial fit to 1995/96–2004/05 data for EAG.  
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Figure B.12. CDI plot for Captain for the negative binomial fit to 2005/06–2015/16 data for EAG.  

 
Figure B.13. CDI plot for Gear for the negative binomial fit to 2005/06–2015/16 data for EAG.  
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Figure B.14. CDI plot for Soak for the negative binomial fit to 2005/06–2015/16 data for EAG.  
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Figure B.15. Trends in non-standardized [arithmetic (nominal)] and standardized (negative 

binomial GLM) CPUE indices with +/- 2 SE for Aleutian Islands golden king crab observer data 

from WAG (east of 174 ° W longitude). Top panel: 1991/92–2004/05, middle panel:  1995/96–

2004/05,  and bottom panel: 2005/06–2015/16. Standardized indices: black line and non-

standardized indices: red line.   
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Figure B.16. Deviance residuals vs. explanatory and response variables of the best negative 

binomial fit model for legal male crab CPUE. Deviance residuals for factor variables are shown 

as box plots and only the linear part of the cubic splines are specified on the x-axis for soak time 

variable. Observer data from WAG for 1991/92–2004/05 (top) and 1995/96–2005/05 (bottom) 

periods were used. The solid lines are the loess smoother through the plotted values. 
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Figure B.17. Deviance residuals vs. explanatory and response variables of the best negative 

binomial fit model for legal male crab CPUE. Deviance residuals for factor variables are shown 

as box plots and only the linear part of the cubic splines are specified on the x-axis for soak time 

variable. Observer data from WAG for 2005/06–2015/16 (bottom) periods were used. The solid 

lines are the loess smoother through the plotted values. 
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Figure B.18. Studentized residual plots for negative binomial GLM fit to WAG golden king crab 

observer CPUE data for legal size male crab. Top panel is for 1991/92–2004/05 and bottom panel 

is for 1995/96–2004/05.  
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Figure B.19. Studentized residual plots for negative binomial GLM fit to WAG golden king crab 

observer CPUE data for legal size male crab in 2005/06–2015/16.  
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Figure B.20. CDI plot for Captain for the negative binomial fit to 1991/92–2004/05 data for WAG. 
 

 
Figure B.21. CDI plot for Gear for the negative binomial fit to 1991/92–2004/05 data for WAG. 
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Figure B.22. CDI plot for Soak for the negative binomial fit to 1991/92–2004/05 data for WAG. 

 

 
Figure B.23. CDI plot for Captain for the negative binomial fit to 1995/96–2004/05 data for WAG. 
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Figure B.24. CDI plot for Gear for the negative binomial fit to 1995/96–2004/05 data for WAG. 

 
Figure B.25. CDI plot for Soak for the negative binomial fit to 1995/96–2004/05 data for WAG. 
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Figure B.26. CDI plot for Gear for the negative binomial fit to 2005/06–2005/15 data for WAG. 

 
Figure B.27. CDI plot for Soak for the negative binomial fit to 2005/06–2005/15 data for WAG. 
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Figure B.28. Trends in non-standardized [arithmetic (nominal)] and standardized (lognormal 

GLM) CPUE indices with +/- 2 SE for Aleutian Islands golden king crab from EAG. The 

1985/86–1998/99 fish ticket data set was used. Standardized indices: black line and non-

standardized indices: red line. 

Figure B.29. Studentized residual plots for lognormal GLM fit to EAG golden king crab fish 

ticket CPUE data, 1985/86–1998/99.  
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Figure B.30. Trends in non-standardized [arithmetic (nominal)] and standardized (lognormal GLM) CPUE 

indices with +/- 2 SE for Aleutian Islands golden king crab from WAG; 1985/86–1998/99 fish ticket data. 

Standardized indices: black line and non-standardized indices: red line. 

 
Figure B.31. Studentized residual plots for lognormal GLM fit for WAG golden king crab fish 

ticket CPUE data, 1985/86–1998/99.  
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Appendix C:  Male maturity 

Male maturity: 

We used the 1991 EAG pot survey collected 2457 carapace length and chela height measurements 

(carapace length (CL) in mm and chela height (CH) up to one-tenth of a mm) for male maturity curve 

fitting and 50% maturity length determination.  We determined the 50% maturity length and maturity 

proportion by size outside the assessment model using the ‘segmented regression’ package available in 

R (R Core Team 2016). We used the estimated maturity proportion by size in the assessment model to 

re-evaluate the 50% maturity length and fit a smooth maturity curve.  

First we fitted a linear regression model to the data pair using the R package as follows: 

ln(𝐶𝐻) = 𝛽0 +  𝛽1ln (𝐶𝐿)         (C.1) 

where   𝛽0 and 𝛽1 are regression parameters 

The procedure of ‘segmented regression’ uses maximum likelihood to fit a somewhat different 

parameterization of the linear model. It can be approximated as 

ln(𝐶𝐻) = 𝛽0 +  𝛽1 ln(𝐶𝐿) +  𝛽2[ln(𝐶𝐿) − 𝑐] +  𝛾𝐼[ln(𝐶𝐿) > 𝑐]     (C.2) 

where  𝛽2 is a regression parameter and c  is the break point. 𝛾𝐼[ln(𝐶𝐿) > 𝑐]  is a dummy variable. 

When ln(CL) < c, the model reduces to,  

  

ln(𝐶𝐻) = 𝛽0 +  𝛽1 ln(𝐶𝐿) +  𝛽2[ln(𝐶𝐿) − 𝑐]       (C.3) 

The γ term is a measure of the distance between the end of the first segment and the beginning of 

the next. The model converges when γ is minimized, thus this method constrains the segments to 

be (nearly) continuous. 
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Breakpoint analysis results: 

Estimated breakpoint, ln(CL)    Standard error  

                4.687                            0.012  

Coefficients of the linear terms: 

                        Estimate     Std. Error      t value    Pr(>|t|)     

(Intercept)     -1.74836        0.08487      -20.60    <2e-16 *** 

logCL                1.04673        0.01899       55.13    <2e-16 *** 

U1.logCL          0.61540        0.02727      22.57       NA     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Adjusted R-squared: 0.908, AIC: 2358.9 

Thus, the break point estimate of male CL (i.e., 50% maturity length) = exp(4.687) = 108.53 mm CL. 

Figure C.1 provides the segment regression fit to the log (CL) and log (CH) data pair: 
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Figure C.1. Segmented linear regression fit to ln(CH) vs. ln(CL) data of male golden king crab in EAG.  

 

Using the two segments of the estimated linear lines, we allocated each data point to be mature or 

immature, considering whether the vertical height of the data point [ln(CH) ] to the extended upper 

segment line is smaller or larger than the vertical height to the lower segment line (Figure C.2).  
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Figure C.2. Segmented linear regression fit to ln(CH) vs. ln(CL) data of male golden king crab in EAG with 

classification of mature (code 1, darkgreen) and immature (code 0, red) data points.  

The estimated mature and immature proportions for each size bin are listed in Table C.1.  
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Table C.1. Mature and immature proportions by mid carapace length. This set of values is treated as 

observed maturity proportions for inputting to the population model. 

Mid CL 
(mm) 

Mature 
Frequency 

Immature 
Frequency 

Mature 
Proportion 

 
0 0 

 103 56.0 314 0.1514 

108 74.0 74 0.5000 

113 124.0 59 0.6776 

118 118.0 63 0.6519 

123 139.0 43 0.7637 

128 164.0 49 0.7700 

133 197.0 47 0.8074 

138 233.0 47 0.8321 

143 188.0 29 0.8664 

148 178.0 22 0.8900 

153 105.0 8 0.9292 

158 58.0 7 0.8923 

163 26.0 1 0.9630 

168 21.0 1 0.9545 

173 2.0 0 1.0000 

178 3.0 1 0.7500 

183 5.0 1 0.8333 

 

Then we fitted the proportion mature vs. mid CL by the logistic regression using GLM. The results are as 

follows: 

Model:  glm(formula = Maturity State ~ CL, family = binomial(link = logit),   data = Maturity) 

Deviance Residuals:  

    Min          1Q     Median       3Q      Max   

-3.0188  -0.6310   0.4811   0.7320   2.6239   

Coefficients: 

                          Estimate     Std. Error     z value      Pr(>|z|)     

(Intercept)       -6.71466       0.36124      -18.59     <2e-16 *** 

CL                        0.06120      0.00294        20.82     <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1;   AIC: 2358.9 
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The 50% maturity length (the carapace length at the predicted proportion of 0.5) was estimated as 

109.72 mm CL. 

 When we used the mature proportions (Table C.1) in the population model, we obtained the 50% 

maturity length as 110.62 mm CL under base scenario (Sc1). Thus, for the knife-edge maturity selection 

scenario models (9 and 11), we considered all sizes above 111 mmCL to be fully mature (1) and below 

this size immature (0). 

 

Essential R steps: 

# 1. Segmented regression:  

# fit a single linear regression first then apply segmented 

   library(segmented) 

  singleline.mod<- lm(logCH~logCL) 

  segmented.mod<- segmented(singleline.mod,seg.Z=~logCL) 

2. Logistic regression: 

library(MASS) 

 best.glm<- glm(MaturityState~CL,family=binomial(link=logit),data=Maturity) 
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Appendix D: Francis re-weighting method 

 

We considered number of fishing days as the initial input effective sample sizes (i.e., Stage-1) 

for retained and total size compositions and number of trips for groundfish discard catch size 

composition without enforcing any upper limit. Please note that we did not use the groundfish 

discard size compositions in any of the scenarios optimization although the predicted effective 

sample sizes were produced as a byproduct. We estimated the Stage-2 effective sample sizes 

iteratively from Stage-1 input effective sample sizes. We refer to the Stage-1 effective samples 

sizes for the size-composition of the retained catch, total catch, and the groundfish crab bycatch 

for year t as 1,t 1,t,r T  , and 1,t

Tr  respectively. The reiterated effective sample sizes’ subscripts 

replace 1 by 2. 

 

The Francis’ (2011) mean length based method [i.e., Francis TA1.8 method, Punt (in press)] uses 

the following formulas: 

 

Observed mean length for year t, 

𝑙�̅� =  ∑ 𝑙𝑡,𝑖
𝑛
𝑖=1 × 𝑃𝑡,𝑖        (D.1) 

 

Predicted mean length for year t, 

 𝑙 ̅̂
𝑡 =  ∑ 𝑙𝑡,𝑖

𝑛
𝑖=1 × �̂�𝑡,𝑖        (D.2) 

 

Variance of the predicted mean length in year t, 

     𝑣𝑎𝑟 (𝑙 ̅̂
𝑡) =  

∑ �̂�𝑡,𝑖(𝑙𝑡,𝑖 − 𝑙 ̅̂𝑡)
2

𝑛
𝑖=1

𝑆𝑡
       (D.3) 

 

            Francis’ reweighting parameter W, 

  𝑊 =  
1

𝑣𝑎𝑟{
�̅�𝑡 − �̂̅�𝑡 

√𝑣𝑎𝑟(�̂̅�𝑡)

}

             (D.4) 

 

where �̂�𝑡,𝑖 and 𝑃𝑡,𝑖 are the estimated and observed proportions of the catch during year t in 

length-class i, 𝑙𝑡,𝑖 is the mid length of the length-class i during year t, 𝑆𝑡 is the effective sample 
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size in year t, 𝑙 ̅̂
𝑡 and 𝑙�̅�  are predicted and observed mean lengths of the catch during year t, and 

W is the reweighting multiplier of Stage-1 sample sizes. 

 

Francis (in press 2016) suggested that a good stopping criterion for the iteration process is when 

there are no appreciable changes in the key outputs. Hence, we considered a stopping criterion of 

no appreciable change (<0.01%) in W and terminal year MMB.  

 

𝑆𝑡 is related to the initial input (Stage-1) effective sample size according to: 

 𝑆𝑡,𝑖 =  𝑊𝑖𝜏1,𝑡             (D.5) 

where 𝑆𝑡,𝑖   is the effective sample size for year t in iteration i and 𝑊𝑖 is the Francis weight 

calculated using Equation D.4 during iteration i. 

We did the reweighting for combined data (for M estimation), individual scenarios, MMB 

profiles, mean MMB profile, and MMB rate of depletion profile. For brevity, we provide the 

iteration process for Francis Stage-2 weight calculation for individual scenarios for EAG and 

WAG respectively in Table D: 
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Table D. Iteration process for stage-2 effective sample size reweighting multiplier, W, by Francis 

method for retained, total, and groundfish discard catch size compositions of golden king crab for various 

scenarios for EAG and WAG. The effective sample sizes are numbers of days for retained and total catch, 

but number of trips for groundfish discarded catch size compositions. Note: Groundfish bycatch size 

compositions were not fitted to the models, but different predicted weights resulted as byproducts from 

different iterations. Sc. =scenario. Note: For certain scenarios we have done up to six iterations, but we 

provide only the last three iteration results. 

 

Area  Sc. Iteration 

No. 

Retained 

Catch Size 

Comp 

Effective 

Sample 

Multiplier 

(W) 

Total Catch 

Size Comp 

Effective 

Sample 

Multiplier  

(W) 

Groundfish 

Discard Catch 

Size Comp 

Effective 

Sample 

Multiplier (W) 

Terminal 

MMB (t) 

M yr
-1

 

EAGpart 0a 1 0.8792 0.5080 0.4481 10,555 0.2224 

  2 0.8874 0.5019 0.4486 10,556 0.2225 

  3 0.8904 0.5003 0.4487 10,558 0.2225 

WAGpart 0a 1 0.5041 0.4888 0.7658 4,307 0.2224 

  2 0.5039 0.4889 0.7657 4,309 0.2225 

  3 0.5038 0.4889 0.7657 4,309 0.2225 

        

EAGpart 0b 1 0.8909 0.5000 0.4487 10,603 0.2241 

  2 0.8918 0.4995 0.4487 10,601 0.2241 

  3 0.8921 0.4994 0.4487 10,601 0.2241 

WAGpart 0b 1 0.5037 0.4888 0.7651 4,334 0.2241 

  2 0.5037 0.4888 0.7651 4,333 0.2241 

  3 0.5037 0.4888 0.7651 4,333 0.2241 

        

EAG 1b 1 0.8921 0.4994 0.4487 10,512 0.2208 

  2 0.8915 0.4999 0.4489 10,512 0.2208 

        

WAG 1b 1 0.5037 0.4888 0.7651 4,434 0.2308 

  2 0.5034 0.4881 0.7629 4,435 0.2308 

  3 0.5034 0.4880 0.7629 4,435 0.2308 

        

EAG 1 1 0.8917 0.4996 0.4487 10,597  

  2 0.8920 0.4995 0.4488 10,597  

  3 0.8920 0.4994 0.4488 10,597  

        

WAG 1 1 0.5037 0.4888 0.7651 4,332  

  2 0.5037 0.4888 0.7652 4,332  

  3 0.5038 0.4888 0.7652 4,332  

        

EAG 2 1 0.8854 0.4955 0.4480 10,749  

  2 0.8848 0.4951 0.4479 10,749  

  3 0.8848 0.4950 0.4479 10,749  

        

WAG 2 1 0.5012 0.4647 0.7534 4,227  

  2 0.5017 0.4643 0.7535 4,228  

  3 0.5020 0.4642 0.7536 4,228  
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EAG 3 1 0.8914 0.5285 0.4514 11,605  

  2 0.8897 0.5294 0.4513 11,605  

  3 0.8892 0.5296 0.4513 11,605  

        

WAG 3 1 0.5103 0.4841 0.7639 4,333  

  2 0.5110 0.4836 0.7641 4,334  

  3 0.5113 0.4834 0.7642 4,334  

        

EAG 4 1 0.9512 0.4832 0.4466 10,036  

  2 0.9522 0.4828 0.4467 10,036  

  3 0.9525 0.4826 0.4467 10,036  

        

WAG 4 1 0.5227 0.4235 0.7562 3,864  

  2 0.5231 0.4232 0.7563 3,865  

  3 0.5232 0.4232 0.7564 3,865  

        

EAG 5 1 0.8758 0.5070 0.4497 9,676  

  2 0.8747 0.5075 0.4497 9,676  

  3 0.8744 0.5076 0.4496 9,676  

        

WAG 5 1 0.5026 0.4923 0.7760 3,826  

  2 0.5018 0.4931 0.7755 3,825  

  3 0.5014 0.4934 0.7754 3,824  

        

EAG 6 1 0.8923 0.4937 0.4460 11,711  

  2 0.8940 0.4929 0.4461 11,711  

  3 0.8945 0.4927 0.4461 11,711  

        

WAG 6 1 0.4983 0.4859 0.7498 4,998  

  2 0.4982 0.4848 0.7496 4,999  

  3 0.4983 0.4846 0.7497 4,999  

        

EAG 7 1 0.8920 0.4994 0.4488 10,597  

        

WAG 7 1 0.5038 0.4888 0.7652 4,332  

        

EAG 8 1 0.8920 0.4994 0.4488 10,597  

        

WAG 8 1 0.5038 0.4888 0.7652 4,332  

        

EAG 9 1 0.8920 0.4994 0.4488 12,051  

        

WAG 9 1 0.5038 0.4888 0.7652 5,005  

        

EAG 10 1 0.8920 0.4994 0.4488 10,519  

  2 0.8915 0.4999 0.4489 10,518  

  3 0.8912 0.5000 0.4489 10,518  

        

WAG 10 1 0.5038 0.4888 0.7652 4,438  

  2 0.5034 0.4881 0.7628 4,438  
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  3 0.5034 0.4880 0.7628 4,438  

        

EAG 11 1 0.8912 0.5000 0.4489 11,959  

        

WAG 11 1 0.5034 0.4880 0.7628 5,128  
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Appendix E. Jittering 

Jittering of scenarios 1 and 9 parameter estimates: 

We followed the Stock Synthesis approach to do 100 jittering of scenarios 1 and 9 parameter 

estimates to use as initial parameter values to assess model stability and to determine whether a 

global as opposed to local minima has been found by the search algorithm: 

 

The Jitter factor of 0.1 was multiplied by a random normal deviation rdev=N(0,1), to a 

transformed parameter value based upon the predefined parameter: 

)1
0000001.0

0000002.0
ln(***5.0

min

minmax 





PP

PP
orJitterfactrdev temp

val

,                        (E.1)  

with the final jittered initial parameter value back transformed as: 

,
)0.2exp(0.1

minmax
min

temp

PP
P Pnew




                                                                                (E.2)              

where Pmax and Pmin are upper and lower bounds of parameter search space and Pval is the 

estimated parameter value before the jittering.  

Examples of jittered parameter values for the 1
st
 and 100

th
 jitter for scenario 1 for EAG 

and WAG are listed in Tables E.1 and E.2. There were significant differences in the 

initial input parameter values at each jitter. The model results are summarized for 

scenarios 1 and 9 respectively in Tables E.3 and E.4 for EAG and Tables E.5 and E.6 for 

WAG. Almost all runs converged to the highest log likelihood values. 

Table E.1. An example of the first and 100th jittered parameter values for scenario 1 compared to the 

original estimates for EAG.  

Parameter 

Original 
Parameter 
Value 

Lower 
Bound 

Upper 
Bound Phase Jitter#1 Jitter#100 

rec_dev -0.007621209 -5 5 2 -0.00074 -0.00003 

rec_dev -0.00983545 -5 5 2 -0.00113 0.001764 

rec_dev -0.012666822 -5 5 2 0.000609 0.002454 

rec_dev -0.016270708 -5 5 2 0.001421 -0.00013 

rec_dev -0.020830832 -5 5 2 -0.0007 0.002063 

rec_dev -0.02656543 -5 5 2 0.002309 -0.00314 

rec_dev -0.033718004 -5 5 2 0.002944 0.005426 

rec_dev -0.042549431 -5 5 2 -0.00144 -0.00361 

rec_dev -0.053324882 -5 5 2 0.00127 -0.01131 

rec_dev -0.066278019 -5 5 2 -0.004 0.006071 

rec_dev -0.081570571 -5 5 2 -0.00056 -0.00713 

rec_dev -0.099226953 -5 5 2 0.010832 0.013719 

rec_dev -0.119047323 -5 5 2 -0.02062 0.000781 

rec_dev -0.140503671 -5 5 2 -0.0355 0.001759 

rec_dev -0.162598904 -5 5 2 0.012222 0.00039 

rec_dev -0.183698125 -5 5 2 -0.00834 0.001598 
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rec_dev -0.201256782 -5 5 2 0.006619 0.021168 

rec_dev -0.211319519 -5 5 2 0.000672 -0.03371 

rec_dev -0.207502036 -5 5 2 -0.00411 -0.0309 

rec_dev -0.180503692 -5 5 2 0.012694 -0.01542 

rec_dev -0.123342735 -5 5 2 0.001442 0.005442 

rec_dev -0.045201645 -5 5 2 0.00158 0.006621 

rec_dev 0.029136582 -5 5 2 0.001061 0.001725 

rec_dev 0.089402495 -5 5 2 0.007221 -0.0029 

rec_dev -0.384889343 -5 5 2 0.073548 0.047674 

rec_dev -0.902906835 -5 5 2 -0.0292 -0.08789 

rec_dev 0.533564639 -5 5 2 0.037675 0.032778 

rec_dev 0.44687304 -5 5 2 -0.01543 0.061101 

rec_dev -0.314047153 -5 5 2 0.023384 -0.01654 

rec_dev 0.122576429 -5 5 2 -0.0039 -0.01561 

rec_dev 0.412310368 -5 5 2 -0.02322 0.053463 

rec_dev -0.110123222 -5 5 2 -0.01218 -0.01082 

rec_dev -0.218632463 -5 5 2 0.025955 0.001872 

rec_dev 0.006943443 -5 5 2 -0.00051 -9.2E-05 

rec_dev -0.046282794 -5 5 2 0.007969 -0.00549 

rec_dev -0.083888349 -5 5 2 -0.003 -0.00738 

rec_dev 0.233016956 -5 5 2 -0.00577 0.047905 

rec_dev 0.148955659 -5 5 2 0.017582 -0.02326 

rec_dev 0.227641561 -5 5 2 0.020397 0.001212 

rec_dev 0.168044398 -5 5 2 0.001588 0.0343 

rec_dev -0.108887188 -5 5 2 0.002945 0.002444 

rec_dev 0.162407336 -5 5 2 -0.0209 0.009928 

rec_dev 0.005113551 -5 5 2 0.000296 -0.00046 

rec_dev -0.160627991 -5 5 2 -0.0144 -0.01982 

rec_dev 0.259949544 -5 5 2 0.012919 -0.00678 

rec_dev -0.00396377 -5 5 2 -6.1E-05 1.73E-05 

rec_dev -0.056389469 -5 5 2 0.004747 -0.00215 

rec_dev 0.473415636 -5 5 2 0.050748 -0.02824 

rec_dev 0.075169026 -5 5 2 -0.00795 0.007863 

rec_dev 0.021190701 -5 5 2 0.000501 -0.00144 

rec_dev 0.310880604 -5 5 2 -0.02787 -0.05911 

rec_dev 0.294577467 -5 5 2 0.015264 -0.01329 

rec_dev 0.109759588 -5 5 2 -0.00244 -0.01763 

rec_dev 0.220969046 -5 5 2 -0.00903 -0.02374 

rec_dev 0.084173082 -5 5 2 -0.00864 0.003339 

rec_dev 0.000000172 -5 5 2 8.33E-09 1.28E-08 

Fpot_dev -2.043206656 -5 5 2 -0.2088 0.161353 

Fpot_dev -1.005945946 -5 5 2 -0.02969 -0.04945 

Fpot_dev -0.676481111 -5 5 2 -0.01163 -0.03165 

Fpot_dev -0.413911035 -5 5 2 0.037401 -0.05638 

Fpot_dev 0.112602025 -5 5 2 0.009003 -0.00208 

Fpot_dev 0.401936857 -5 5 2 0.035761 0.016653 

Fpot_dev 0.178418014 -5 5 2 0.026166 -0.01577 

Fpot_dev 0.765136564 -5 5 2 0.076145 -0.05429 

Fpot_dev 1.17570096 -5 5 2 -0.06934 -0.06232 

Fpot_dev 0.56061169 -5 5 2 -0.04209 0.079606 

Fpot_dev 0.769584182 -5 5 2 -0.00569 0.02741 

Fpot_dev 0.892126133 -5 5 2 -0.06133 0.069375 

Fpot_dev 0.409840495 -5 5 2 -0.03908 -0.02549 

Fpot_dev 0.677542871 -5 5 2 0.088008 0.024399 
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Fpot_dev 0.914433283 -5 5 2 0.045073 0.030075 

Fpot_dev 0.594511978 -5 5 2 0.031985 0.037231 

Fpot_dev 0.559553031 -5 5 2 -0.0054 0.035317 

Fpot_dev 0.476766604 -5 5 2 -0.05612 -0.01349 

Fpot_dev 0.246789033 -5 5 2 0.006829 0.014387 

Fpot_dev 0.114871314 -5 5 2 0.001589 0.010866 

Fpot_dev -0.05005792 -5 5 2 0.001826 0.003591 

Fpot_dev -0.299486201 -5 5 2 -0.00262 0.049051 

Fpot_dev -0.339042566 -5 5 2 -0.00339 0.047638 

Fpot_dev -0.433904962 -5 5 2 0.020182 0.070041 

Fpot_dev -0.291197186 -5 5 2 -0.05808 0.026351 

Fpot_dev -0.240779046 -5 5 2 -0.01305 -0.00896 

Fpot_dev -0.292344124 -5 5 2 -0.04096 -0.0097 

Fpot_dev -0.274120848 -5 5 2 -0.01807 -0.02918 

Fpot_dev -0.258960118 -5 5 2 0.018398 -0.04268 

Fpot_dev -0.34871274 -5 5 2 0.061286 0.029559 

Fpot_dev -0.396008834 -5 5 2 -0.03428 -0.00575 

Fpot_dev -0.374943981 -5 5 2 0.020376 0.040815 

Fpot_dev -0.368594822 -5 5 2 -0.09801 0.045321 

Fpot_dev -0.404710921 -5 5 2 0.003849 0.006273 

Fpot_dev -0.338016015 -5 5 2 -0.02806 -0.00015 

Fground_dev 0.174390609 -10 15 2 2.337762 2.581353 

Fground_dev 1.35546881 -10 15 2 2.388202 2.398121 

Fground_dev 0.000000201 -10 15 2 2.284926 2.810396 

Fground_dev 0.672768389 -10 15 2 2.610206 2.929459 

Fground_dev 0.702294918 -10 15 2 2.6574 2.732086 

Fground_dev -0.515785649 -10 15 2 2.7874 2.460403 

Fground_dev 0.537155944 -10 15 2 2.414025 2.308584 

Fground_dev -2.415444682 -10 15 2 2.935845 2.473627 

Fground_dev -1.56355901 -10 15 2 2.381744 2.802964 

Fground_dev 0.388375903 -10 15 2 2.271547 2.444883 

Fground_dev -0.468543028 -10 15 2 2.462521 2.810034 

Fground_dev -0.269970599 -10 15 2 2.853102 2.409323 

Fground_dev 0.838013548 -10 15 2 2.327215 2.555227 

Fground_dev 0.016126262 -10 15 2 2.177965 2.09686 

Fground_dev -0.462605641 -10 15 2 2.922303 2.682303 

Fground_dev -1.774804578 -10 15 2 2.447922 2.460607 

Fground_dev -0.878071988 -10 15 2 2.771126 2.617666 

Fground_dev 0.004524048 -10 15 2 2.867741 2.143513 

Fground_dev -0.001948155 -10 15 2 2.653258 2.264557 

Fground_dev 0.110353853 -10 15 2 2.43473 2.638914 

Fground_dev 0.382225092 -10 15 2 2.179648 2.714046 

Fground_dev 1.110836887 -10 15 2 2.72255 2.628658 

Fground_dev 0.331671068 -10 15 2 2.568864 2.918852 

Fground_dev 1.426410285 -10 15 2 2.489174 2.546676 

Fground_dev 0.848886418 -10 15 2 2.491412 2.522649 

Fground_dev 0.963284595 -10 15 2 2.349253 2.535847 

Fground_dev -1.5120535 -10 15 2 2.453916 2.216008 

log_a: 2.537613653 1 4.5 2 2.742709 2.73427 

G_b: -8.23950454 -12 -5 2 -8.51024 -8.50679 

log_aa: -2.518807718 -4.61 -1.39 2 -2.98017 -2.96114 

log_b: 4.949007858 3.869 5.05 2 4.379704 4.472672 

stdx: 3.680207823 0.1 12 3 6.178232 6.300719 

log_T04delta: 3.364342947 0 4.4 3 2.235199 2.333779 
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log_T12delta: 2.989201242 0 4.4 3 2.152641 2.157542 

log_R04delta: 1.852051648 0 4.4 3 2.194152 2.225931 

log_matLdelta: 3.800662374 0 4.4 7 1.973719 2.427614 

log_matL50: 4.706093694 4.4 4.85 7 4.630267 4.619203 

log_T04L50: 4.841721825 4 5 3 4.539841 4.495495 

log_T12L50: 4.922880263 4 5 3 4.456259 4.698603 

log_R04L50: 4.914186905 4 5 4 4.544697 4.495618 

log_betar: -1.08019942 -12 12 3 -0.02894 0.086335 

logq2: -0.625086917 -9 2.25 5 -3.52296 -2.80097 

logq3: -1.067916742 -9 2.25 6 -3.35288 -3.65839 

log_mean_rec: 0.958560977 0.01 5 1 2.296695 2.673824 

log_mean_Fpot: -1.1110088 -15 -0.01 1 -6.85182 -6.33306 

log_mean_Fground: -9.347570915 -15 -1.6 1 -8.3305 -8.41907 

M 0.224 0.224 0.224 -1 0.224 0.224 

prelegal_var: 0.018045511 0 0.15 6 0.077529 0.073004 

fishtick_var: 0.051774166 0 1 6 0.509406 0.529959 

 

Table E.2. An example of the first and 100th jittered parameter values for scenario 1 compared to the 

original estimates for WAG.  

Parameter 

Original 
Parameter 
Value 

Lower 
Bound 

Upper 
Bound Phase Jitter #1 

Jitter# 
100 

rec_dev -0.008063154 -5 5 2 -0.00091 0.002301 

rec_dev -0.00978087 -5 5 2 -0.00067 -0.00191 

rec_dev -0.011816765 -5 5 2 -0.00052 -0.00191 

rec_dev -0.014221245 -5 5 2 0.001137 0.004131 

rec_dev -0.017031588 -5 5 2 -0.00084 0.001241 

rec_dev -0.020284059 -5 5 2 -0.0019 0.004063 

rec_dev -0.02400396 -5 5 2 0.00051 0.001359 

rec_dev -0.028190918 -5 5 2 -0.00358 0.005322 

rec_dev -0.032816518 -5 5 2 0.003274 -0.00513 

rec_dev -0.037807785 -5 5 2 -0.00116 -0.0002 

rec_dev -0.043033727 -5 5 2 0.016417 -0.00241 

rec_dev -0.048268279 -5 5 2 -0.00721 0.0014 

rec_dev -0.053191363 -5 5 2 -0.00587 0.003168 

rec_dev -0.057340294 -5 5 2 -0.00188 0.008884 

rec_dev -0.060091827 -5 5 2 -0.02577 -0.0213 

rec_dev -0.060595142 -5 5 2 -0.00069 -0.02674 

rec_dev -0.057624174 -5 5 2 -0.00176 -0.00674 

rec_dev -0.049063386 -5 5 2 -0.01857 -0.00425 

rec_dev -0.030519063 -5 5 2 -0.00833 -0.00095 

rec_dev 0.007031467 -5 5 2 -0.00012 0.000789 

rec_dev 0.072706409 -5 5 2 0.007403 0.004484 

rec_dev 0.156569327 -5 5 2 0.021303 0.026841 

rec_dev 0.28356529 -5 5 2 0.016504 0.102956 

rec_dev 0.534392075 -5 5 2 -0.02417 -0.04185 

rec_dev 0.629095682 -5 5 2 0.248615 -0.10565 

rec_dev 0.5248473 -5 5 2 -0.08266 0.014412 

rec_dev 0.259957227 -5 5 2 0.034184 -0.02924 

rec_dev -0.109533657 -5 5 2 -0.0498 -0.02017 

rec_dev 0.17943553 -5 5 2 -8.6E-05 0.052807 
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rec_dev -0.067864791 -5 5 2 -0.02104 -0.00506 

rec_dev -0.293657605 -5 5 2 0.057997 0.019413 

rec_dev -0.010999312 -5 5 2 -0.00075 0.001503 

rec_dev -0.257019554 -5 5 2 -0.05485 -0.04815 

rec_dev -0.064084073 -5 5 2 -0.01792 0.008792 

rec_dev -0.094375875 -5 5 2 -0.00966 -0.02522 

rec_dev -0.183588462 -5 5 2 0.052279 0.051892 

rec_dev -0.113411471 -5 5 2 -0.01331 -0.01429 

rec_dev -0.088579472 -5 5 2 0.043412 -0.02008 

rec_dev 0.083702342 -5 5 2 -0.01975 0.00918 

rec_dev 0.200477188 -5 5 2 0.028294 -0.01553 

rec_dev 0.224821834 -5 5 2 0.012402 0.03042 

rec_dev 0.20807378 -5 5 2 -0.00342 0.038067 

rec_dev -0.140016396 -5 5 2 -0.02333 0.049768 

rec_dev 0.114428395 -5 5 2 0.001581 -0.00202 

rec_dev 0.1226708 -5 5 2 -0.00893 -0.03072 

rec_dev 0.201039805 -5 5 2 -0.01608 -0.04787 

rec_dev -0.161709877 -5 5 2 -0.02013 0.002006 

rec_dev -0.313486894 -5 5 2 0.04291 0.1491 

rec_dev -0.06409633 -5 5 2 -0.01388 0.001384 

rec_dev -0.235743001 -5 5 2 0.02175 0.030929 

rec_dev -0.555435131 -5 5 2 -0.09766 -0.0733 

rec_dev -0.072343335 -5 5 2 0.026099 0.01357 

rec_dev 0.023564723 -5 5 2 0.006199 -0.00776 

rec_dev -0.364189561 -5 5 2 0.022057 0.047748 

rec_dev 0.027498367 -5 5 2 0.000164 -0.00162 

rec_dev 0.00000137 -5 5 2 -3.2E-07 3.62E-07 

Fpot_dev -3.924112609 -5 5 2 -0.41797 -2.60238 

Fpot_dev -0.470333935 -5 5 2 -0.09624 -0.07202 

Fpot_dev -0.060146787 -5 5 2 0.021983 -0.00561 

Fpot_dev -1.877169953 -5 5 2 -0.08916 0.056157 

Fpot_dev -0.27407322 -5 5 2 -0.05142 0.084482 

Fpot_dev 0.792542432 -5 5 2 -0.19056 -0.02265 

Fpot_dev 0.556393628 -5 5 2 -0.11619 -0.01884 

Fpot_dev 0.621819135 -5 5 2 -0.12675 -0.03975 

Fpot_dev 1.167884591 -5 5 2 -0.31695 0.082328 

Fpot_dev 0.887495204 -5 5 2 -0.01233 0.087504 

Fpot_dev 0.738343054 -5 5 2 -0.05995 0.025948 

Fpot_dev 0.361344189 -5 5 2 -0.07207 -0.03727 

Fpot_dev -0.219187562 -5 5 2 0.043482 0.001679 

Fpot_dev 0.734942761 -5 5 2 -0.1214 0.000649 

Fpot_dev 0.533875412 -5 5 2 0.013037 -0.06489 

Fpot_dev 0.499632461 -5 5 2 0.068636 0.118536 

Fpot_dev 0.385835606 -5 5 2 -0.0263 0.082773 

Fpot_dev 0.126996314 -5 5 2 0.024954 -0.01662 

Fpot_dev 0.412724753 -5 5 2 0.046771 0.121588 

Fpot_dev 0.508707407 -5 5 2 -0.03366 0.172472 

Fpot_dev 0.379856346 -5 5 2 0.197416 0.014886 

Fpot_dev 0.172048379 -5 5 2 0.029462 0.015716 

Fpot_dev 0.005708468 -5 5 2 -0.00026 0.001462 

Fpot_dev -0.128459694 -5 5 2 0.019458 -0.00782 

Fpot_dev -0.211394032 -5 5 2 0.010564 -0.09031 

Fpot_dev -0.428901935 -5 5 2 -0.04252 0.087386 

Fpot_dev -0.345860637 -5 5 2 -0.01006 -0.06468 
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Fpot_dev -0.429188753 -5 5 2 0.040988 0.148252 

Fpot_dev -0.338676995 -5 5 2 -0.00495 0.004081 

Fpot_dev -0.2920727 -5 5 2 -0.09507 -0.05632 

Fpot_dev -0.214805708 -5 5 2 0.016547 -0.04179 

Fpot_dev -0.042275157 -5 5 2 -0.01497 -0.00178 

Fpot_dev 0.163841908 -5 5 2 0.020198 0.07839 

Fpot_dev 0.143669186 -5 5 2 0.012531 -0.03948 

Fpot_dev 0.062998442 -5 5 2 -0.0079 0.011719 

Fground_dev -2.440488208 -10 15 2 2.359756 3.130849 

Fground_dev -0.372149119 -10 15 2 2.541846 2.029075 

Fground_dev -3.26 -10 15 2 2.179811 0.920483 

Fground_dev -0.565669617 -10 15 2 2.213998 3.17078 

Fground_dev -0.00000727 -10 15 2 2.746651 3.199194 

Fground_dev -1.908822385 -10 15 2 3.209888 2.13417 

Fground_dev -0.050231846 -10 15 2 1.692876 3.135659 

Fground_dev 0.335486336 -10 15 2 2.0031 2.826001 

Fground_dev -0.712524737 -10 15 2 0.997206 2.70973 

Fground_dev 0.863452175 -10 15 2 1.785468 2.955309 

Fground_dev 0.521163497 -10 15 2 2.731771 3.582807 

Fground_dev -0.155686865 -10 15 2 1.26512 2.572691 

Fground_dev -0.870248846 -10 15 2 2.592969 2.19296 

Fground_dev -0.197726437 -10 15 2 3.177496 2.674357 

Fground_dev -1.282915275 -10 15 2 2.786811 3.74742 

Fground_dev -0.233157359 -10 15 2 2.721733 1.474349 

Fground_dev 1.010610724 -10 15 2 2.543949 3.04321 

Fground_dev 0.565462468 -10 15 2 3.14692 2.669997 

Fground_dev 0.166111618 -10 15 2 2.259299 1.370372 

Fground_dev 1.63423837 -10 15 2 2.425685 2.530707 

Fground_dev 1.276103152 -10 15 2 2.523669 2.481544 

Fground_dev 0.765142575 -10 15 2 2.040027 2.428058 

Fground_dev 0.775744468 -10 15 2 2.584536 2.4801 

Fground_dev 1.335804918 -10 15 2 2.740495 2.277926 

Fground_dev 1.388266886 -10 15 2 2.456294 2.363862 

Fground_dev 0.994105891 -10 15 2 2.576245 2.639869 

Fground_dev 0.413632001 -10 15 2 3.047562 2.140107 

log_a: 2.536301348 1 4.5 2 2.867759 2.774788 

G_b: -7.81906066 -12 -5 2 -8.5627 -8.50172 

log_aa: -2.620209733 -4.61 -1.39 2 -2.99533 -3.03558 

log_b: 4.947100169 3.869 5.05 2 4.296492 4.497449 

stdx: 3.690898346 0.1 12 3 5.464769 6.378315 

log_T04delta: 3.393564363 0 4.4 3 2.253755 1.716587 

log_T12delta: 2.884535294 0 4.4 3 2.19479 2.211836 

log_R04delta: 1.776557894 0 4.4 3 2.171414 2.172032 

log_matLdelta: 3.800660574 0 4.4 7 2.260495 2.009727 

log_matL50: 4.706094557 4.4 4.85 7 4.628311 4.610868 

log_T04L50: 4.866964489 4 5 3 4.465743 4.604589 

log_T12L50: 4.897637193 4 5 3 4.504364 4.566974 

log_R04L50: 4.915014257 4 5 4 4.423721 4.30154 

log_betar: -1.025105044 -12 12 3 0.122286 -0.04557 

logq2: -0.087721529 -9 2.25 5 -3.32739 -2.21786 

logq3: -0.479087511 -9 2.25 6 -2.98757 -3.00965 

log_mean_rec: 0.792838442 0.01 5 1 2.45569 1.967809 

log_mean_Fpot: -0.73101877 -15 -0.01 1 -7.96403 -13.3393 

log_mean_Fground: -8.439545564 -15 -1.6 1 -8.29552 -8.2656 
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M 0.224 0.224 0.224 -1 0.224 0.224 

prelegal_var: 0.020928046 0 0.15 6 0.087381 0.07614 

fishtick_var: 0.016400027 0 1 6 0.226077 0.188182 

 

Table E.3. Results from 100 jitter runs for scenario 1 for EAG. Jitter run 0 corresponds to the 

original optimized estimates. Note: BMSY reference points were based on average recruitment for  

1986–2016. 

 

Jitter Run Objective Function Maximum Gradient B35% (t) OFL (t) Current MMB (t) 

0 357.95 0.00001631 6276.30 3985.93 8536.48 

1 357.93 0.00000020 6276.36 3985.78 8536.79 

2 357.93 0.00000541 6276.36 3985.78 8536.79 

3 357.93 0.00011579 6276.36 3985.78 8536.79 

4 357.93 0.00006966 6276.36 3985.78 8536.79 

5 357.93 0.00003572 6276.36 3985.78 8536.79 

6 357.93 0.00001752 6276.36 3985.78 8536.79 

7 357.93 0.00005470 6276.36 3985.78 8536.79 

8 357.93 0.00011744 6276.36 3985.78 8536.79 

9 357.93 0.00005891 6276.36 3985.78 8536.79 

10 357.93 0.00003164 6276.36 3985.78 8536.79 

11 357.93 0.00000319 6276.36 3985.78 8536.79 

12 357.93 0.00002234 6276.36 3985.78 8536.79 

13 357.93 0.00001383 6276.36 3985.78 8536.79 

14 357.93 0.00001126 6276.36 3985.78 8536.79 

15 357.93 0.00010222 6276.36 3985.78 8536.79 

16 357.93 0.00000291 6276.36 3985.78 8536.79 

17 357.93 0.00002518 6276.36 3985.78 8536.79 

18 357.93 0.00010882 6276.36 3985.78 8536.78 

19 357.93 0.00000005 6276.36 3985.78 8536.79 

20 357.93 0.00006426 6276.36 3985.78 8536.79 

21 357.93 0.00000069 6276.36 3985.78 8536.79 

22 357.93 0.00001009 6276.36 3985.78 8536.79 

23 357.93 0.00003613 6276.36 3985.78 8536.79 

24 357.93 0.00009340 6276.36 3985.78 8536.79 

25 357.93 0.00026646 6276.35 3985.78 8536.78 

26 357.93 0.00006301 6276.36 3985.78 8536.79 

27 357.93 0.00004337 6276.36 3985.78 8536.79 

28 357.93 0.00003351 6276.36 3985.78 8536.79 

29 357.93 0.00003022 6276.36 3985.78 8536.78 

30 357.93 0.00005049 6276.36 3985.78 8536.79 

31 357.93 0.00000001 6276.36 3985.78 8536.79 

32 357.93 0.00017354 6276.36 3985.78 8536.79 

33 357.93 0.00010732 6276.36 3985.78 8536.79 

1455



8 
 

34 357.93 0.00003140 6276.36 3985.78 8536.79 

35 357.93 0.00018539 6276.36 3985.78 8536.79 

36 357.93 0.00001242 6276.36 3985.78 8536.79 

37 357.93 0.00012196 6276.36 3985.78 8536.78 

38 357.93 0.00000610 6276.36 3985.78 8536.79 

39 357.93 0.00001384 6276.36 3985.78 8536.79 

40 357.93 0.00001617 6276.36 3985.78 8536.79 

41 357.93 0.00008444 6276.36 3985.78 8536.79 

42 357.93 0.00011264 6276.36 3985.78 8536.79 

43 357.93 0.00000742 6276.36 3985.78 8536.79 

44 357.93 0.00088110 6276.37 3985.78 8536.80 

45 357.93 0.00000432 6276.36 3985.78 8536.79 

46 357.93 0.00004927 6276.36 3985.78 8536.79 

47 357.93 0.00003060 6276.36 3985.78 8536.79 

48 357.93 0.00011714 6276.35 3985.78 8536.79 

49 357.93 0.00010607 6276.36 3985.78 8536.79 

50 357.93 0.00001854 6276.36 3985.78 8536.79 

51 357.93 0.00003346 6276.36 3985.78 8536.79 

52 357.93 0.00003206 6276.36 3985.78 8536.79 

53 357.93 0.00005319 6276.36 3985.78 8536.79 

54 357.93 0.00002535 6276.36 3985.78 8536.79 

55 357.93 0.00001109 6276.36 3985.78 8536.79 

56 357.93 0.00005972 6276.36 3985.78 8536.79 

57 357.93 0.00000006 6276.36 3985.78 8536.79 

58 357.93 0.00060162 6276.36 3985.78 8536.79 

59 357.93 0.00001156 6276.36 3985.78 8536.79 

60 357.93 0.00018979 6276.36 3985.78 8536.79 

61 357.93 0.00001340 6276.36 3985.78 8536.79 

62 357.93 0.00000860 6276.36 3985.78 8536.79 

63 357.93 0.00003140 6276.36 3985.78 8536.79 

64 357.93 0.00008224 6276.36 3985.78 8536.79 

65 357.93 0.00067994 6276.35 3985.78 8536.77 

66 357.93 0.00015629 6276.36 3985.78 8536.79 

67 357.93 0.00000958 6276.36 3985.78 8536.79 

68 357.93 0.00002085 6276.36 3985.78 8536.79 

69 357.93 0.00001779 6276.36 3985.78 8536.79 

70 357.93 0.00013929 6276.36 3985.78 8536.79 

71 357.93 0.00033909 6276.36 3985.78 8536.79 

72 357.93 0.00005027 6276.36 3985.78 8536.79 

73 357.93 0.00039076 6276.35 3985.78 8536.78 

74 357.93 0.00004030 6276.36 3985.78 8536.79 

75 365.64 0.00000047 6691.96 4201.83 8967.41 

76 357.93 0.00000065 6276.36 3985.78 8536.79 
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77 357.93 0.00007385 6276.36 3985.78 8536.79 

78 357.93 0.00001649 6276.36 3985.78 8536.79 

79 357.93 0.00005696 6276.36 3985.78 8536.79 

80 357.93 0.00040599 6276.36 3985.78 8536.79 

81 357.93 0.00004797 6276.36 3985.78 8536.79 

82 357.93 0.00000075 6276.36 3985.78 8536.79 

83 357.93 0.00005594 6276.36 3985.78 8536.79 

84 357.93 0.00027085 6276.36 3985.78 8536.79 

85 357.93 0.00006286 6276.36 3985.78 8536.79 

86 357.93 0.00001511 6276.36 3985.78 8536.79 

87 357.93 0.00000012 6276.36 3985.78 8536.79 

88 357.93 0.00000239 6276.36 3985.78 8536.79 

89 357.93 0.00003953 6276.36 3985.78 8536.79 

90 357.93 0.00006176 6276.36 3985.78 8536.79 

91 357.93 0.00001704 6276.36 3985.78 8536.79 

92 357.93 0.00000050 6276.36 3985.78 8536.79 

93 357.93 0.00013988 6276.36 3985.78 8536.79 

94 357.93 0.00006838 6276.36 3985.78 8536.79 

95 357.93 0.00039626 6276.36 3985.78 8536.79 

96 357.93 0.00005871 6276.36 3985.78 8536.79 

97 357.93 0.00001415 6276.36 3985.78 8536.79 

98 357.93 0.00003001 6276.36 3985.78 8536.79 

99 357.93 0.00017344 6276.36 3985.78 8536.79 

100 357.93 0.00001320 6276.36 3985.78 8536.79 

 

Table E.4. Results from 100 jitter runs for scenario 9 for EAG. Jitter run 0 corresponds to the 

original optimized estimates. Note: BMSY reference points were based on average recruitment for  

1986–2016. 

 

Jitter 
Run Objective Function Maximum Gradient B35% (t) OFL (t) 

Current 
MMB 
(t) 

0 357.7782 0.00000067 6879.26 4485.98 9305.66 

1 357.7782 0.00002027 6879.22 4485.98 9305.62 

2 357.7782 0.00000417 6879.26 4485.98 9305.66 

3 357.7782 0.00000452 6879.26 4485.98 9305.66 

4 357.7782 0.00000200 6879.26 4485.98 9305.66 

5 357.7782 0.00000957 6879.26 4485.98 9305.66 

6 357.7782 0.00001232 6879.26 4485.98 9305.66 

7 357.7782 0.00000591 6879.26 4485.98 9305.66 

8 357.7782 0.00000004 6879.26 4485.98 9305.66 

9 357.7782 0.00000329 6879.26 4485.98 9305.66 
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10 357.7782 0.00000106 6879.26 4485.98 9305.66 

11 357.7782 0.00000078 6879.27 4485.98 9305.66 

12 357.7782 0.00001539 6879.26 4485.98 9305.66 

13 357.7782 0.00012618 6879.26 4485.98 9305.66 

14 357.7782 0.00000005 6879.26 4485.98 9305.66 

15 357.7782 0.00000571 6879.26 4485.98 9305.66 

16 357.7782 0.00000764 6879.26 4485.98 9305.66 

17 357.7782 0.00000338 6879.26 4485.98 9305.66 

18 357.7782 0.00000077 6879.26 4485.98 9305.66 

19 357.7782 0.00005681 6879.27 4485.98 9305.66 

20 357.7782 0.00000377 6879.26 4485.98 9305.66 

21 357.7782 0.00001781 6879.26 4485.98 9305.66 

22 357.7782 0.00000041 6879.26 4485.98 9305.66 

23 357.7782 0.00000448 6879.26 4485.98 9305.66 

24 357.7782 0.00000060 6879.26 4485.98 9305.66 

25 357.8240 0.14128300 6879.63 4532.16 9273.56 

26 357.7782 0.00000064 6879.26 4485.98 9305.66 

27 357.7782 0.00000054 6879.26 4485.98 9305.66 

28 357.7782 0.00000204 6879.26 4485.98 9305.66 

29 357.7782 0.00001235 6879.26 4485.98 9305.66 

30 357.7782 0.00000964 6879.26 4485.98 9305.66 

31 365.4934 0.00017560 7296.68 4774.49 9728.41 

32 357.7782 0.00000932 6879.26 4485.98 9305.66 

33 357.7782 0.00000019 6879.26 4485.98 9305.66 

34 357.7782 0.00000048 6879.26 4485.98 9305.66 

35 357.7782 0.00000056 6879.26 4485.98 9305.66 

36 357.7782 0.00000166 6879.26 4485.98 9305.66 

37 357.7782 0.00005135 6879.26 4485.98 9305.66 

38 357.7782 0.00001054 6879.26 4485.98 9305.66 

39 357.7782 0.00000060 6879.26 4485.98 9305.66 

40 357.7782 0.00000061 6879.26 4485.98 9305.66 

41 357.7782 0.00000183 6879.26 4485.98 9305.66 

42 357.7782 0.00000876 6879.26 4485.98 9305.66 

43 357.7782 0.00000086 6879.26 4485.98 9305.66 

44 357.7782 0.00001746 6879.26 4485.98 9305.66 

45 357.7782 0.00000035 6879.26 4485.98 9305.66 

46 357.7782 0.00000083 6879.26 4485.98 9305.66 

47 357.7782 0.00000286 6879.26 4485.98 9305.66 

48 357.7782 0.00000686 6879.26 4485.98 9305.66 

49 357.7782 0.00000193 6879.26 4485.98 9305.66 

50 357.7782 0.00000202 6879.26 4485.98 9305.66 

51 357.7782 0.00000040 6879.26 4485.98 9305.66 

52 357.7782 0.00000676 6879.26 4485.98 9305.66 
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53 357.7782 0.00001494 6879.27 4485.98 9305.66 

54 357.7782 0.00001841 6879.26 4485.98 9305.66 

55 357.7782 0.00000103 6879.26 4485.98 9305.66 

56 357.7782 0.00000528 6879.26 4485.98 9305.66 

57 357.7782 0.00000792 6879.26 4485.98 9305.66 

58 357.7782 0.00000052 6879.26 4485.98 9305.66 

59 357.7782 0.00003530 6879.26 4485.98 9305.66 

60 357.7782 0.00000137 6879.26 4485.98 9305.66 

61 357.7782 0.00000891 6879.26 4485.98 9305.66 

62 357.7782 0.00006055 6879.27 4485.98 9305.66 

63 357.7782 0.00000095 6879.26 4485.98 9305.66 

64 357.7782 0.00000438 6879.26 4485.98 9305.66 

65 357.7782 0.00000373 6879.26 4485.98 9305.66 

66 357.7782 0.00000581 6879.26 4485.98 9305.66 

67 357.7782 0.00000273 6879.26 4485.98 9305.66 

68 357.7782 0.00000145 6879.26 4485.98 9305.66 

69 357.7782 0.00000018 6879.26 4485.98 9305.66 

70 357.7782 0.00000925 6879.26 4485.98 9305.66 

71 357.7782 0.00000041 6879.26 4485.98 9305.66 

72 357.7782 0.00000031 6879.26 4485.98 9305.66 

73 357.7782 0.00000176 6879.26 4485.98 9305.66 

74 357.7782 0.00000060 6879.26 4485.98 9305.66 

75 357.7782 0.00001089 6879.26 4485.98 9305.66 

76 357.7782 0.00000229 6879.26 4485.98 9305.66 

77 357.7782 0.00000185 6879.26 4485.98 9305.66 

78 357.7782 0.00002407 6879.26 4485.98 9305.66 

79 357.7782 0.00000660 6879.26 4485.98 9305.66 

80 357.7782 0.00000035 6879.26 4485.98 9305.66 

81 357.7782 0.00000359 6879.26 4485.98 9305.66 

82 357.7782 0.00001785 6879.28 4485.98 9305.67 

83 357.7782 0.00000048 6879.26 4485.98 9305.66 

84 357.7782 0.00000043 6879.26 4485.98 9305.66 

85 357.7782 0.00003714 6879.35 4485.98 9305.75 

86 357.7782 0.00000420 6879.26 4485.98 9305.66 

87 357.7782 0.00001208 6879.26 4485.98 9305.66 

88 357.7782 0.00004316 6879.26 4485.98 9305.66 

89 357.7782 0.00000040 6879.26 4485.98 9305.66 

90 357.7782 0.00000110 6879.26 4485.98 9305.66 

91 357.7782 0.00000039 6879.26 4485.98 9305.66 

92 357.7782 0.00000028 6879.26 4485.98 9305.66 

93 357.7782 0.00000122 6879.26 4485.98 9305.66 

94 357.7782 0.00001483 6879.27 4485.98 9305.66 

95 357.7782 0.00002021 6879.26 4485.98 9305.66 
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96 357.7782 0.00000712 6879.26 4485.98 9305.66 

97 357.7782 0.00000112 6879.26 4485.98 9305.66 

98 357.7782 0.00006316 6879.32 4485.98 9305.72 

99 357.7782 0.00000930 6879.26 4485.98 9305.66 

100 357.7782 0.00000044 6879.26 4485.98 9305.66 

 

Table E.5. Results from 100 jitter runs for scenario 1for WAG. Jitter run 0 corresponds to the 

original optimized estimates. Note: BMSY reference points were based on average recruitment for  

1986–2016. 

 

Jitter 
Run 

Objective 
Function 

Maximum 
Gradient B35% (t) OFL (t) 

Current 
MMB 
(t) 

0 275.26 0.00006408 4722.22 1280.18 4402.63 

1 272.08 0.00020991 5157.51 1256.94 4609.18 

2 275.22 0.00000181 4741.02 1250.49 4395.09 

3 275.22 0.00006921 4741.02 1250.49 4395.09 

4 275.22 0.00000046 4741.02 1250.49 4395.09 

5 275.22 0.00026624 4741.03 1250.49 4395.09 

6 275.22 0.00002435 4741.02 1250.49 4395.09 

7 275.22 0.00009719 4741.02 1250.49 4395.09 

8 275.22 0.00009279 4741.02 1250.49 4395.09 

9 275.22 0.00000384 4741.02 1250.49 4395.09 

10 275.22 0.00000921 4741.02 1250.49 4395.09 

11 275.22 0.00010524 4741.02 1250.49 4395.08 

12 272.08 0.00003695 5157.51 1256.94 4609.18 

13 275.22 0.00000345 4741.02 1250.49 4395.09 

14 275.22 0.00002612 4741.02 1250.49 4395.09 

15 275.22 0.00003335 4741.02 1250.49 4395.09 

16 271.90 0.00001829 5186.77 1242.78 4594.43 

17 275.22 0.00005598 4741.02 1250.49 4395.09 

18 275.22 0.00000156 4741.02 1250.49 4395.09 

19 275.22 0.00000216 4741.02 1250.49 4395.09 

20 275.22 0.00000317 4741.02 1250.49 4395.09 

21 275.22 0.00022139 4741.02 1250.49 4395.09 

22 275.22 0.00004471 4741.02 1250.49 4395.09 

23 275.22 0.00005165 4741.02 1250.49 4395.09 

24 275.22 0.00001324 4741.02 1250.49 4395.09 

25 275.22 0.00010225 4741.02 1250.49 4395.09 

26 275.22 0.00011112 4741.02 1250.49 4395.09 

27 275.22 0.00004498 4741.02 1250.49 4395.09 

28 275.22 0.00000013 4741.02 1250.49 4395.09 
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29 272.08 0.00011043 5157.52 1256.94 4609.18 

30 275.22 0.00006034 4741.02 1250.49 4395.09 

31 275.22 0.00000778 4741.02 1250.49 4395.09 

32 275.22 0.00000002 4741.02 1250.49 4395.09 

33 275.22 0.00000001 4741.02 1250.49 4395.09 

34 275.22 0.00004915 4741.02 1250.49 4395.09 

35 275.22 0.00014347 4741.02 1250.49 4395.09 

36 275.22 0.00000968 4741.02 1250.49 4395.09 

37 275.22 0.00008531 4741.02 1250.49 4395.09 

38 275.22 0.00003593 4741.02 1250.49 4395.09 

39 276.19 0.00000038 5128.26 1252.06 4580.12 

40 272.08 0.00010997 5157.51 1256.94 4609.18 

41 275.22 0.00012720 4741.02 1250.49 4395.09 

42 275.22 0.00012620 4741.03 1250.49 4395.09 

43 275.22 0.00003131 4741.02 1250.49 4395.09 

44 275.22 0.00005433 4741.02 1250.49 4395.09 

45 275.22 0.00005734 4741.02 1250.49 4395.08 

46 275.22 0.00000293 4741.02 1250.49 4395.09 

47 275.22 0.00016022 4741.02 1250.49 4395.09 

48 275.22 0.00002603 4741.02 1250.49 4395.09 

49 275.22 0.00000061 4741.02 1250.49 4395.09 

50 275.22 0.00005500 4741.02 1250.49 4395.09 

51 275.22 0.00000071 4741.02 1250.49 4395.09 

52 275.22 0.00002028 4741.02 1250.49 4395.09 

53 275.22 0.00011690 4741.02 1250.49 4395.09 

54 275.22 0.00000509 4741.02 1250.49 4395.09 

55 275.22 0.00005520 4741.02 1250.49 4395.09 

56 275.22 0.00012576 4741.02 1250.49 4395.09 

57 275.22 0.00055220 4741.02 1250.49 4395.08 

58 275.22 0.00000021 4741.02 1250.49 4395.09 

59 275.22 0.00008351 4741.02 1250.49 4395.09 

60 275.22 0.00000071 4741.02 1250.49 4395.09 

61 275.22 0.00000113 4741.02 1250.49 4395.09 

62 275.22 0.00004604 4741.02 1250.49 4395.09 

63 275.22 0.00020403 4741.02 1250.49 4395.09 

64 275.22 0.00006138 4741.02 1250.49 4395.09 

65 275.22 0.00000096 4741.02 1250.49 4395.09 

66 275.22 0.00001358 4741.02 1250.49 4395.09 

67 275.22 0.00002428 4741.02 1250.49 4395.09 

68 275.22 0.00000259 4741.02 1250.49 4395.09 

69 275.22 0.00000901 4741.02 1250.49 4395.09 

70 272.08 0.00000705 5157.51 1256.94 4609.18 

71 275.22 0.00000697 4741.02 1250.49 4395.09 
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72 272.08 0.00000119 5157.51 1256.94 4609.18 

73 275.22 0.00017395 4741.03 1250.49 4395.09 

74 275.22 0.00067063 4741.02 1250.49 4395.08 

75 275.22 0.00001000 4741.02 1250.49 4395.09 

76 275.22 0.00002803 4741.02 1250.49 4395.09 

77 275.22 0.00002205 4741.02 1250.49 4395.09 

78 275.22 0.00000185 4741.02 1250.49 4395.09 

79 275.22 0.00009501 4741.03 1250.49 4395.09 

80 272.08 0.00000206 5157.51 1256.94 4609.18 

81 275.22 0.00002467 4741.02 1250.49 4395.09 

82 275.22 0.00000349 4741.02 1250.49 4395.09 

83 275.22 0.00005818 4741.02 1250.49 4395.09 

84 275.22 0.00001808 4741.02 1250.49 4395.09 

85 275.22 0.00000908 4741.02 1250.49 4395.09 

86 275.22 0.00000007 4741.02 1250.49 4395.09 

87 275.22 0.00000079 4741.02 1250.49 4395.09 

88 275.22 0.00000072 4741.02 1250.49 4395.09 

89 272.08 0.00000361 5157.51 1256.94 4609.18 

90 275.22 0.00005307 4741.02 1250.49 4395.09 

91 275.22 0.00003018 4741.02 1250.49 4395.09 

92 275.22 0.00017475 4741.02 1250.49 4395.09 

93 275.22 0.00000536 4741.02 1250.49 4395.09 

94 275.22 0.00002238 4741.02 1250.49 4395.09 

95 275.22 0.00002886 4741.02 1250.49 4395.09 

96 275.22 0.00041212 4741.03 1250.49 4395.09 

97 275.22 0.00008484 4741.02 1250.49 4395.09 

98 275.22 0.00090622 4741.02 1250.49 4395.08 

99 275.22 0.00000052 4741.02 1250.49 4395.09 

100 275.22 0.00008280 4741.03 1250.49 4395.09 

 

Table E.6. Results from 100 jitter runs for scenario 9 for WAG. Jitter run 0 corresponds to the 

original optimized estimates. Note: BMSY reference points were based on average recruitment for  

1986–2016. 

 

Jitter 
Run 

Objective 
Function Maximum Gradient B35% (t) OFL (t) 

Current 
MMB 
(t) 

0 275.10 0.00000122 5136.69 1512.39 4946.18 

1 275.10 0.00000086 5136.69 1512.39 4946.18 

2 271.92 0.00001024 5593.79 1524.07 5196.63 

3 275.10 0.00000062 5136.69 1512.39 4946.18 

4 275.10 0.00000066 5136.69 1512.39 4946.18 
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5 275.10 0.00000056 5136.69 1512.39 4946.18 

6 275.10 0.00000434 5136.69 1512.39 4946.18 

7 275.10 0.00000009 5136.69 1512.39 4946.18 

8 275.10 0.00000150 5136.69 1512.39 4946.18 

9 275.10 0.00001277 5136.69 1512.39 4946.18 

10 275.10 0.00000602 5136.69 1512.39 4946.18 

11 275.10 0.00019482 5136.69 1512.39 4946.18 

12 275.10 0.00000832 5136.69 1512.39 4946.18 

13 275.10 0.00002946 5136.69 1512.39 4946.18 

14 275.10 0.00000191 5136.69 1512.39 4946.18 

15 275.10 0.00000150 5136.69 1512.39 4946.18 

16 271.92 0.00000079 5593.79 1524.07 5196.63 

17 275.10 0.00002771 5136.69 1512.39 4946.18 

18 275.10 0.00000567 5136.69 1512.39 4946.18 

19 275.10 0.00004282 5136.69 1512.39 4946.18 

20 275.10 0.00004036 5136.67 1512.39 4946.16 

21 275.10 0.00000322 5136.69 1512.39 4946.18 

22 275.10 0.00000084 5136.69 1512.39 4946.18 

23 275.10 0.00000631 5136.69 1512.39 4946.18 

24 275.10 0.00000067 5136.69 1512.39 4946.18 

25 275.10 0.00000252 5136.69 1512.39 4946.18 

26 275.10 0.00002649 5136.69 1512.39 4946.18 

27 275.10 0.00003961 5136.69 1512.39 4946.18 

28 275.10 0.00006224 5136.70 1512.39 4946.19 

29 275.10 0.00000407 5136.69 1512.39 4946.18 

30 275.10 0.00002247 5136.69 1512.39 4946.18 

31 275.10 0.00000775 5136.68 1512.39 4946.18 

32 275.10 0.00008106 5136.80 1512.39 4946.28 

33 275.10 0.00000194 5136.69 1512.39 4946.18 

34 275.10 0.00000129 5136.69 1512.39 4946.18 

35 275.10 0.00002378 5136.68 1512.39 4946.18 

36 275.10 0.00000064 5136.69 1512.39 4946.18 

37 275.10 0.00000085 5136.69 1512.39 4946.18 

38 275.10 0.00001217 5136.68 1512.39 4946.18 

39 271.92 0.00000258 5593.79 1524.07 5196.63 

40 275.10 0.00010939 5136.68 1512.39 4946.18 

41 275.10 0.00000042 5136.69 1512.39 4946.18 

42 275.10 0.00000576 5136.69 1512.39 4946.18 

43 275.10 0.00003408 5136.69 1512.39 4946.18 

44 275.10 0.00000485 5136.69 1512.39 4946.18 

45 275.10 0.00000276 5136.69 1512.39 4946.18 

46 275.10 0.00003539 5136.66 1512.39 4946.15 

47 275.10 0.00000805 5136.69 1512.39 4946.18 
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48 275.10 0.00000289 5136.69 1512.39 4946.18 

49 271.92 0.00000859 5593.79 1524.07 5196.63 

50 275.10 0.00002747 5136.69 1512.39 4946.18 

51 275.10 0.00000924 5136.69 1512.39 4946.18 

52 275.10 0.00002677 5136.69 1512.39 4946.18 

53 275.10 0.00000723 5136.69 1512.39 4946.18 

54 275.10 0.00010187 5136.69 1512.39 4946.18 

55 275.10 0.00000062 5136.69 1512.39 4946.18 

56 275.10 0.00052373 5136.66 1512.39 4946.15 

57 275.10 0.00001702 5136.69 1512.39 4946.18 

58 275.10 0.00001190 5136.69 1512.39 4946.18 

59 275.10 0.00003031 5136.69 1512.39 4946.18 

60 275.10 0.00001616 5136.69 1512.39 4946.18 

61 275.10 0.00000107 5136.69 1512.39 4946.18 

62 271.92 0.00000451 5593.79 1524.07 5196.63 

63 275.10 0.00000550 5136.69 1512.39 4946.18 

64 275.10 0.00000364 5136.69 1512.39 4946.18 

65 275.10 0.00001160 5136.69 1512.39 4946.18 

66 275.10 0.00002502 5136.69 1512.39 4946.18 

67 275.10 0.00000063 5136.69 1512.39 4946.18 

68 275.10 0.00006237 5136.61 1512.39 4946.10 

69 275.10 0.00003332 5136.69 1512.39 4946.18 

70 275.10 0.00002605 5136.69 1512.39 4946.18 

71 275.10 0.00003483 5136.69 1512.39 4946.18 

72 271.92 0.00000709 5593.79 1524.07 5196.63 

73 275.10 0.00000939 5136.69 1512.39 4946.18 

74 275.10 0.00005860 5136.79 1512.39 4946.28 

75 275.10 0.00007549 5136.69 1512.39 4946.18 

76 275.10 0.00005234 5136.69 1512.39 4946.18 

77 275.10 0.00001132 5136.69 1512.39 4946.18 

78 275.10 0.00000234 5136.69 1512.39 4946.18 

79 275.10 0.00004273 5136.69 1512.39 4946.18 

80 275.10 0.00000006 5136.69 1512.39 4946.18 

81 275.10 0.00000030 5136.69 1512.39 4946.18 

82 275.10 0.00000206 5136.69 1512.39 4946.18 

83 275.10 0.00002295 5136.69 1512.39 4946.18 

84 275.10 0.00000575 5136.69 1512.39 4946.18 

85 275.10 0.00000560 5136.69 1512.39 4946.18 

86 275.10 0.00000295 5136.69 1512.39 4946.18 

87 275.10 0.00007985 5136.69 1512.39 4946.18 

88 275.10 0.00000062 5136.69 1512.39 4946.18 

89 275.10 0.00001151 5136.69 1512.39 4946.18 

90 275.10 0.00000134 5136.69 1512.39 4946.18 
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91 275.10 0.00000020 5136.69 1512.39 4946.18 

92 275.10 0.00002228 5136.69 1512.39 4946.18 

93 275.10 0.00000090 5136.69 1512.39 4946.18 

94 275.10 0.00007147 5136.69 1512.39 4946.18 

95 275.15 0.02132790 5159.06 1513.41 4966.70 

96 275.10 0.00004049 5136.69 1512.39 4946.18 

97 275.10 0.00000421 5136.69 1512.39 4946.18 

98 275.10 0.00007738 5136.69 1512.39 4946.18 

99 275.10 0.00000237 5136.69 1512.39 4946.18 

100 275.10 0.00000092 5136.69 1512.39 4946.18 
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Appendix F: Core Data Analysis 

Problem statement:  The spatial extent of the Aleutian Islands golden king crab (AIGKC) fishery has 

decreased markedly through time, but the current stock assessment model does not explicitly account 

for this change.  The current exercise is an attempt to utilize only a subset of observer catch-per-unit-

effort (CPUE) and (estimated) commercial fishery catch data that come from the same spatial extent 

(termed the “Core” fishing area) throughout the time series (1990–2015).  Model runs were compared 

with Full dataset models (Scenarios 1 and 2) to examine the effects of decreasing fishing area over time. 

METHODS 

Creating the Core CPUE dataset (see Figs. F1, F2) 

1) Reassigned all observer data currently used in AIGKC model lat/long from original dataset 

a. About 100 rows of data (pots) out of over 110K could not be reconciled. 

b. There are a number of pot locations (lat/long) that need to be error checked (e.g. show 

up on land) 

2) Observer data (with lat/long) were plotted onto the GIS layer of 2X2 nm boxes. 

a. 2X2 boxes were created for Cooperative Survey design using 1990–2013 observer data 

b. 2X2 boxes were limited to: 

i. 100–1000m depth 

ii. Not on land 

iii. Only containing observer data with some catch (all size/sex classes of GKC); i.e., 

2X2 boxes with observer data but no catch in any year were excluded and 

assumed to not be suitable GKC habitat. 

c. 2X2 boxes were decided on as a reasonable tradeoff between spatial resolution and 

fishing practices (e.g. strings of gear are 2–4 nm long). 

i. Sensitivity to box size should likely be considered (in progress). 

3) 2X2 boxes were categorized as “Core” or “Non-Core” utilizing 2005–2013 observer data 

a. Core = area that had fishing effort and catch since rationalization 

b. Non-core = No effort in the area since rationalization. 

4) Each row of observer data (1990–2015) was overlaid onto 2X2 boxes and categorized as: 

a. Core = Effort and Catch in the area since rationalization 

b. Non-core = No effort in the area since rationalization 

c. Other = Effort and Catch outside the 2X2 box layer due to: 

i. Errors in lat/long transcription 

ii. Effort but no catch in any year (i.e., assumed not GKC habitat) 

iii. Errors in bathymetry layer 

iv. Effort and Catch data from 2014–present 

1. Due to declining CPUE in WAG fishery started moving gear outside 

“Core” areas (e.g., AK Trojan to Bowers Ridge, and Early Dawn to Attu) 

5) Observer data used in AIGKC model was then subset to only those data categorized as “Core” 
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Creating the Core Catch dataset 

6) We assumed that observer coverage was proportional to total fishing effort in every year 

a. This needs to be vetted (though 100% observer coverage 1995/96-2004/05). 

7) We assumed fishermen are equally skilled, or that fishermen are fishing proportionally in Core 

and non-core areas. 

a. If the least effective fishermen are fishing the less productive areas (i.e. Non-core) the 

ratio of Core:Non-core CPUE will be biased high and the estimate of catch inside the 

Core would be biased high (this would be more conservative). 

8) For each year separately using the observer data, we calculated the ratio of Core:Non-Core 

CPUE and Effort 

9) The product of these two ratios then let us estimate the ratio of Core Catch:Non-core Catch 

10) The Catch ratio was then applied to overall Catch data used in the AIGKC model to estimate 

Catch within the Core area for each year (see algebra at the end). 

a. Catch in the model is separated by size classes; size frequencies were assumed to be the 

same for Core and Non-core areas. 

11) These two “new” datasets only contain information from the same spatial extent throughout 

the history of the data (1990–2015) and are just a subset of the Full data set used in the current 

model. 

Core Catch estimation: 

Since total Catch (Ct) equals the product of CPUE and Effort (E), then the ratio of Catch in the Core (Cc) to 

Catch in the Non-Core (Cnc) area is: 

𝐶𝑛𝑐
𝐶𝑐

=
(
𝐶𝑛𝑐
𝐸𝑛𝑐

) × 𝐸𝑛𝑐

(
𝐶𝑐
𝐸𝑐
) × 𝐸𝑐

 

where Enc and Ec are the Effort in Core and Non-core areas, respectively. 

Next, if: 

𝐶𝑛𝑐
𝐶𝑐

= 𝑥 

then: 

𝐶𝑛𝑐 = 𝑥𝐶𝑐 

And since: 

𝐶𝑡 = 𝐶𝑛𝑐 + 𝐶𝑐 

Then substituting for Cnc: 
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𝐶𝑡 = 𝑥𝐶𝑐 + 𝐶𝑐 

And 

𝐶𝑡 = (𝑥 + 1)𝐶𝑐 

And finally 

𝐶𝑐 =
𝐶𝑡

(𝑥 + 1)
 

So we can estimate the catch in the Core area by having the total Catch (which is known) and the ratio 

of Catch in the Non-core and Core areas (which we can estimate).  

Modeling 

CPUE standardization methods were described in Appendix B.  We applied those methods to Core data 

to determine CPUE indices for the periods 1995/96–2004/05 and 2005/06–2015/16. Because only 

observer data have the location details to separate the fishing area into finer cells (2X2nm), we 

restricted the time series to 1995/96–2015/16 for CPUE standardization and population model fitting.   

Therefore, the population model fitting results were compared with those for scenario 2 that ignores 

the fishery CPUE likelihood in the model fitting. However, for completeness, we included the base 

scenario (scenario 1) results as well.  

 

RESULTS 

Core area, CPUE, and catch estimates 

The Core area represents approximately 30% of the total GKC habitat that was historically fished based 

on the 2X2nm boxes (similar for EAG and WAG).  Of the 110,313 rows of observer data, 78,299 (71%) 

were categorized as Core, 28,441 (26%) as Non-core, and 3,573 (3%) as Other.  Non-core and Other data 

were removed from the observer dataset and then only the Core data were used in the GLM for CPUE 

index determination.   

Examining the observer data as a function of Core vs. Non-core areas prior to rationalization shows that 

on average 65% of the total effort came from Core areas (Fig. F3A, B) and the CPUE were on average 1.6 

times greater in the Core than the Non-core areas (Fig. F3C, D) prior to rationalization.  This suggests 

that approximately 74% of the total catch came from the Core areas (Fig F3E, F).  Results are nearly 

identical for both the EAG and WAG.  Total annual catch was then multiplied by the proportion of catch 

in the Core areas in each year to estimate Core catch and used in the population model fitting. 

CPUE standardization of core data 

The final models for EAG were: 
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ln(CPUE) = Year + Gear + Captain + ns(Soak, 3) + Month                        (F.1)  

for the 1995/96–2004/05 period [=1.34, R2 = 0.2526] 

 

ln(CPUE) = Year + Captain + Gear + ns(Soak, 11)               (F.2) 

for the 2005/06–2015/16 period ( = 2.29, R2 = 0.1207).  

 

The final models for WAG were: 

 

ln(CPUE) = Year + Captain + ns(Soak, 15) + Gear                          (F.3)  

for the 1995/96–2004/05 period [=1.04, R2 = 0.1804] 

 

ln(CPUE) = Year + Gear + ns(Soak, 17)                (F.4) 

for the 2005/06–2015/16 period [ = 1.15, R2 = 0.0509, 𝑆𝑜𝑎𝑘𝑓𝑜𝑟𝑐𝑒𝑑𝑖𝑛].  

 

For both the EAG and the WAG, the standardized CPUE showed a general increase whereas the non-

standardized CPUE was relatively stable from 1995-2003. Post-rationalization showed almost no 

difference between CPUE indices (Figs. 4, 6). The (diagnostics) Q–Q plots of CPUE fitting appears  

satisfactory (Figs. 5, 7). 

 

Model fitting 

The core data were used for fitting the scenario 2 model (scenario 2 model is described in the main text 

and Appendix A). We used the Francis reweighting method to determine the updated weights for the 

length composition effective sample sizes. The Francis iteration results on core data are provided in 

Table F.1. 

We provide the model fitted values for CPUE indices, Catches, F, and MMB (Figs. 8 to 15) for EAG and 

WAG.  

The CPUE indices for the three models (Sc1, Sc2, and Sc2Core) were nearly identical except for slight 

divergence from 2011–2015 in the EAG, and from 2001–2004 in the WAG (Figs. 8, 9).  The Core retained 

catches were well fitted by scenario Sc2Core but not by Sc1 or Sc2 in early years as expected due to the 

reduction of catch data in Sc2Core prior to rationalization (Figs. 10, 11).  In the EAG,  the overall (1960–

2015) mature male biomass estimates were on average 20% lower using only Core data and catch 

estimates (i.e., Sc2Core) and were 15% lower since rationalization (2005–2015) compared with scenario 
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2 (full dataset) results.  However, in the WAG, mature male biomass estimates were only 12% (overall) 

and 2% (post-rationalization) lower. 

 

 

 

Figure F1.  Map of EAG depicting Core areas (tan boxes; difficult to see under green dots) with 

associated observer data (green dots) and Non-core areas (blue boxes) and associated observer data 

(blue dots).  Of the total 2012 2X2nm boxes, 588 (29%) are designated as Core and 1424 (71%) as Non-

core.  
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Figure F2.  Map of WAG depicting Core areas (tan boxes; difficult to see under green dots) with 

associated observer data (green dots) and Non-core areas (blue boxes; difficult to see under blue dots) 

and associated observer data (blue dots).  Of the total 2847 2X2nm boxes, 799 (28%) are designated as 

Core and 2048 (72%) as Non-core.  
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Figure F3.  Effort (A, B), productivity (C, D), and Catch (E, F) from 1990–2015 in the EAG (A, C, E) and 

WAG (B, D, F).  Effort is split into Core (black), Non-core (light grey), and Other (dark grey). Catch is split 

only into Core (black) and Non-core (light grey); Other catch could not be estimated.  Green lines 

represent mean values for pre-rationalization time period (1990–2004). 
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Figure F.4. Trends in non-standardized [arithmetic (nominal)] and standardized (negative binomial GLM) 
CPUE indices with +/- 2 SE for Aleutian Islands golden king crab observer core data from EAG (east of 
174 ° W longitude). Top panel:  1995/96–2004/05 and bottom panel: 2005/06–2015/16. Standardized 
indices: black line and non-standardized indices: red line.  
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Figure F.5. Studentized residual plots for negative binomial GLM fit to EAG golden king crab observer 
core data for legal size male crab. Top panel is for 1995/96–2004/05 and bottom panel is for 2005/06–
2015/16.  
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Figure F.6. Trends in non-standardized [arithmetic (nominal)] and standardized (negative binomial GLM) 
CPUE indices with +/- 2 SE for Aleutian Islands golden king crab observer core data from WAG (west of 
174 ° W longitude). Top panel:  1995/96–2004/05 and bottom panel: 2005/06–2015/16. Standardized 
indices: black line and non-standardized indices: red line.  
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Figure F.7. Studentized residual plots for negative binomial GLM fit to WAG golden king crab observer 
core data for legal size male crab. Top panel is for 1995/96–2004/05 and bottom panel is for 2005/06–
2015/16. 
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Table F.1. Iteration process for Stage-2 effective sample size reweighting multiplier, W, by Francis 

method for retained, total, and groundfish discard catch size compositions of golden king crab for 

scenario 2Core for EAG and WAG. The effective sample sizes are numbers of days for retained and total 

catch, but number of trips for groundfish discarded catch size compositions. Sc. =scenario. Note: For 

scenario 2Core, we have done more than six iterations to get the W and MMB converged, but we 

provide only the last three iteration results. 

Area  Sc. Iteration 

No. 

Retained 

Catch Size 

Comp 

Effective 

Sample 

Multiplier 

(W) 

Total Catch 

Size Comp 

Effective 

Sample 

Multiplier  

(W) 

Groundfish 

Discard Catch 

Size Comp 

Effective 

Sample 

Multiplier (W) 

Terminal 

MMB (t) 

M yr
-1

 

EAG 2Core 1 0.8744 0.5161 0.4438 8,203  

  2 0.8739 0.5164 0.4438 8,203  

  3 0.8737 0.5165 0.4437 8,203  

        

WAG 2Core 1 0.4859 0.4388 0.7619 4,114  

  2 0.4861 0.4387 0.7619 4,115  

  3 0.4861 0.4386 0.7619 4,115  
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Figure F.8. Comparison of core data input CPUE indices (open circles with +/- 2 SE) with predicted CPUE 
indices (colored solid lines) under scenarios (Sc) 1, 2, and 2Core for EAG golden king crab data, 1985/86–
2015/16. Model estimated additional standard error was added to each input standard error. 

Note: low prediction of CPUE indices in recent years by scenario Sc2Core. 
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Figure F.9. Comparison of core data input CPUE indices (open circles with +/- 2 SE) with predicted CPUE 
indices (colored solid lines) under scenarios (Sc) 1, 2, and 2Core for WAG golden king crab data, 
1985/86–2015/16. Model estimated additional standard error was added to each input standard error. 
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Figure F.10. Observed (open circle) vs. predicted (solid line) retained catch (top left), total catch (top 

right), and groundfish bycatch (bottom left) of golden king crab for scenarios (Sc) 1 to 2Core data sets, in 

EAG, 1985–2015.  

1480



 

Figure F.11. Observed (open circle) vs. predicted (solid line) retained catch (top left), total catch (top 

right), and groundfish bycatch (bottom left) of golden king crab for scenarios (Sc) 1 to 2Core data sets, in 

WAG, 1985–2015.  
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Figure F.12. Trends in pot fishery full selection total fishing mortality of golden king crab for scenarios 

(Sc) 1 to 2Core model fits in the EAG, 1981–2015. 

Note: A little high prediction of F in recent years by scenario Sc2Core. 

 

Figure F.13. Trends in pot fishery full selection total fishing mortality of golden king crab for scenarios 
(Sc) 1 to 2Core model fits in the WAG, 1981–2015. 

Note: A little high prediction of F in recent years by scenario Sc2Core. 
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Figure F.14. Trends in golden king crab mature male biomass for scenarios (Sc) 1, 2, and 2Core fits in the 
EAG, 1960/61–2015/16.   

Note: Low prediction of MMB by scenario Sc2Core throughout the time series. 

 

Figure F.15. Trends in golden king crab mature male biomass for scenarios (Sc) 1, 2, and 2Core fits in the 
WAG, 1960/61–2015/16.   

Note:  Low prediction of MMB by scenario Sc2Core throughout the time series.  
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Pribilof Islands Golden King Crab 

– 2017 Tier 5 Assessment

2017 Crab SAFE Report Chapter (September 2017) 

 Benjamin Daly, ADF&G, Kodiak 

Alaska Department of Fish and Game 

Division of Commercial Fisheries 

351 Research Ct.  

Kodiak, AK 99615, USA 

Phone: (907) 486-1865 

Email: ben.daly@alaska.gov 

Executive Summary 

1. Stock:  Pribilof Islands (Pribilof District) golden king crab Lithodes aequispinus

2. Catches:

Commercial fishing for golden king crab in the Pribilof District has been concentrated in the

Pribilof Canyon. The domestic fishery developed in 1982/83, although some limited fishing

occurred at least as early as 1981/82. Peak retained catch occurred in 1983/84 at 388 t (856,475

lb). The fishing season for this stock has been defined as a calendar year (as opposed to 1-July-

to-30-June crab fishing year) after 1983/84. Since then, participation in the fishery has been

sporadic and annually retained catch has been variable: from 0 t (0 lb) in the ten years that no

vessels participated (1984, 1986, 1990–1992, 2006–2009, and 2015) to 155 t (341,908 lb) in

1995, when seven vessels made landings. The fishery is not rationalized. There is no state

harvest strategy in regulation. A guideline harvest level (GHL) was first established for the

fishery in 1999 at 91 t (200,000 lb). The GHL was reduced to 68 t (150,000 lb) for 2000–2014

and reduced to 59 t (130,000 lb) in 2015. No vessels participated in the directed fishery and no

landings were made during 2006–2009. Catch data from 2003–2005 and 2010–2014 cannot be

reported here under the confidentiality requirements of State of Alaska (SOA) statute Sec.

16.05.815. The 2003 and 2004 fisheries were closed by emergency order to manage the retained

catch towards the GHL; the 2005 and 2010–2014 fisheries were not closed by emergency order.

No vessels participated in the directed fishery during 2015 or 2016. Discarded (non-retained)

catch has occurred in the directed golden king crab fishery, the eastern Bering Sea snow crab

fishery, the Bering Sea grooved Tanner crab fishery, and in Bering Sea groundfish fisheries.

Estimates of annual total fishery mortality during 2001–2016 due to crab fisheries range from 0 t

to 73 t, with an average of 24 t. There was no discarded catch during crab fisheries in 2016.

Estimates of annual fishery mortality during 1991/92–2016 due to groundfish fisheries range

from <1 t to 9 t, with an average of 2 t (estimates of annually discarded catch during Bering Sea

groundfish fisheries are reported for crab fishing years from 1991 to 2008, and by calendar years

from 2009 to 2016). Total fishery mortality in groundfish fisheries during the 2016 crab fishing

year was 0.24 t.
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3. Stock biomass:   

Stock biomass (all sizes, both sexes) of golden king crab have been estimated for the Pribilof 

Canyon area using the area-swept technique applied to data obtained from the biennial eastern 

Bering Sea upper continental slope trawl survey performed by NMFS-AFSC in 2002, 2004, 

2008, 2010, 2012, and 2016 (Hoff and Britt 2003, 2005, 2009, 2011; Hoff 2013, 2016). See 

Appendix A1 for summaries of the slope survey as they pertain to data on and estimates of 

Pribilof Island golden king crab stock biomass. Complete data on size-sex composition of survey 

catch are available only from the 2008–2016 biennial surveys (C. Armistead, NMFS-AFSC, 

Kodiak). Biomass estimates by sex and size class from the 2008, 2010, and 2012 surveys were 

presented in a May 2013 (Gaeuman 2013a) report to the Crab Plan Team and biomass estimates 

of mature males from the 2008–2012 biennial surveys were presented in a September 2013 

(Gaeuman 2013b) report to the Crab Plan Team. Biomass estimates from the 2016 survey have 

not been presented to the Crab Plan Team prior to this report.  

 

4. Recruitment: 

Estimated from size-sex composition data from the eastern Bering Sea upper continental slope 

trawl survey, mature male biomass in the entire survey area increased slightly from 812 t 

(1,790,154 lb) in 2012 to 897 t (1,977,546 lb) in 2016, and from 256 t (564,383 lb) in 2012 to 

475 t (1,047,196 lb) in 2016 in the Pribilof canyon.   

 

5. Management performance:  

No overfished determination (i.e., MSST) has been made for this stock, although approaches to 

using data from the biennial NMFS-AFSC eastern Bering Sea upper continental slope surveys 

have been presented to, and considered by, the Crab Plan Team (Gaeuman 2013a, 2013b; 

Pengilly 2015, Pengilly and Daly 2017; Appendix A1). No vessels participated in the 2015 or 

2016 directed fisheries (i.e., retained catch= 0 t; 0 lb) and no bycatch was observed in crab 

fisheries in these years; 0.24 t of fishery mortality occurred during groundfish fisheries in 2016. 

Overfishing did not occur in 2016. The GHL for the 2018 season has yet to be established 

(M.Stichert, ADF&G, Kodiak, pers. comm., 1 April 2017). The 2018 OFL and ABC in the table 

below are the author’s recommendations, which follow previous determinations. 
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Management Performance Table (values in t) 

Calendar 

Year 

 

MSST 

Biomass 

(MMB) 
GHLa 

Retained 

Catch 

Total 

Catchb 
OFL ABC 

2013 N/A N/A 68 Conf. c Conf. c 91 82 

2014 N/A N/A 68 Conf. c Conf. c 91 82 

2015 N/A N/A 59 0 1.92 91 68 

2016 N/A N/A 59 0 0.24 91 68 

2017 N/A N/A 59   93 70 

2018 N/A N/A    93 70 

a. Guideline harvest level, established in lb and converted to t. 

b. Total retained catch plus estimated bycatch mortality of discarded catch during crab fisheries and bycatch mortality due to 

groundfish fisheries are included here, but not for 2013 and 2014 because the directed fishery is confidential. 

c. Confidential under Sec. 16.05.815 (SOA statute). GHL not attained. 

 

Management Performance Table (values in millions of lb) 

Calendar 

Year 

 

MSST 

Biomass 

(MMB) 
GHLa 

Retained 

Catch 

Total 

Catchb 
OFL ABC 

2013 N/A N/A 150,000 Conf.c Conf.c 0.20  0.18 

2014 N/A N/A 150,000 Conf.c Conf.c 0.20  0.18  

2015 N/A N/A 130,000 0 0.004 0.20 0.15 

2016 N/A N/A 130,000 0 <0.001 0.20 0.15 

2017 N/A N/A 130,000   0.20 0.15 

2018 N/A N/A    0.20 0.15 

a. Guideline harvest level.  

b. Total retained catch plus estimated bycatch mortality of discarded catch during crab fisheries and groundfish fisheries. Estimates 

of annual bycatch mortality during 1991/92–2016 groundfish fisheries are ≤19,480 lb, with an average of 5,098 lb. 

c. Confidential under Sec. 16.05.815 (SOA statute). GHL not attained. 

 

6. Basis for the OFL and ABC:  The values for 2018 are the author’s recommendation. 

  

Calendar 

Year 
Tier 

Years to define  

Average catch (OFL) 

Natural 

Mortalityb 
Buffer 

2013 5 1993–1998a 0.18 yr-1 10% 

2014 5 1993–1998a 0.18 yr-1 10% 

2015 5 1993–1998a 0.18 yr-1 25% 

2016 5 1993–1998a 0.18 yr-1 25% 

2017 5 1993–1998a 0.18 yr-1 25% 

2018 5 1993–1998a 0.18 yr-1 25% 
a. OFL was for total catch and was determined by the average of the annual retained catch for these years multiplied 

by a factor of 1.052 to account for the estimated bycatch mortality occurring in the directed fishery plus an 

estimate of the average annual bycatch mortality due to non-directed crab fisheries and groundfish fisheries for the 

period.  

b. Assumed value for FMP king crab in NPFMC (2007); does not enter into OFL estimation for Tier 5 stocks. 

 

7. PDF of the OFL:  Sampling distribution of the recommended Tier 5 OFL was estimated by 

bootstrapping. The standard deviation of the estimated sampling distribution of the 

recommended OFL (Alternative 1) is 23 t (CV = 0.25; section G.1). 
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8. Basis for the ABC recommendation:  A 25% buffer on the OFL, the default; i.e.,  

ABC = (1-0.25)·OFL. This is a data-poor stock. 

 

9. A summary of the results of any rebuilding analyses: Not applicable; stock is not under a 

rebuilding plan. 

 

A. Summary of Major Changes 

1. Changes to the management of the fishery:  Fishery continues to be managed under 

authority of an ADF&G commissioner’s permit; guideline harvest level (GHL) was reduced 

from 68 t (150,000 lb) to 59 t (130,000 lb) in 2015 to account for bycatch mortality in the 

directed fishery, non-directed crab fisheries, and groundfish fisheries, and to avoid exceeding 

the ABC. The GHL remained at 59 t (130,000 lb) in 2016 and 2017. The GHL for the 2018 

has yet to be established. 

 

2. Changes to the input data:   

• Retained catch and discarded catch data have been updated with the results for the 2016 

directed fishery, during which no vessels participated, and bycatch in other crab fisheries 

in 2016, which was zero.  

• Discarded catch estimates from groundfish fisheries have been listed by calendar year 

from 2009 to 2016, including 0.24 t of bycatch mortality for 2016. 

 

3. Changes to the assessment methodology: This assessment follows the methodology 

recommended by the CPT since May 2012 and the SSC since June 2012.  

 

4. Changes to the assessment results, including projected biomass, TAC/GHL, total catch 

(including discard mortality in all fisheries and retained catch), and OFL: The 

computation of OFL in this assessment follows the methodology recommended by the CPT 

in May 2012 and the SSC in June 2012 applied to the same data and estimates with the same 

assumptions that were used for estimating the 2013–2017 Tier 5 OFLs; computations applied 

directly to data and estimates expressed in metric units resulted in minor changes in results 

used in previous assessments due to rounding. 

 

B. Responses to SSC and CPT Comments 

• Responses to the most recent two sets of SSC and CPT comments on assessments in 

general (and relevant to this assessment): 

• CPT, May 2016:  None pertaining to a Tier 5 assessment. 

• SSC, June 2016: None pertaining to a Tier 5 assessment. 

• CPT, September 2016: None pertaining to a Tier 5 assessment.  

• SSC, October 2015: None. 

 

 

• Responses to the most recent two sets of SSC and CPT comments specific to the 

assessment:  

• CPT, May 2016:  
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• “A Tier 4 assessment based on a random effects model was presented at the 

September 2015 meeting.  Information on mature and legal male biomass from 

the slope trawl surveys was only available for three years (2008, 2010, and 2012), 

and the model runs did not appear to be able to estimate a process error term 

with the available data.  A slope trawl survey is planned for the summer of 2016 

and the CPT will re-evaluate the model with the new survey results in January or 

May 2017……….” 

▪ Response: The author has conducted the preliminary model analysis with 

the 2016 survey included, and includes those results in an updated 

discussion paper. 

• SSC, June 2016:  

•  “In June 2015, the SSC requested that the author approach the harvester about 

whether they would voluntarily allow confidential data to be presented in 

assessments. However, this was not done. The SSC reiterates this request.” 

▪ Still not done. No participation in the directed fishery since 2014. Waivers 

have been obtained from harvesters for the confidential seasons and 

discussions are in progress as to which processor waivers are needed (M. 

Westphal, ADF&G, Dutch Harbor, pers. comm., 14 April 2017). 

• “Finally, the SSC reiterates last year’s request for NMFS to assess the feasibility 

to provide groundfish PSC data for PIGKC by calendar year”. 

▪ Groundfish bycatch data for PIGKC is provided by NMFS-AFSC by 

calendar year from 2009 to 2016, and is included in this assessment. 

• “A Tier 4 assessment based on a random effects model was presented to the CPT 

in September 2015, but it was unable to estimate process error. That Tier 4 

assessment was based on 5 years of slope trawl surveys. The plan is to reevaluate 

the random effects model after results from the 2016 slope trawl survey become 

available in 2017. The SSC looks forward to a future Tier 4 assessment.” 

▪ Not done. The author re-ran the model with 2016 slope survey data and 

presents results in an associated discussion paper. However, the author 

does not present this in relation to a Tier 4 or modified Tier 5 assessment.  

• CPT, September 2015 and 2016:  

• “The CPT recommends the random effects model be re-evaluated after results 

from the 2016 slope survey are available.” 

▪ Response: See above. 

• SSC, October 2015:  

• “The SSC concurs with the CPT recommendation” [“that the random effects 

model be re-evaluated after results from the 2016 slope survey are available”] 

▪ Response:  Okay. See above. 

C. Introduction  

1. Scientific name: Lithodes aequispinus J. E. Benedict, 1895 

 

2. Description of general distribution:  

General distribution of golden king crab: 
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Golden king crab, also called brown king crab, range from Japan to British Columbia. 

In the BSAI, golden king crab are found at depths from 200 m to 1,000 m, generally 

in high-relief habitat such as inter-island passes (NMFS 2004). 

 

Golden, or brown, king crab occur from the Japan Sea to the northern Bering Sea (ca. 

61° N latitude), around the Aleutian Islands, on various sea mounts, and as far south 

as northern British Columbia (Alice Arm) (Jewett et al. 1985). They are typically 

found on the continental slope at depths of 300–1,000 m on extremely rough bottom, 

and are frequently found on coral (NMFS 2004, pages 3–43). 

 

The Pribilof District is part of king crab Registration Area Q (Figure 1). Leon et al. (2017) define 

those boundaries: 

 

The Bering Sea king crab Registration Area Q southern boundary is a line from 

54°36′N lat, 168°W long, to 54°36′N lat, 171°W long, to 55°30′N lat, 171°W 

long, to 55°30′N lat, 173°30′E long. The northern boundary is the latitude of Point 

Hope (68°21′N lat). The eastern boundary is a line from 54°36′N lat, 168°W long, 

to 58°39′N lat, 168°W long, to Cape Newenham (58°39′N lat). The western 

boundary is the United States-Russia Maritime Boundary Line of 1990 (Figure 2-

4). Area Q is divided into 2 districts: the Pribilof District, which includes waters 

south of Cape Newenham; and the Northern District, which includes all waters 

north of Cape Newenham. 

 

The NMFS-AFSC conducted an eastern Bering Sea continental slope trawl survey on a biennial 

schedule during 2002–2016 (the 2014 survey was cancelled). Biomass estimates from the 2016 

slope survey have not been presented to the Crab Plan Team prior to this document. Results of 

this survey from 2002–2016 show that the biomass, number, and density (in number per area and 

in weight per area) of golden king crab on the eastern Bering Sea continental slope are higher in 

the southern areas than in the northern areas (Gaeuman 2013a, 2013b; Haaga et al. 2009; Hoff 

2013, 2016; Hoff and Britt 2003, 2005, 2009, 2011; Pengilly 2015; Pengilly and Daly 2017). Of 

the six survey subareas (see Figure 1 in Hoff 2016), biomass and abundance of golden king crab 

were estimated through 2016 to be highest in the Pribilof Canyon area (survey subarea 2), and 

most of the commercial fishery catches for golden king crab have occurred there (Neufeld and 

Barnard 2003; Barnard and Burt 2004, 2006; Burt and Barnard 2005, 2006; Leon et al. 2017).  

 

Results of the 2002–2016 biennial NMFS-AFSC eastern Bering Sea continental slope trawl 

surveys showed that a majority of golden king crab on the eastern Bering Sea continental slope 

occurred in the 200–400 m and 400–600 m depth ranges (Hoff and Britt 2003, 2005, 2009, 2011; 

Haaga et al. 2009; Hoff 2013, 2016). Commercial fishing for golden king crab in the Bering Sea 

typically occurs at depths of 100–300 fathoms (183–549 m; Barnard and Burt 2004, 2006; Burt 

and Barnard 2005, 2006; Gaeuman 2011, 2013c, 2014; Neufeld and Barnard 2003); average 

depth of pots fished in the 2002 Pribilof District golden king crab fishery (the most recently 

prosecuted fishery for which fishery observer data are not confidential) was 214 fathoms (391 

m). 

 

3. Evidence of stock structure:  
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Although highest densities of golden king crab are found in the deep canyons of the eastern 

Bering Sea continental slope, golden king crab occur sporadically on the surveyed slope at 

locations between those canyons in the eastern Bering Sea (Hoff and Britt 2003, 2005, 2009, 

2011; Gaeuman 2013b, 2014; Hoff 2013, 2016). Stock structure within the Pribilof District has 

not been evaluated. Fishery and slope survey data suggest that areas at the northern and southern 

border of the Pribilof District are largely devoid of golden king crab (Pengilly 2015, Pengilly and 

Daly 2017; Appendix A1), but the stock relationship between golden king crab within and 

outside of the Pribilof District has not been evaluated. 

 

4. Description of life history characteristics relevant to stock assessments (e.g., special 

features of reproductive biology): 

The following review of molt timing and reproductive cycle of golden king crab is adapted from 

Watson et al. (2002): 

 

Unlike red king crab, golden king crab may have an asynchronous molting cycle 

(McBride et al. 1982; Otto and Cummiskey 1985; Sloan 1985; Blau and Pengilly 

1994). In a sample of male golden king crab 95–155-mm CL and female golden 

king crab 104–157-mm CL collected from Prince William Sound and held in 

seawater tanks, Paul and Paul (2000) observed molting in every month of the 

year, although the highest frequency of molting occurred during May–October. 

Watson et al. (2002) estimated that only 50% of 139-mm CL male golden king 

crab in the eastern Aleutian Islands molt annually and that the intermolt period for 

males ≥150-mm CL averages >1 year. 

 

Female lithodids molt before copulation and egg extrusion (Nyblade 1987). From 

observations on embryo development in golden king crab, Otto and Cummiskey 

(1985) suggested that time between successive ovipositions was roughly twice 

that of embryo development and that spawning and molting of mature females 

occurs approximately every two years. Sloan (1985) also suggested a reproductive 

cycle >1 year with a protracted barren phase for female golden king crab. Data 

from tagging studies on female golden king crab in the Aleutian Islands are 

generally consistent with a molt period for mature females of two years or less 

and that females carry embryos for less than two years with a prolonged period in 

which they remain in barren condition (Watson et al. 2002). From laboratory 

studies of golden king crab collected from Prince William Sound, Paul and Paul 

(2001b) estimated a 20-month reproductive cycle with a 12-month clutch 

brooding period. 

 

Numerous observations on clutch and embryo condition of mature female golden 

king crab captured during surveys have been consistent with asynchronous, 

aseasonal reproduction (Otto and Cummiskey 1985; Hiramoto 1985; Sloan 1985; 

Somerton and Otto 1986; Blau and Pengilly 1994; Blau et al. 1998; Watson et al. 

2002). Based on data from Japan (Hiramoto and Sato 1970), McBride et al. 

(1982) suggested that spawning of golden king crab in the Bering Sea and 

Aleutian Islands occurs predominately during the summer and fall.  
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The success of asynchronous and aseasonal spawning of golden king crab may be facilitated by 

fully lecithoatrophic larval development (i.e., the larvae can develop successfully to juvenile crab 

without eating; Shirley and Zhou 1997). 

 

Current knowledge of reproductive biology and maturity of male and female golden king crab 

was reviewed by Webb (2014). 

 

Note that asynchronous, aseasonal molting and the prolonged intermolt period (>1 year) of 

mature female and the larger mature male golden king crab likely makes scoring shell conditions 

very difficult and especially difficult to relate to “time post-molt,” posing problems for inclusion 

of shell condition data into assessment models. 

 

5. Brief summary of management history: 

A complete summary of the management history through 2015 is provided in Leon et al. (2017). 

 

The first domestic harvest of golden king crab in the Pribilof District was in 1981/82 when two 

vessels fished. Peak retained catch and participation occurred in 1983/84 at a retained catch of 

388 t (856,475 lb) landed by 50 vessels (Tables 1a and 1b). Since 1984; the fishery has been 

managed with a calendar-year fishing season under authority of a commissioner’s permit and 

landings and participation have been low and sporadic. Retained catch since 1984 has ranged 

from 0 t (0 lb) to 155 t (341,908 lb), and the number of vessels participating annually has ranged 

from 0 to 8. No vessels fished in 2006–2009, 2015, and 2016, one vessel fished in each of 2010 

and 2012–2014, and two vessels fished in 2011.  

 

 The fishery is not rationalized and has been managed inseason to a guideline harvest level 

(GHL) since 1999. The GHL for 1999 was 91 t (200,000 lb), whereas the GHL for 2000–2014 

was 68 t (150,000 lb).  Following the reduction of ABC from 82 t for 2014 to 68 t for 2015, the 

GHL was reduced in 2015 to 59 t (130,000 lb). 

 

Catch statistics for 2003–2005 and 2010–2014 are confidential under Sec. 16.05.815 of SOA 

statutes. It can be noted, however, that the 2003 and 2004 fisheries were closed by emergency 

order to manage the fishery retained catch towards the GHL, whereas the 2005 and 2010–2014 

fisheries were not closed by emergency order. With regard to 2004, “Catch rates during the 2004 

fishery were among the highest on record, and the fishery was the shortest ever at approximately 

three weeks in duration” (Bowers et al. 2005).  

 

A summary of relevant fishery regulations and management actions pertaining to the Pribilof 

District golden king crab fishery is provided below. 

Only males of a minimum legal size may be retained. By State of Alaska regulation (5 AAC 

34.920 (a)), the minimum legal size limit for Pribilof District golden king crab is 5.5-inches (140 

mm) carapace width (CW), including spines. A carapace length (CL) ≥124 mm is used to 

identify legal-size males when CW measurements are not available (Table 3-5 in NPFMC 2007). 

Golden king crab may be commercially fished only with king crab pots (as defined in 5 AAC 

34.050); pots used to take golden king crab in Registration Area Q (Bering Sea) may be 

longlined (5 AAC 34.925(f)). Pots used to fish for golden king crab in the Pribilof District must 

have at least four escape rings of no less than five and one-half inches inside diameter installed 
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on the vertical plane or at least one-third of one vertical surface of the pot composed of not less 

than nine-inch stretched mesh webbing to permit escapement of undersized golden king crab (5 

AAC 34.925 (c)). The sidewall “…must contain an opening equal to or exceeding 18 inches in 

length... The opening must be laced, sewn, or secured together by a single length of untreated, 

100 percent cotton twine, no larger than 30 thread.” (5 AAC 39.145(1)). There is a pot limit of 

40 pots for vessels ≤125-feet LOA and of 50 pots for vessels >125-feet LOA (5 AAC 34.925 

(e)(1)(B)). Golden king crab can be harvested from 1 January through 31 December only under 

conditions of a permit issued by the commissioner of ADF&G (5 AAC 34.910 (b)(3)). Since 

2001, those conditions have included the carrying of a fisheries observer. 

 

D. Data 

1. Summary of new information: 

1. Retained catch and estimated discarded catch during the 2016 directed fishery (no effort 

and no catch), estimated discarded catch during other crab fisheries in 2016 (no catch), 

and the estimated discarded catch in groundfish fisheries during 2016 have been added. 

 

2. Data presented as time series: 

a. Total catch and b. Information on bycatch and discards: 

• The 1981/82–1983/84, 1984–2016 time series of retained catch (number and weight of 

crab, including deadloss), effort (vessels and pot lifts), average weight of landed crab, 

average carapace length of landed crab, and CPUE (number of landed crab captured per 

pot lift) are presented in Tables 1a  and 1b.  

• The 1993–2016 time series of weight of retained catch and estimated weight of discarded 

catch and estimated weight of fishery mortality of Pribilof golden king crab during the 

directed fishery and all other crab fisheries are given in Table 2. Discarded catch of 

Pribilof golden king crab occurs mainly in the directed golden king crab fishery, when 

prosecuted, and to a lesser extent in the Bering Sea snow crab fishery and the Bering Sea 

grooved Tanner crab fishery when prosecuted. Because the Bering Sea snow crab fishery 

is largely prosecuted between January and May and the Bering Sea grooved Tanner crab 

fishery is prosecuted with a calendar year season, discarded catch in the crab fisheries can 

be estimated on a calendar year basis to align with the calendar-year season for Pribilof 

District golden king crab. Observer data on size distributions and estimated catch 

numbers of discarded catch were used to estimate the weight of discarded catch of golden 

king crab by applying a weight-at-length estimator (see below). Observers were first 

deployed to collect discarded catch data during the Pribilof District golden king crab 

fishery in 2001 and during the Bering Sea grooved Tanner crab fishery in 1994. Retained 

catch or observer data are confidential for at least one of the crab fisheries in 1999–2001, 

2003–2005, and 2010−2014. Following Siddeek et al. (2014), the bycatch mortality rate 

of golden king crab captured and discarded during Aleutian Islands golden king crab 

fishery was assumed to be 0.2. Following Foy (2013), bycatch mortality rate of king crab 

during the snow crab fishery was assumed to be 0.5. The bycatch mortality rate during 

the grooved Tanner crab fishery was also assumed to be 0.5.  

• The groundfish fishery discarded catch data are grouped into crab fishery years from 

1991/92–2008/09, and by calendar years from 2009–2016. The 1991/92–2016 time series 

of estimated annual weight of discarded catch and total fishery mortality of golden king 
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crab during federal groundfish fisheries by gear type (combining pot and hook-and-line 

gear as a single “fixed gear” category and combining non-pelagic and pelagic trawl gear 

as a single “trawl” category) is provided in Table 3. Following Foy (2013), the bycatch 

mortality of king crab captured by fixed gear during groundfish fisheries was assumed to 

be 0.5 and of king crab captured by trawls during groundfish fisheries was assumed to be 

0.8. Data from 1991/92–2008/09 are from federal reporting areas 513, 517, and 521, 

whereas the data from 2009–2016 are from the State statistical areas falling within the 

Pribilof District. 

• Table 4 summarizes the available data on retained catch weight and the available 

estimates of discarded catch weight. 

 

c. Catch-at-length: Not used in a Tier 5 assessment; none are presented. 

 

d. Survey biomass estimates:  Survey biomass estimates are not used in a Tier 5 assessment. 

However, see Appendix A1 for biomass estimates of mature male golden king crab using 

data from the 2002–2016 NMFS-AFSC eastern Bering Sea upper continental slope trawl 

survey.  

 

e. Survey catch at length: Survey catch at length data are not used in a Tier 5 assessment. 

However, see Appendix A1 for size data composition by sex of golden king crab during the 

2002–2016 Bering Sea upper continental slope trawl surveys.  

 

f. Other data time series:  None. 

 

3. Data which may be aggregated over time: 

a. Growth-per-molt; frequency of molting, etc. (by sex and perhaps maturity state): 

The author is not aware of data on growth per molt collected from golden king crab in the 

Pribilof District. Growth per molt of juvenile golden king crab, 2–35 mm CL, collected from 

Prince William Sound have been observed in a laboratory setting and equations describing the 

increase in CL and intermolt period were estimated from those observations (Paul and Paul 

2001a); those results are not provided here. Growth per molt has also been estimated from 

golden king crab with CL ≥90 mm that were tagged in the Aleutian Islands and recovered during 

subsequent commercial fisheries (Watson et al. 2002); those results are not presented here 

because growth-per-molt information does not enter into a Tier 5 assessment. 

 

See section C.4 for discussion of evidence that mature female and the larger male golden king 

crab exhibit asynchronous, aseasonal molting and a prolonged intermolt period (>1 year).  

 

b. Weight-at length or weight-at-age (by sex): 

Parameters (A and B) used for estimating weight (g) from carapace length (CL, mm) of male and 

female golden king crab according to the equation, Weight = A*CLB (from Table 3-5, NPFMC 

2007) are: A = 0.0002988 and B = 3.135 for males and A = 0.0014240 and B = 2.781 for 

females. 

 

c. Natural mortality rate: 
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The default natural mortality rate assumed for king crab species by NPFMC (2007) is M=0.18. 

Note, however, natural mortality was not used for OFL estimation because this stock belongs to 

Tier 5. 

   

4. Information on any data sources that were available, but were excluded from the 

assessment: 

• Standardized bottom trawl surveys to assess the groundfish and invertebrate resources of 

the eastern Bering Sea upper continental slope were performed in 2002, 2004, 2008, 

2010, 2012, and 2016 (Hoff and Britt 2003, 2005, 2009, 2011; Haaga et al. 2009, 

Gaeuman 2013a, 2013b; Hoff 2016). Data and analysed results pertaining to golden king 

crab from the 2008–2016 EBS upper continental slope surveys are provided in Appendix 

A1, but are not used in this Tier 5 assessment.  

• Data on the size and sex composition of retained catch and discarded catch of Pribilof 

District golden king crab during the directed fishery and other crab fisheries are available 

but are not presented in this Tier 5 assessment. 

 

E. Analytic Approach 

1. History of modeling approaches for this stock:   

Gaeuman (2013a, 2013b) and Pengilly (2015) presented assessment-modelling approaches for 

this stock to the Crab Plan Team using data from the biennial NMFS EBS continental slope 

survey. However, following the cancellation of the 2014 slope survey, this stock continued to be 

managed as a Tier 5 stock for 2017, as had been recommended by NPFMC (2007) and by the 

CPT and SSC in 2008−2017. 

   

2. Model Description:  Subsections a–i are not applicable to a Tier 5 sock. 

Only an OFL and ABC is estimated for Tier 5 stocks, where “the OFL represent[s] the average 

retained catch from a time period determined to be representative of the production potential of 

the stock” (NPFMC 2007). Although NPFMC (2007) defined the OFL in terms of the retained 

catch, total-catch OFLs may be considered for Tier 5 stocks for which non-target fishery removal 

data are available (Federal Register/Vol. 73, No. 116, 33926). The CPT (in May 2010) and the 

SSC (in June 2010) endorsed the use of a total-catch OFL to establish the OFL for this stock. 

This assessment recommends – and only considers – use of a total-catch OFL for 2018. 

 

Additionally, NPFMC (2007) states that for estimating the OFL of Tier 5 stocks, “The time 

period selected for computing the average catch, hence the OFL, should be based on the best 

scientific information available and provide the required risk aversion for stock conservation and 

utilization goals.” Given that a total-catch OFL is to be used, alternative configurations for the 

Tier 5 model are limited to: 1) alternative time periods for computing the average total-catch 

mortality; and 2) alternative approaches for estimating the discarded catch component of the total 

catch mortality during that period.  

 

With regard to choosing from alternative time periods for computing average annual catch to 

compute the OFL, NPFMC (2007) suggested using the average retained catch over the years 

1993 to 1999 as the estimated OFL for Pribilof District golden king crab. Years post-1984 were 

chosen based on an assumed 8-year lag between hatching and growth to legal size after the 
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1976/77 “regime shift”. With regard to excluding data from years 1985 to 1992 and years after 

1999, NPFMC (2007) states, “The excluded years are from 1985 to 1992 and from 2000 to 2005 

for Pribilof Islands golden king crab when the fishing effort was less than 10% of the average or 

the GHL was set below the previous average catch.”  In 2008 the CPT and SSC endorsed the 

approach of estimating OFL as the average retained catch during 1993–1999 for setting a 

retained-catch OFL for 2009. However, in May 2009 the CPT set a retained-catch OFL for 2010, 

but using the average retained catch during 1993–1998; 1999 was excluded because it was the 

first year that a preseason GHL was established for the fishery. In May 2010, the CPT 

established a total-catch OFL computed as a function of the average retained catch during 1993–

1998, a ratio-based estimate of the bycatch mortality during the directed fishery of that period, 

and an estimate of the “background” bycatch mortality due to other fisheries. Other time periods, 

extending into years post-1999, had been considered for computing the average retained catch in 

the establishment of the 2009, 2010, and 2011 OFLs, but those time periods were rejected by the 

CPT and the SSC. Hence the period for calculating the retained-catch portion of the Tier 5 total-

catch OFL for this stock has been firmly established by the CPT and SSC at 1993–1998 (the 

CPT said “this freezes the time frame...”). For the 2012 and the 2013 OFLs, the CPT and SSC 

recommended the period 2001–2010 for calculating the ratio-based estimate of the bycatch 

mortality during the 1993–1998 directed fishery, the period 1994–1998 for calculating the 

estimated bycatch mortality due to non-directed crab fisheries during 1993–1998, and the period 

1992/93–1998/99 for calculating the estimated bycatch mortality due to groundfish fisheries 

during 1993–1998.  

 

Two alternative approaches for determination of the 2013 OFL were presented to the CPT and 

SSC in May–June 2013. Alternative 1 was the status quo approach (i.e., the approach used to 

establish the 2012 total-catch OFL). Alternative 2 was the same as Alternative 1 except that it 

used updated discarded catch data from crab fisheries in 2011. Alternative 2 was  presented 

specifically to allow the CPT and the SSC to clarify whether the 2013 and subsequent OFLs 

should be computed using data collected after 2010, or if the time periods for data used to 

calculate the 2013 and subsequent OFLs should be “frozen” at the years used to calculate the 

2012 OFL. The CPT and the SSC both recommended Alternative 1, clarifying that Tier 5 OFLs 

for future years should be computed using only data collected through 2010. Following that 

recommendation from CPT and the SSC, only one alternative was presented for computing the 

2014–2017 Tier 5 OFLs (i.e., the Alternative 1 that was presented in 2013). The 2018 Tier 5 

OFL recommended here uses the same approach as used for the 2013–2017 Tier 5 OFLs. 

3. Model Selection and Evaluation: 

a. Description of alternative model configurations 

 

The recommended OFL is set as a total-catch OFL using 1993–1998 to compute average annual 

retained catch, an estimate of the ratio of bycatch mortality to retained catch during the directed 

fishery, an estimate of the average annual bycatch mortality due to the non-directed crab 

fisheries during 1994–1998, and an estimate of average annual bycatch mortality due to the 

groundfish fisheries during 1992/93–1998/99; i.e., 

 

OFL2018 = (1+R2001–2010)*RET1993-1998 + BMNC,1994-1998 + BMGF,92/93–98/99, 

 

1496



where,  

• R2001–2010 is the average of the estimated annual ratio of bycatch mortality to retained 

catch in the directed fishery during 2001–2010 

• RET1993-1998 is the average annual retained catch in the directed crab fishery during 1993–

1998 

• BMNC,1994-1998 is the estimated average annual bycatch mortality in non-directed crab 

fisheries during 1994–1998 

• BMGF,92/93–98/99 is the estimated average annual bycatch mortality in groundfish fisheries 

during 1992/93–1998/99. 

 

The average of the estimated annual ratio of bycatch mortality to retained catch in the directed 

fishery during 2001–2010 is used as a factor to estimate bycatch mortality in the directed fishery 

during 1993–1998 because, whereas there are no data on discarded catch for the directed fishery 

during 1993–1998, there are such data from the directed fishery during 2001–2010 (excluding 

2006–2009, when there was no fishery effort). 

 

There are no discarded catch data available for the non-directed fisheries during 1993, thus 

1994–1998 is used to estimate average annual bycatch mortality in non-directed fisheries.   

 

The estimated average annual bycatch mortality in groundfish fisheries during 1992/93–1998/99 

is used to estimate the average annual bycatch mortality in groundfish fisheries during 1993–

1998 because 1992/93–1998/99 is the shortest time period of crab fishery years that encompasses 

calendar years 1993–1998. 

 

Statistics on the data and estimates used to calculate RET1993-1998, R2001-2010, BMNC,1994-1998, and 

BMGF,93/94-98/99 are provided in Table 5; the column means in Table 5 are the calculated values of 

RET1993-1998, R2001-2010, BMNC,1994-1998, and BMGF,93/94-98/99. Using the calculated values of 

RET1993-1998, R2001-2010, BMNC,1994-1998, and BMGF,93/94-98/99, the calculated value of OFL2018 is, 

 

OFL2018 = (1+0.052)*78.80 t + 6.09 t + 3.79 t = 93 t (204,527 lbs). 

 

 

b. Show a progression of results from the previous assessment to the preferred base model by 

adding each new data source and each model modification in turn to enable the impacts of 

these changes to be assessed:  See the table, below. 

 

 

 

Model 

Retained- 

vs. 

Total-catch 

 

Time Period 

 

Resulting OFL 

(t) 

Recommended/status quo Total-catch 1993–1998 93 

 

This is recommended as being the best approach with the limited data available and follows the 

advice of the CPT and SSC to “freeze” the period for calculation of the OFL at the time period 

that was established for the 2012 OFL and uses the computations recommended by the CPT and 

SSC in 2013. 
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c. Evidence of search for balance between realistic (but possibly over-parameterized) and 

simpler (but not realistic) models: See Section E, above.  

 

d. Convergence status and convergence criteria for the base-case model (or proposed base-

case model):  Not applicable. 

 

 

e. Table (or plot) of the sample sizes assumed for the compositional data: Not applicable. 

 

f. Do parameter estimates for all models make sense, are they credible?: 

The time period used for determining the OFL was established by the SSC in June 2012. 

Retained catch data come from fish tickets and annual retained catch is considered a known 

(not estimated) value. Estimates of discarded catch from crab fisheries data are generally 

considered credible (e.g., Byrne and Pengilly 1998; Gaeuman 2011, 2013c, 2014), but may 

have greater uncertainty in a small, low effort fishery such as the Pribilof golden king crab 

fishery. Estimates of bycatch mortality are estimates of discarded catch times an assumed 

bycatch mortality rate. The assumed bycatch mortality rates (i.e., 0.2 for crab fisheries, 0.5 

for fixed-gear groundfish fisheries, and 0.8 for trawl groundfish fisheries) have not been 

estimated from data. 

 

g. Description of criteria used to evaluate the model or to choose among alternative models, 

including the role (if any) of uncertainty:  See section E.3.c, above. 

 

h. Residual analysis (e.g. residual plots, time series plots of observed and predicted values or 

other approach):  Not applicable. 

 

i. Evaluation of the model, if only one model is presented; or evaluation of alternative 

models and selection of final model, if more than one model is presented:  See section 

E.3.c, above. 

4. Results (best model(s)): 

a. List of effective sample sizes, the weighting factors applied when fitting the indices, and the 

weighting factors applied to any penalties:  Not applicable. 

 

b. Tables of estimates (all quantities should be accompanied by confidence intervals or other 

statistical measures of uncertainty, unless infeasible; include estimates from previous 

SAFEs for retrospective comparisons):  See Tables 2–5. 

 

c. Graphs of estimates (all quantities should be accompanied by confidence intervals or other 

statistical measures of uncertainty, unless infeasible):  Information requested for this 

subsection is not applicable to a Tier 5 stock.  

 

d. Evaluation of the fit to the data:  Not applicable for Tier 5 stock. 
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e. Retrospective and historic analyses (retrospective analyses involve taking the “best” model 

and truncating the time-series of data on which the assessment is based; a historic analysis 

involves plotting the results from previous assessments):  Not applicable for Tier 5 stock. 

 

f. Uncertainty and sensitivity analyses (this section should highlight unresolved problems 

and major uncertainties, along with any special issues that complicate scientific 

assessment, including questions about the best model, etc.):  For this assessment, the major 

uncertainties are: 

 

• Whether the time period is “representative of the production potential of the stock” and if 

it serves to “provide the required risk aversion for stock conservation and utilization 

goals”, or whether any such time period exists. 

o Only a period of 6 years is used to compute the OFL, 1993–1998. The SSC has 

noted its uneasiness with that situation (“6 years of data are very few years upon 

which to base these catch specifications.” June 2011 SSC minutes).  

• No data on discarded catch due to the directed fishery are available from the period used 

to compute the OFL.  

o Estimation of the OFL rests on the assumption that data on the ratio of discarded 

catch to retained catch from post-2000 can be used to accurately estimate that 

ratio in 1993–1998.  

• The bycatch mortality rates used in estimation of total catch.  

o Bycatch mortality is unknown and no data that could be used to estimate the 

bycatch mortality of this stock are known to the author. Hence, only the values 

that are assumed for other BSAI king crab stock assessments are considered in 

this assessment. The estimated OFL increases (or decreases) relative to the 

bycatch mortality rates assumed: doubling the assumed bycatch mortality rates 

increases the OFL estimate by a factor of 1.15; halving the assumed bycatch 

mortality rates decreases the OFL estimate by a factor of 0.92. 

 

F. Calculation of the OFL 

1. Specification of the Tier level and stock status level for computing the OFL: 

• Recommended as Tier 5, total-catch OFL estimated by estimated average total catch over 

a specified period. 

• Recommended time period for computing retained-catch OFL: 1993–1998.  

o This is the same time period that was used to establish OFL for 2010–2017. The 

time period 1993–1998 provides the longest continuous time period through 2016 

during which vessels participated in the fishery, retained-catch data can be 

retrieved that are not confidential, and the retained catch was not constrained by a 

GHL. Data on discarded catch contemporaneous with 1993-1998 to the extent 

possible are used to calculate the total-catch OFL. 

 

2. List of parameter and stock size estimates (or best available proxies thereof) required 

by limit and target control rules specified in the fishery management plan:  Not 

applicable for Tier 5 stock. 
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3. Specification of the total-catch OFL: 

a. Provide the equations (from Amendment 24) on which the OFL is to be based:  

From Federal Register / Vol. 73, No. 116, page 33926, “For stocks in Tier 5, the overfishing 

level is specified in terms of an average catch value over an historical time period, unless the 

Scientific and Statistical Committee recommends an alternative value based on the best available 

scientific information.”  Additionally, “For stocks where nontarget fishery removal data are 

available, catch includes all fishery removals, including retained catch and discard losses. 

Discard losses will be determined by multiplying the appropriate handling mortality rate by 

observer estimates of bycatch discards. For stocks where only retained catch information is 

available, the overfishing level is set for and compared to the retained catch” (FR/Vol. 73, No. 

116, 33926). That compares with the specification of NPFMC (2007) that the OFL “represent[s] 

the average retained catch from a time period determined to be representative of the production 

potential of the stock.” 

 

b. Basis for projecting MMB to the time of mating:  Not applicable for Tier 5 stock. 

 

c. Specification of FOFL, OFL, and other applicable measures (if any) relevant to determining 

whether the stock is overfished or if overfishing is occurring:  See table below. No vessels 

participated in the 2016 directed fishery and no bycatch was observed in crab fisheries in 

2016; therefore total catch in 2016 was zero. Although 0.24 t of fishery mortality occurred 

during groundfish fisheries in 2016, this level of fishery mortality does not exceed the 2016 

OFL. As such, overfishing did not occur in 2016. Values for the 2018 OFL and ABC are the 

author’s recommendations. 

 

Management Performance Table (values in t) 

Calendar 

Year 

 

MSST 

Biomass 

(MMB) 
GHLa 

Retained 

Catch 

Total 

Catchb 
OFL ABC 

2013 N/A N/A 68 Conf. c Conf. c 91 82 

2014 N/A N/A 68 Conf. c Conf. c 91 82 

2015 N/A N/A 59 0 1.92 91 68 

2016 N/A N/A 59 0 0.24 91 68 

2017 N/A N/A 59   93 70 

2018 N/A N/A    93 70 

a. Guideline harvest level, established in lb and converted to t. 

b. Total retained catch plus estimated bycatch mortality of discarded catch during crab and groundfish fisheries. Total reratined 

catch is not listed for 2013 and 2014 because the directed fishery is confidential under Sec. 16.05.815(SOA statute).  

c. Confidential under Sec. 16.05.815 (SOA statute). GHL not attained. 

 

Management Performance Table (values in millions of lb) 
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Calendar 

Year 

 

MSST 

Biomass 

(MMB) 
GHLa 

Retained 

Catch 

Total 

Catchb 
OFL ABC 

2013 N/A N/A 150,000 Conf.c Conf.c 0.20  0.18  

2014 N/A N/A 150,000 Conf.c Conf.c 0.20  0.18  

2015 N/A N/A 130,000 0 0.004 0.20 0.15 

2016 N/A N/A 130,000 0 <0.001 0.20 0.15 

2017 N/A N/A 130,000   0.20 0.15 

2018 N/A N/A    0.20 0.15 

4. Specification of the retained-catch portion of the total-catch OFL: 

a. Equation for recommended retained-portion of total-catch OFL. 

Retained-catch portion  = average retained catch during 1993–1998 (Table 5). 

= 79 t. 

 

Note that a retained catch of 79 t would exceed the author’s recommended ABC for 2018 (70 

t); see G.4, below.  

 

5. Recommended FOFL, OFL total catch and the retained portion for the coming year: 

See sections F.3 and F.4, above; no FOFL is recommended for a Tier 5 stock. 

G. Calculation of ABC 

1. PDF of OFL. A bootstrap estimates of the sampling distribution (assuming no error in 

estimation of discarded catch) of the status quo Alternative 1 OFL is shown in Figure 2 (1,000 

samples drawn with replacement independently from each of the four columns of values in Table 

5 to calculate R2001-2010,  RET1993-1998, BMNC,1994-1998,  BMGF,92/93-98/99,  and OFL2016). The mean 

and CV computed from the 1,000 replicates are 92 t and 0.25, respectively. Note that generated 

sampling distribution and computed standard deviation are meaningful as measures in the 

uncertainty of the OFL only if assumptions on the choice of years used to compute the Tier 5 

OFL are true (see Sections E.2 and E.4.f). 

 

2. List of variables related to scientific uncertainty. 

• Bycatch mortality rate in each fishery that discarded catch occurs. Note that for Tier 5 

stocks, an increase in an assumed bycatch mortality rate will increase the OFL (and hence 

the ABC), but has no effect on the retained-catch portion of the OFL or the retained-catch 

portion of the ABC.  

• Estimated discarded catch and bycatch mortality for each fishery that discarded catch 

occurred in during 1993–1998. 

• The time period to compute the average catch under the assumption of representing “a 

time period determined to be representative of the production potential of the stock.” 

• Stock size in 2018 is unknown. 

 

3. List of additional uncertainties for alternative sigma-b. Not applicable to this Tier 5 

assessment. 

 

5. Author recommended ABC. 25% buffer on OFL; i.e., ABC = (1-0.25)·(93 t) = 70 t 

(153,395 lb). 
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H. Rebuilding Analyses 

Not applicable; this stock has not been declared overfished. 

 

I. Data Gaps and Research Priorities 
 

Data from the 2008–2012 biennial NMFS-AFSC eastern Bering Sea upper continental slope 

trawl surveys have been examined for their utility in determining overfishing levels and stock 

status by Gaeuman (2103a, 2013b) and Pengilly and Daly (2017). Cancellation of the survey that 

was scheduled for 2014 raised uncertainties on the prospects for obtaining fishery-independent 

survey data on this stock in the future; however, a slope survey was conducted in summer 2016. 

Those data are included in an updated discussion paper presented to the CPT. 
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Table 1a. Commercial fishery history for the Pribilof District golden king crab fishery, 1981/82 

through 2016: number of vessels, guideline harvest level (GHL; established in lb, 

converted to t), weight of retained catch (Harvest; t), number of retained crab, pot lifts, 

fishery catch per unit effort (CPUE; retained crab per pot lift), and average weight (kg) 

of landed crab. 

 

Note:  CF: confidential information due to less than three vessels or processors having participated in fishery;  

CF: confidential information and fishery was closed by emergency order to manage the harvest to the preseason 

GHL. 
a Deadloss included.  

 

 

 

  

Fishing/Calendar Average

Year Vessels GHL Harvest
a

Crab
a

Pot lifts CPUE weight
1981/82 2 – CF CF CF CF CF

1982/83 10 – 32 15,330 5,252 3 2.1

1983/84 50 – 388 253,162 26,035 10 1.5

1984 0 – 0 0 0 – –
1985 1 – CF CF CF CF CF

1986 0 – 0 0 0 – –
1987 1 – CF CF CF CF CF

1988 - 1989 2 – CF CF CF CF CF

1990 - 1992 0 – 0 0 0 – –
1993 5 – 31 17,643 15,395 1 1.7

1994 3 – 40 21,477 1,845 12 1.9

1995 7 – 155 82,489 9,551 9 1.9

1996 6 – 149 91,947 9,952 9 1.6

1997 7 – 81 43,305 4,673 9 1.9

1998 3 – 16 9,205 1,530 6 1.8

1999 3 91 80 44,098 2,995 15 1.8

2000 7 68 58 29,145 5,450 5 2.0

2001 6 68 66 33,723 4,262 8 2.0

2002 8 68 68 34,860 5,279 6 2.0

2003 3 68 CF CF CF CF CF

2004 5 68 CF CF CF CF CF

2005 4 68 CF CF CF CF CF
2006 - 2009 0 68 0 0 0 – –
2010 1 68 CF CF CF CF CF

2011 2 68 CF CF CF CF CF

2012 1 68 CF CF CF CF CF

2013 1 68 CF CF CF CF CF

2014 1 68 CF CF CF CF CF
2015 0 59 0 0 0 – –
2016 0 59 0 0 0 – –
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Table 1b. Commercial fishery history for the Pribilof District golden king crab fishery, 1981/82 

through 2016: number of vessels, guideline harvest level (GHL; lb), weight of retained catch 

(Harvest; lb), number of retained crab, pot lifts, fishery catch per unit effort (CPUE; retained 

crab per pot lift), and average weight (lb) of landed crab. 

 

Note:  CF: confidential information due to less than three vessels or processors having participated in fishery.  

CF: confidential information and fishery was closed by emergency order to manage the harvest to the preseason 

GHL. 
a Deadloss included. 

 

 

  

Fishing/Calendar Average

Year Vessels GHL Harvest
a

Crab
a

Pot lifts CPUE weight
1981/82 2 – CF CF CF CF CF

1982/83 10 – 69,970 15,330 5,252 3 4.6

1983/84 50 – 856,475 253,162 26,035 10 3.4

1984 0 – 0 0 0 – –
1985 1 – CF CF CF CF CF

1986 0 – 0 0 0 – –
1987 1 – CF CF CF CF CF

1988 - 1989 2 – CF CF CF CF CF

1990 - 1992 0 – 0 0 0 – –
1993 5 – 67,458 17,643 15,395 1 3.8

1994 3 – 88,985 21,477 1,845 12 4.1

1995 7 – 341,908 82,489 9,551 9 4.1

1996 6 – 329,009 91,947 9,952 9 3.6

1997 7 – 179,249 43,305 4,673 9 4.1

1998 3 – 35,722 9,205 1,530 6 3.9

1999 3 200,000 177,108 44,098 2,995 15 4.0

2000 7 150,000 127,217 29,145 5,450 5 4.4

2001 6 150,000 145,876 33,723 4,262 8 4.3

2002 8 150,000 150,434 34,860 5,279 6 4.3

2003 3 150,000 CF CF CF CF CF

2004 5 150,000 CF CF CF CF CF

2005 4 150,000 CF CF CF CF CF
2006 - 2009 0 150,000 0 0 0 – –
2010 1 150,000 CF CF CF CF CF

2011 2 150,000 CF CF CF CF CF

2012 1 150,000 CF CF CF CF CF

2013 1 150,000 CF CF CF CF CF

2014 1 150,000 CF CF CF CF CF
2015 0 130,000 0 0 0 – –
2016 0 130,000 0 0 0 – –
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Table 2. Weight (t) of retained catch and estimated discarded catch of Pribilof golden king crab 

during crab fisheries, 1993–2016, with total fishery mortality (t) estimated by 

applying a bycatch mortality rate of 0.2 to the discarded catch in the directed fishery 

and a bycatch mortality rate of 0.5 to the discarded catch in the non-directed fisheries. 

 

  Discarded (no mortality rate applied)  

    Pribilof Islands  Bering Sea  

Calendar 

Year 

 

Retained 

golden  

king crab 

Bering Sea 

snow crab 

grooved 

Tanner crab 

Total 

Mortality 

1993 30.60 no data 0.00 no data — 

1994 40.36 no data 3.80 1.15 — 

1995 155.09 no data 0.63 15.65 — 

1996 149.24 no data 0.24 2.34 — 

1997 81.31 no data 4.05 no fishing — 

1998 16.20 no data 33.00 no fishing — 

1999 80.33 no data 0.00 confidential — 

2000 57.70 no data 0.00 confidential — 

2001 66.17 17.82 0.00 confidential confidential 

2002 68.24 19.00 1.06 no fishing 72.57 

2003 confidential confidential 0.15 confidential 72.20 

2004 confidential confidential 0.00 confidential 66.93 

2005 confidential confidential 0.00 confidential 29.85 

2006 no fishing no fishing 0.00 0.00 0.00 

2007 no fishing no fishing 0.00 0.00 0.00 

2008 no fishing no fishing 0.00 no fishing 0.00 

2009 no fishing no fishing 0.96 no fishing 0.48 

2010 confidential confidential 0.00 no fishing confidential 

2011 confidential confidential 0.27 no fishing confidential 

2012 confidential confidential 0.27 no fishing confidential 

2013 confidential confidential 0.58 no fishing confidential 

2014 confidential confidential 0.12 no fishing confidential 

2015 no fishing no fishing 0.00 no fishing 0.00 

2016 no fishing no fishing 0.00 no fishing 0.00 
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Table 3. Estimated annual weight (t) of discarded catch of Pribilof golden king crab (all sizes, 

males and females) during federal groundfish fisheries by gear type (fixed or trawl) with 

total bycatch mortality (t) estimated by assuming bycatch mortality rate = 0.5 for fixed-

gear fisheries and bycatch mortality rate = 0.8 for trawl fisheries. 1991/92–2008/09 is 

listed by crab fishery year, while 2009-2016 are listed by calendar year. 

 

  

Fixed Trawl Total Mortality

1991/92 0.05 6.11 6.16 4.91

1992/93 3.49 8.87 12.35 8.84

1993/94 0.51 9.64 10.14 7.96

1994/95 0.25 3.22 3.47 2.70

1995/96 0.41 1.90 2.31 1.72

1996/97 0.02 0.87 0.89 0.71

1997/98 1.34 0.49 1.83 1.06

1998/99 6.77 0.18 6.95 3.53

1999/00 4.79 0.65 5.43 2.91

2000/01 1.63 1.88 3.50 2.31

2001/02 1.50 0.36 1.85 1.03

2002/03 0.55 0.21 0.77 0.45

2003/04 0.23 0.18 0.41 0.26

2004/05 0.16 0.39 0.55 0.39

2005/06 0.09 0.06 0.15 0.09

2006/07 1.32 0.12 1.44 0.75

2007/08 8.47 0.16 8.63 4.36

2008/09 3.99 1.56 5.55 3.24

2009 2.67 2.55 5.22 3.38

2010 2.13 1.01 3.14 1.87

2011 0.85 1.33 2.18 1.49

2012 0.73 0.82 1.55 1.02

2013 0.50 2.49 2.99 2.24

2014 0.60 0.53 1.13 0.73

2015 0.81 1.89 2.70 1.92

2016 0.23 0.16 0.39 0.24

Average 1.70 1.83 3.53 2.31

Total(no mortality rate applied)

Crab fishing year 

(1991/92–2008/09) 

or Calendar year 

(2009-2016)

Bycatch in groundfish fisheries
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Table 4. Retained-catch weights (t) and estimates of discarded catch weights (t) of Pribilof 

Islands golden king crab available for a Tier 5 assessment; shaded, bold values are 

used in computation of the recommended (status quo Alternative 1) Tier 5 OFL. 

 
a. Year convention for retained weights in directed fishery, 1984-2016, estimates of discarded bycatch weights in directed, non-directed crab 

fisheries, and grounfish (2009-2016). 
b. Year convention for retained weights in directed fishery, 1981/82-1983/84, and estimates of discarded bycatch rates in groundfish fisheries 

(1991/92-2008/09). 

 
  

Retained catch weight

Fish tickets

Calendar Year
a

Crab Fishing Year
b Directed fishery Directed fishery Non-directed crab fisheries Fixed gear, groundfish Trawl gear, groundfish

1981/82 Confidential

1982/83 31.74

1983/84 388.49

1984 1984/85 0.00

1985 1985/86 Confidential

1986 1986/87 0.00

1987 1987/88 Confidential

1988 1988/89 Confidential

1989 1989/90 Confidential

1990 1990/91 0.00

1991 1991/92 0.00 0.05 6.11

1992 1992/93 0.00 3.49 8.87

1993 1993/94 30.60 0.51 9.64

1994 1994/95 40.36 4.95 0.25 3.22

1995 1995/96 155.09 16.28 0.41 1.90

1996 1996/97 149.24 2.58 0.02 0.87

1997 1997/98 81.31 4.05 1.34 0.49

1998 1998/99 16.20 33.00 6.77 0.18

1999 1999/00 80.33 Confidential 4.79 0.65

2000 2000/01 57.70 Confidential 1.63 1.88

2001 2001/02 66.17 17.20 Confidential 1.50 0.36

2002 2002/03 68.24 19.00 1.06 0.55 0.21

2003 2003/04 Confidential Confidential Confidential 0.23 0.18

2004 2004/05 Confidential Confidential Confidential 0.16 0.39

2005 2005/06 Confidential Confidential Confidential 0.09 0.06

2006 2006/07 0.00 0.00 0.00 1.32 0.12

2007 2007/08 0.00 0.00 0.00 8.47 0.16

2008 2008/09 0.00 0.00 0.00 3.99 1.56

2009 2009/10 0.00 0.96 0.96 2.67 2.55

2010 2010/11 Confidential Confidential 0.00 2.13 1.01

2011 2011/12 Confidential Confidential 0.27 0.85 1.33

2012 2012/13 Confidential Confidential 0.27 0.73 0.82

2013 2013/14 Confidential Confidential 0.58 0.50 2.49

2014 2014/15 Confidential Confidential 0.12 0.60 0.53

2015 2015/16 0.00 0.00 0.00 0.812 1.890

2016 2016/17 0.00 0.00 0.00 0.231 0.158

Discarded catch weight (estimated)

Blend method; Catch Accounting SystemObserver data: lengths, catch per sampled pot
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Table 5. Data for calculation of RET1993-1998 (t) and estimates used in calculation of R2001-2010 

(ratio, t:t), BMNC,1994-1998 (t), and BMGF,92/93-98/99 (t) for calculation of the recommended 

(status quo Alternative 1) Pribilof Islands golden king crab Tier 5 2018 OFL (t); values 

under  RET1993-1998 are from Table 1, values under  R2001-2010 were computed from the 

retained catch data and the directed fishery discarded catch estimates in Table 2 

(assumed bycatch mortality rate = 0.2), values under  BMNC,1994-1998 were computed 

from the non-directed crab fishery discarded catch estimates in Table 2 (assumed 

bycatch mortality rate = 0.5) and values under BMGF,92/93-98/99 are from Table 3. 

 

Calendar 

Yeara 

Crab 

Fishing 

Yearb RET1993-1998 R2001-2010 BMNC,1994-1998 BMGF,92/93-98/99 

1993 1992/93 30.60 

  

8.84 

1994 1993/94 40.36 

 

2.48 7.96 

1995 1994/95 155.09 

 

8.14 2.70 

1996 1995/96 149.24 

 

1.29 1.72 

1997 1996/97 81.31 

 

2.03 0.71 

1998 1997/98 16.20 

 

16.50 1.06 

1999 1998/99 

   

3.53 

2000 1999/00 

    2001 2000/01 

 

0.054 

  2002 2001/02 

 

0.056 

  2003 2002/03 

 

conf. 

  2004 2003/04 

 

conf. 

  2005 2004/05 

 

conf. 

  2006 2005/06 

    2007 2006/07 

    2008 2007/08 

    2009 2008/09 

    2010 2009/10 

 

conf. 

    N 6 6 5 7 

 

Mean 78.80 0.052 6.09 3.79 

 

S.E.M 24.84 0.004 2.87 1.25 

  CV 0.32 0.07 0.47 0.33 
a. Year convention corresponding with values under RET1993-1998, R2001-2010, and BMNC,1994-1998. 
b. Year convention corresponding with values under BMGF,92/93-98/99. 
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Figure 1. King crab Registration Area Q (Bering Sea), showing borders of the Pribilof District 

(from Figure 2-4 in Leon et al. 2017). 
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Figure 2. Bootstrapped estimates of the sampling distribution of the 2017 Alternative 1 Tier 5 

OFL (total catch, t) for the Pribilof Islands golden king crab stock; histogram on left, 

quantile plot on right. 
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Appendix A1: EBS slope survey data on Pribilof Islands golden king crab and draft Pribilof 

Island golden king crab stock structure template (from Pengilly and Daly May 2017 report to 

Crab Plan Team). 

 

Updated discussion paper for May 2017 Crab Plan Team meeting:  

Random effects approach to modeling NMFS EBS slope survey area-swept biomass 

estimates for Pribilof Islands golden king crab. 

 

Douglas Pengilly and Benjamin Daly 

Alaska Department of Fish and Game, Kodiak, AK 

Division of Commercial Fisheries 

351 Research Ct.  

Kodiak, AK 99615, USA 

Phone: (907) 486-1865 

Email: ben.daly@alaska.gov 

 

 

Introduction. 

The Pribilof Islands golden king crab stock has been defined by the geographic borders of the 

Pribilof District (Figure 1) and has been managed as a Tier 5 stock (i.e., no reliable estimates of 

biomass and only historical catch data available) for determination of federal overfishing limits 

and annual catch limits (Pengilly 2014). Since 2011, the Council’s Crab Plan Team (CPT) and 

the Scientific and Statistical Committee (SSC) have expressed interest in utilizing data collected 

during NMFS eastern Bering Sea (EBS) upper continental slope surveys (Hoff 2013) to establish 

an annual overfishing limit (OFL) and acceptable biological catch (ABC) on the basis of biomass 

estimates as an alternative to the standard Tier 5 historical-catch approach (see: reports of the 

June 2011, June 2012, June 2013, and October 2013 SSC meetings; reports of the May 2013 and 

September 2013 CPT meetings). Reviews of the EBS slope survey relative to the data collected 

on golden king crab, summaries of those data, and area-swept biomass estimates (Pengilly 2012, 

Gaeuman 2013a, 2013b), a Tier 4 approach to establishing OFL and ABC (Gaeuman 2013b), 

and “modified Tier 5” approach to establishing OFL and ABC (Gaeuman 2013a) have been 

presented to the CPT and SSC.  Cancellation of the EBS biennial slope survey scheduled for 

2014 precluded application of Gaeuman’s (2013a) approach to establishment of OFL and ABC 

(see: report of the May 2015 CPT meeting; report of the June 2015 SSC meeting); however, the 

completion of the 2016 slope survey allows opportunity to revisit this approach.  

 

In May 2015 the CPT recommended that, “a preliminary Tier 4 assessment be brought to the 

September 2015 meeting using available slope survey data and applying a Kalman filter 

approach (e.g., the program developed by Jim Ianelli for groundfish stock assessments)” (report 

of May 2015 CPT meeting). In June 2015, the SSC supported “the CPT recommendation that a 

preliminary Tier 4 assessment be brought to the September 2015 meeting, using existing slope 

data and applying a Kalman filter approach” (report of the June 2015 SSC meeting).  The SSC 

also requested that the assessment include “a discussion … of what stock delineation was chosen 

(what slope data were used) and the reason for that delineation,” and that “a Stock Structure 

Template be completed for PI GKC” (report of the June 2015 SSC meeting). In September 2016 

the CPT “recommends the random effects model be re-evaluated after results from the 2016 
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slope survey are available.” The SSC confirmed that request: “The SSC concurs with the CPT 

recommendation” [“that the random effects model be re-evaluated after results from the 2016 

slope survey are available”]. 

 

This report provides: results of applying the program developed for groundfish stock assessments 

to the slope survey area-swept biomass estimates of golden king crab; a discussion of the stock 

delineation chosen (what slope data were used and why); and a Stock Structure Template for 

Pribilof Islands golden king crab (Appendix C) that was prepared with the guidance of Spencer 

et al. (2010).  

 

This report does not provide a Tier 4 assessment, however (i.e., no OFLs or ABCs are computed 

from the results of this exercise).  Prior to computation of an OFL or ABC, the author would like 

to review the biomass estimates with the CPT so that the CPT can evaluate the results relative to 

the Tier 4 and Tier 5 criteria (i.e., Do the biomass estimates meet the “reliability” criterion for 

removing the stock from Tier 5? Do the results meet the Tier 4 criterion of having sufficient 

information for simulation modeling that captures the essential population dynamics of the 

stock?).  Additionally, the term “Tier 4 assessment” in application to this stock since 2013 has 

lost its clarity, making it unclear if the requested assessment was to be made according to Tier 4 

as defined in the FMP, according to the “modified Tier 5” approach of Gaeuman (2013a,b), or 

according to some modification to a Tier 4 assessment.  Dependent on the evaluation of results 

and after clarification of the assessment approach, the computations of OFL and ABC can be 

performed with the results presented here.  

 

The NMFS EBS slope survey.   

Only data from NMFS EBS slope trawl surveys performed in 2002 and later are used here. 

Although a pilot slope survey was also performed in 2000 and triennial surveys using a variety of 

nets, methods, vessels, and sampling locations were performed during 1979–1991, authors noted 

that, “Comparisons between the post-2000 surveys and those conducted from 1979–1991 remain 

confounded due to differences in sampling gear, survey design, sampling methodology, and 

species identification” (Hoff and Britt 2011). Starting in 2002, the slope survey was nominally a 

biennial survey, but no survey was performed in 2006 or 2014. Details on the methods and 

survey gear used in the 2002, 2004, 2008, 2010, 2012, and 2016 NMFS EBS slope surveys are 

provided in Hoff and Britt (2003, 2005, 2009, 2011) and Hoff (2013, 2016), respectively. Those 

methods and the applicability of the slope survey data to golden king crab abundance and 

biomass estimation have also been summarized by Pengilly (2012) and Gaeuman (2013a,b).  

 

Briefly, the survey samples from an area of 32,723 km2 in the 200–1,200 m depth zone.  The 

surveyed area is divided into six subareas (Figure 2).  Each subarea is divided into strata defined 

by 200 m depth zones and tows are performed at randomly-selected locations within each 

stratum, with target sampling density within strata proportional to the area in each subarea and 

stratum.  Number of stations towed per survey ranged from 156 in 2002 to 231 in 2004; mean 

sampling density within strata ranged from approximately one tow per 162 km2 in 2004 to 

approximately one tow per 255 km2 in 2002. With regard to survey catchability of golden king 

crab by size and sex, the survey uses a Poly Nor’eastern high-opening bottom trawl equipped 

with mud-sweeper roller gear. ASFC scientists conveyed their opinion to the CPT during the 

May meeting that, with respect to golden king crab, “… the catchability of the slope net is less 
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than 1.0 and probably considerably lower than the shelf net due to the differences in the foot rope 

and surveyed habitat” (report of the May 2013 CPT meeting).   

 

Methods. 

Data available by survey. Data on golden king crab that are available from the 2002, 2004, 2006, 

2008, 20010, 2012 and 2016 NMFS EBS slope surveys are summarized in Table 1.   

 

Although the CPT and SSC both suggested that NMFS would “provide the author with slope 

survey CPUE data based on State statistical areas or other stratification instead of the entire 

slope survey area because the entire survey extends beyond the Pribilof management area” 

(reports of the May 2015 CPT meeting and June 2015 SSC meeting), the author did not find it 

necessary or useful for this exercise to receive the data stratified by State statistical area or by 

any other stratification besides that defined by the survey design.  

 

Data summarization: area-swept biomass estimates.  Area-swept estimates of total (male and 

female, all sizes) biomass and variances of estimates within strata within survey subarea for 

2002, 2004, 2008, 2010, and 2012 were obtained directly from the tables presented in Hoff and 

Britt (2003; 2005; 2009; 2011) and Hoff (2013).  For area-swept biomass estimation of mature 

males and legal males from the 2008, 2010, 2012, and 2016 survey data, 107 mm CL was used 

as a proxy for size at maturity (Somerton and Otto 1986) and 124 mm CL was used as a proxy 

for the 5.5 in carapace width (including spines) legal size (NPFMC 2007); weight of males was 

estimated from the CL measured during the survey by weight (g) = (0.0002988)x(CL)3.135 

(NPFMC 2007). An area-swept estimate of biomass and of the variance of the biomass estimate 

was computed for each stratum within a survey subarea and summed over strata within the 

subarea to obtain area-swept estimates of biomass within a subarea and of the variance of that 

biomass estimate; estimates of the biomass and associated variances within subareas were 

summed over subareas to obtain biomass estimates in aggregates of subareas and of the variances 

of those estimates.  

 

Model estimates of biomass and projections to 2018.1 The program “re.exe” was used to 

estimate biomass from the area-swept estimates in surveyed years and to project biomass 

estimates for unsurveyed years into 2018 via a state-space random walk plus noise model. The 

state-space random walk plus noise is formulated as a random effect model. The random effects 

model considers the process errors as “random effects” (i.e., drawn from an underlying 

distribution) and integrated out of the likelihood.  The method was developed by the NPFMC 

groundfish plan team's survey averaging working group as a smoothing technique similar to the 

Kalman Filter, but which provides more flexibility with non-linear processes and non-normal 

error structures. 

 

Stock delineation chosen (what slope data were used). The author followed the guidance 

provided by the SSC in June 2013 (report of the June 2013 SSC meeting): 

 

1 The author acknowledges help from Martin Dorn, Jim Ianelli, and Paul Spencer, AFSC, in getting this paragraph 

completed. 
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“Because the stock structure is unknown, the SSC recommends that the authors 

examine maps of catch-per-unit-effort by survey year to identify natural breaks in 

the spatial distribution of golden king crab along the slope. If no obvious breaks 

exist, the SSC recommends that the authors bring forward biomass estimates for 

the Pribilof canyon region and for the slope as a whole. However, we note that 

the Pribilof Canyon stations do not encompass the historical catches, which 

occurred inside and to the north of Pribilof Canyon. Therefore, the authors 

should consider a biomass estimate for an area that encompasses the majority of 

historical catches.” 

 

Figures 3–8 show CPUE (kg km-2) of golden king crab (males and females, all sizes) by tow and 

survey subarea during the 2002, 2004, 2008, 2010, 2012, and 2016 NMFS EBS slope surveys 

relative to the boundaries of the Pribilof District.  Highest survey CPUE occurs at tows within 

survey subareas 2–4 (particularly in subarea 2; i.e., Pribilof Canyon). Tows performed in the 

portion of subarea 5 that lie within the Pribilof District have produced little or no catch of golden 

king crab, indicating a gap in golden king crab distribution between subarea 4 and the portion of 

the surveyed area north of the Pribilof District boundary (i.e., the portion of subarea 5 that is 

north of the Pribilof District boundary and all of subarea 6). Tows performed in subarea 1 that 

are within the Pribilof District have produced little or no catch of golden king crab, indicating a 

gap in distribution between Pribilof Canyon and the area east of the Pribilof District within 

subarea 1. It appears that the areas of subareas 1 and 5 that lie within the Pribilof District support 

limited densities of golden king crab. Subarea 3 appears to support only low-to-moderate 

densities of golden king crab relative to subarea 4 and – especially – subarea 2; tows with catch 

of golden king crab occurred sporadically within subarea 3, with highest densities occurring near 

the border of subarea 4 in 2010 and 2012 and near the border of subarea 2 in 2002.   

 

Figure 9 shows the distribution of all 6,104 pot lifts sampled by observers with locations 

recorded during 1992–2014 Bering Sea golden king crab fisheries (including the Saint Matthew 

section of the Northern District, which is north of the Pribilof District) relative to the borders of 

the Pribilof District and of the survey subareas. Only one of those locations is within the portion 

of subarea 5 that is within the Pribilof District, none are within the portion of subarea 1 that is 

within the Pribilof District, and none are within subarea 3.  

 

Figure 10 shows the 26 statistical areas with reported catch during the 1985–2014 Pribilof 

District golden king crab fisheries relative to the borders of the Pribilof District and of the survey 

subareas: one (accounting for 0.7% of the 1985–2014 total catch) lies largely in subarea 4, but 

extends into subarea 5; four (2.9% of the total catch) include portions of subarea 4; six (1.5% of 

total catch) include portions of subarea 3; one (8.9% of total catch) includes portions of subareas 

3 and 2; four (83.9% of total catch) are in or extend into subarea 2; one (0.7% of total catch) 

includes portions of subareas 2 and 1; one (<0.1% of total catch) is largely within subarea 1; and 

eight (1.4% of total catch) are outside of the survey area (some of those may be errors in 

recording of statistical area).  

 

This review of survey distribution and fishery catch and effort distribution shows that golden 

king crab in the Bering Sea and the fishery for golden king crab in the Bering Sea are 

concentrated in the Pribilof Canyon area (survey subarea 2). Nonetheless, golden king crab do 
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occur more sporadically and at lower densities in survey subareas 3 and 4 and there has been 

some limited catch and effort during Pribilof District fisheries within survey subareas 3 and 4. 

Portions of survey subareas 1 and 5 that lie within the Pribilof District appear to be largely 

devoid of golden king crab, have received little or no fishery effort during the Pribilof District 

fishy, and thus have produced little or no catch. The golden king crab that occur in survey 

subarea 6 are exploited by the Saint Matthew section fishery when it is prosecuted. Accordingly, 

the following analyses to estimate trends in the Pribilof District stock were performed using 

survey data from only survey subareas 2, 3, and 4. Data summaries and analyses were also 

performed using data only from survey Subarea 2 due to the high concentration of fishery effort 

and fishery catch in Pribilof Canyon and the high CPUE of golden king crab within Pribilof 

Canyon during the slope surveys,. 

 

Results. 

Size frequency distributions of golden king crab captured within subareas 2, 3, and 4 during the 

2008, 2010, 2012, 2016 NMFS EBS slope surveys are shown in Figures 11–14.  

 

Area-swept biomass estimates by survey subarea, for the total surveyed area (pooled subareas 1–

6), and for pooled subareas 2–4 for 2002, 2004, 2008, 2010, 2012 and 2016 are in Table 2.   

 

Estimates and projections through 2018 of total, mature male, and legal male biomass in survey 

subareas 2-4 and survey subarea 2 from the state-space random walk plus noise model are 

plotted in Figures 15 and 16, respectively.  More detailed results produced by re.exe are provided 

in Appendices A and B. 
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Table 1. Data on golden king crab recorded during the 2002, 2004, 2008, 2010, 2012, and  

NMFS EBS slope surveys. 

 

 

Survey 

Weight  

in tow 

Count 

in tow 

 

Sex/CL/shell con/fem repro 

 

Individual weights 

2002 YES YES NO NO 

2004 YES YES NO NO 

2008 YES YES YES 285 of 416 meas’d 

2010 YES YES YES NO 

2012 YES YES YESa 495 of 899 meas’d 

2016 YES YES YESb NO 
a. Golden king crab <100 mm CL were subsampled for data recording at one tow in subarea 4 during the 2012 

survey. 
b. Golden king crab were subsampled for data recording at one tow in subarea 2 during the 2016 survey. 
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Table 2. Area-swept biomass (t) estimates of total (sexes combined), mature-sized males, and 

legal male golden king crab computed from 2002, 2004, 2008, 2010, 2012, and 2016 

NMFS eastern Bering Sea slope survey data, by survey subarea, and with coefficients 

of variation (CV = standard error of estimate divided by the estimate). 

  

(males ≥ 124 mm CL)

Survey Year Subarea Biomass  (t) CV Biomass  (t) CV Biomass  (t) CV

2002 1 131 0.39 − − − −

2002 2 682 0.22 − − − −

2002 3 81 0.40 − − − −

2002 4 53 0.40 − − − −

2002 5 19 0.86 − − − −

2002 6 44 0.69 − − − −

2002 1−6 1,010 0.16 − − − −

2002 2−4 816 0.19 − − − −

2004 1 65 0.22 − − − −

2004 2 817 0.38 − − − −

2004 3 51 0.41 − − − −

2004 4 121 0.36 − − − −

2004 5 20 0.73 − − − −

2004 6 24 0.73 − − − −

2004 1−6 1,098 0.29 − − − −

2004 2−4 989 0.32 − − − −

2008 1 146 0.40 47 0.35 11 0.70

2008 2 920 0.32 490 0.36 294 0.29

2008 3 91 0.44 64 0.44 28 0.54

2008 4 205 0.46 85 0.53 78 0.52

2008 5 2 1.00 22 1.00 22 1.00

2008 6 66 0.50 30 0.63 19 0.61

2008 1−6 1,431 0.22 737 0.25 452 0.22

2008 2−4 1,216 0.26 638 0.29 401 0.24

2010 1 363 0.20 168 0.20 145 0.23

2010 2 1,614 0.31 440 0.24 349 0.25

2010 3 89 0.63 79 0.72 71 0.75

2010 4 72 0.41 46 0.47 44 0.50

2010 5 37 0.45 10 0.76 7 1.00

2010 6 122 0.43 25 0.51 12 1.00

2010 1−6 2,298 0.22 768 0.17 628 0.18

2010 2−4 1,776 0.29 565 0.22 464 0.23

2012 1 421 0.37 328 0.45 280 0.50

2012 2 778 0.45 256 0.32 207 0.34

2012 3 172 0.75 146 0.83 131 0.81

2012 4 494 0.69 26 0.48 8 1.00

2012 5 12 0.43 6 0.74 4 1.00

2012 6 149 0.40 49 0.33 40 0.38

2012 1−6 2,025 0.26 812 0.26 670 0.28

2012 2−4 1,444 0.35 429 0.34 346 0.37

2016 1 217 0.35 116 0.37 98 0.40

2016 2 1060 0.27 475 0.30 336 0.30

2016 3 100 0.34 74 0.42 65 0.47

2016 4 304 0.79 191 0.77 165 0.73

2016 5 23 0.48 10 0.72 4 1.00

2016 6 50 0.30 31 0.46 18 0.75

2016 1−6 1,754 0.22 897 0.24 685 0.24

2016 2−4 1,464 0.26 740 0.28 565 0.28

Total

(males and females)

Mature males

(males ≥ 107 mm CL)

Legal males
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Figure 1. King crab Registration Area Q (Bering Sea), showing borders of the Pribilof District. 
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Figure 2. Map of standard survey area and the six subareas. Indicated are the 175 successful 

trawl stations (black dots) completed during the 2016 EBSS survey (taken from Hoff 

2016).  
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Figure 3. 2002 slope survey tow locations (black circles) and golden king crab CPUE (kg/sq-km; 

white circles; largest circle = 510 kg/sq-km); squares are 1° longitude x 30' latitude 

State statistical areas. 
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Figure 4. 2004 slope survey tow locations (black circles) and golden king crab CPUE (kg/sq-km; 

white circles; largest circle = 2,300 kg/sq-km); squares are 1° longitude x 30' latitude 

State statistical areas. 
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Figure 5. 2008 slope survey tow locations (black circles) and golden king crab CPUE (kg km-2; 

yellow circles, green stars indicate values outside the normal range). 
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Figure 6. 2010  slope survey tow locations (black circles) and golden king crab CPUE (kg km-2; 

yellow circles, green stars indicate values outside the normal range). 
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Figure 7. 2012  slope survey tow locations (black circles) and golden king crab CPUE (kg km-2; 

yellow circles, green stars indicate values outside the normal range). 

  

1531



 

 
 

Figure 8. 2016 slope survey tow locations (black circles) and golden king crab CPUE (kg km-2; 

yellow circles, green stars indicate values outside the normal range). 
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Figure 9. Locations of all pots sampled by observers during Bering Sea golden king crab 

fisheries (n = 6,104), 1992–2014; pots north of the Pribilof District northern boundary 

were fished during the Northern District – Saint Matthew Island Section fishery; 

squares are 1° longitude x 30' latitude State statistical areas. 
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Figure 10.  Statistical areas with reported catch during the 1985–2014 Pribilof District golden 

king crab fisheries: filled red squares denote statistical areas with reported catch; size 

of overlain white circles are proportional to the percentage of the total 1985–2014  

catch reported from statistical area (biggest circle = 68% of total); squares are 1° 

longitude x 30' latitude State statistical areas. 

  

Subarea 6
(Navarin and Perenets Canyons)

PRIBILOF DISTRICT

Subarea 4
(Zhemchug Canyon)

Subarea 5

Subarea 1
(Bering Canyon)

Subarea 3

Subarea 2
(Pribilof Canyon)

1534



  

  

 
Figure 11.  Size distribution of measured golden king crab during the 2008 NMFS EBS slope 

survey in survey Subareas 2, 3, and 4, by survey subarea. 
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Figure 12.  Size distribution of measured golden king crab during the 2010 NMFS EBS slope 

survey in survey Subareas 2, 3, and 4, by survey subarea. 
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Figure 13.  Size distribution of measured golden king crab during the 2012 NMFS EBS slope 

survey in survey Subareas 2, 3, and 4, by survey subarea. 
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Figure 14.  Size distribution of measured golden king crab during the 2016 NMFS EBS slope 

survey in survey Subareas 2, 3, and 4, by survey subarea. 
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Figure 15.  Plots of estimated and projected (into 2018) biomass of total, mature male, and legal 

male golden king crab in NMFS slope survey Subareas 2–4 with 90% confidence 

intervals and survey area-swept estimates; red bars are survey estimates ± 2 standard 

errors. 
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Figure 16.  Plots of estimated and projected (into 2018) biomass of total, mature male, and legal 

male golden king crab in NMFS slope survey Subarea 2 with 90% confidence 

intervals and survey area-swept estimates; red bars are survey estimates ± 2 standard 

errors. 
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Appendix A1. Input file (re.dat) for total golden king crab biomass in NMFS EBS slope survey Subareas 2-4 and results file 

(rwout.rep) produced by re.exe. 

 
  

re.dat file

2002 #Start year of model

2018 #End year of model

6 #number of survey estimates

#Years of survey

2002 2004 2008 2010 2012 2016

#Biomass estimates

816 989 1216 1776 1444 1464

#Coefficients of variation for biomass estimates

0.19 0.32 0.26 0.29 0.35 0.26

rwout.rep file

yrs_srv

2002 2004 2008 2010 2012 2016

srv_est

816 989 1216 1776 1444 1464

srv_sd

0.188318 0.312233 0.25576 0.284166 0.339939 0.25576

yrs

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

LCI

645.592 679.925 725.189 752.615 790.057 838.815 901.75 922.256 952.61 949.698 960.644 943.422 937.229 940.902 954.447 899.215 853.018

biomA

922.492 966.221 1012.02 1063.35 1117.29 1173.96 1233.5 1299.86 1369.79 1382.64 1395.6 1403.14 1410.71 1418.33 1425.99 1425.99 1425.99

UCI

1318.16 1373.07 1412.31 1502.39 1580.05 1643 1687.3 1832.06 1969.66 2012.94 2027.5 2086.87 2123.4 2138.02 2130.5 2261.36 2383.83

low90th

683.706 719.43 765.09 795.604 835.309 885.377 948.313 974.552 1009.87 1008.79 1020.07 1005.57 1000.89 1005.05 1018.06 968.382 926.452

upp90th

1244.67 1297.67 1338.66 1421.21 1494.45 1556.59 1604.45 1733.75 1857.98 1895.02 1909.38 1957.89 1988.34 2001.55 1997.37 2099.84 2194.87

biomsd

6.82708 6.87339 6.91971 6.96918 7.01866 7.06813 7.11761 7.17001 7.22241 7.23175 7.24108 7.24647 7.25185 7.25724 7.26262 7.26262 7.26262

biomsd.sd

0.182097 0.179291 0.170039 0.176341 0.176813 0.171502 0.159833 0.175096 0.185309 0.191634 0.19055 0.202527 0.208635 0.209386 0.204842 0.235255 0.262163
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Appendix A2. Input file (re.dat) for mature male golden king crab biomass in NMFS EBS slope survey Subareas 2-4 and results file 

(rwout.rep) produced by re.exe. 

 
  

re.dat file

2008 #Start year of model

2018 #End year of model

4 #number of survey estimates

#Years of survey

2008 2010 2012 2016

#Biomass estimates

638 565 429 740

#Coefficients of variation for biomass estimates

0.29 0.22 0.34 0.28

rwout.rep file

yrs_srv

2008 2010 2012 2016

srv_est

638 565 429 740

srv_sd

0.284166 0.217406 0.330745 0.274733

yrs

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

LCI

455.113 455.114 455.115 455.114 455.114 455.115 455.113 455.109 455.103 455.099 455.095

biomA

591.486 591.485 591.484 591.484 591.485 591.486 591.488 591.49 591.492 591.492 591.492

UCI

768.721 768.718 768.715 768.716 768.718 768.721 768.728 768.74 768.756 768.762 768.768

low90th

474.693 474.694 474.694 474.694 474.693 474.694 474.693 474.69 474.684 474.681 474.678

upp90th

737.014 737.011 737.009 737.01 737.011 737.014 737.02 737.03 737.043 737.048 737.053

biomsd

6.38264 6.38264 6.38264 6.38264 6.38264 6.38264 6.38264 6.38265 6.38265 6.38265 6.38265

biomsd.sd

0.13372 0.133718 0.133717 0.133718 0.133718 0.133719 0.133722 0.133728 0.133737 0.133741 0.133745
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Appendix A3. Input file (re.dat) for legal male golden king crab biomass in NMFS EBS slope survey Subareas 2-4 and results file 

(rwout.rep) produced by re.exe. 

 
  

re.dat file

2008 #Start year of model

2018 #End year of model

4 #number of survey estimates

#Years of survey

2008 2010 2012 2016

#Biomass estimates

401 464 346 565

#Coefficients of variation for biomass estimates

0.24 0.23 0.37 0.28

rwout.rep file

yrs_srv

2008 2010 2012 2016

srv_est

401 464 346 565

srv_sd

0.236648 0.227042 0.358197 0.274733

yrs

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

LCI

345.148 345.153 345.158 345.158 345.158 345.156 345.151 345.143 345.132 345.129 345.126

biomA

446.173 446.174 446.175 446.176 446.177 446.178 446.18 446.182 446.184 446.184 446.184

UCI

576.768 576.762 576.758 576.759 576.761 576.769 576.781 576.799 576.822 576.828 576.834

low90th

359.687 359.692 359.696 359.696 359.696 359.695 359.691 359.684 359.675 359.672 359.669

upp90th

553.454 553.45 553.446 553.448 553.449 553.456 553.467 553.481 553.5 553.505 553.509

biomsd

6.10071 6.10071 6.10071 6.10071 6.10071 6.10072 6.10072 6.10073 6.10073 6.10073 6.10073

biomsd.sd

0.130986 0.13098 0.130975 0.130975 0.130976 0.130981 0.13099 0.131004 0.131022 0.131027 0.131032
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Appendix B1. Input file (re.dat) for total golden king crab biomass in NMFS EBS slope survey Subarea 2 and results file (rwout.rep) 

produced by re.exe. 

 
  

re.dat file

2002 #Start year of model

2018 #End year of model

6 #number of survey estimates

#Years of survey

2002 2004 2008 2010 2012 2016

#Biomass estimates

682 817 920 1614 778 1060

#Coefficients of variation for biomass estimates

0.22 0.38 0.32 0.31 0.45 0.27

rwout.rep file

yrs_srv

2002 2004 2008 2010 2012 2016

srv_est

682 817 920 1614 778 1060

srv_sd

0.217406 0.367261 0.312233 0.302917 0.429421 0.265265

yrs

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

LCI

521.757 558.084 595.708 624.797 650.996 673.321 691.078 684.518 671.956 681.957 691.351 684.38 680.48 679.379 680.946 657.937 637.299

biomA

805.904 827.675 850.035 874.937 900.568 926.95 954.105 984.827 1016.54 1010.12 1003.74 1007.86 1011.99 1016.14 1020.31 1020.31 1020.31

UCI

1244.8 1227.5 1212.94 1225.22 1245.82 1276.12 1317.24 1416.89 1537.82 1496.2 1457.29 1484.23 1505.01 1519.84 1528.81 1582.27 1633.51

low90th

559.517 594.576 630.736 659.541 685.85 708.818 727.844 725.728 718.182 726.402 734.044 728.306 725.297 724.789 726.67 706.005 687.371

upp90th

1160.79 1152.16 1145.58 1160.68 1182.51 1212.21 1250.7 1336.43 1438.84 1404.65 1372.53 1394.72 1412.01 1424.62 1432.61 1474.54 1514.52

biomsd

6.69196 6.71862 6.74528 6.77415 6.80303 6.8319 6.86077 6.89247 6.92416 6.91782 6.91149 6.91558 6.91968 6.92377 6.92786 6.92786 6.92786

biomsd.sd

0.221818 0.201078 0.181392 0.171798 0.165572 0.163101 0.164552 0.185587 0.211207 0.200438 0.190226 0.197485 0.202489 0.205403 0.206316 0.223854 0.240114
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Appendix B2. Input file (re.dat) for mature male golden king crab biomass in NMFS EBS slope survey Subarea 2 and results file 

(rwout.rep) produced by re.exe. 
re.dat file

2008 #Start year of model

2018 #End year of model

4 #number of survey estimates

#Years of survey

2008 2010 2012 2016

#Biomass estimates

490 440 256 475

#Coefficients of variation for biomass estimates

0.36 0.24 0.32 0.3

rwout.rep file

yrs_srv

2008 2010 2012 2016

srv_est

490 440 256 475

srv_sd

0.34909 0.236648 0.312233 0.29356

yrs

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

LCI

306.329 306.333 306.335 306.332 306.325 306.327 306.328 306.328 306.327 306.323 306.319

biomA

406.596 406.595 406.594 406.592 406.59 406.591 406.592 406.594 406.595 406.595 406.595

UCI

539.683 539.674 539.666 539.666 539.673 539.672 539.674 539.678 539.684 539.691 539.698

low90th

320.592 320.595 320.597 320.593 320.587 320.589 320.59 320.59 320.589 320.586 320.582

upp90th

515.674 515.666 515.66 515.659 515.664 515.664 515.665 515.669 515.674 515.68 515.685

biomsd

6.00782 6.00782 6.00782 6.00781 6.0078 6.00781 6.00781 6.00781 6.00782 6.00782 6.00782

biomsd.sd

0.14447 0.144463 0.144457 0.14446 0.144469 0.144466 0.144466 0.144468 0.144473 0.144479 0.144486
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Appendix B3. Input file (re.dat) for legal male golden king crab biomass in NMFS EBS slope survey Subareas 2 and results file 

(rwout.rep) produced by re.exe. 
re.dat file

2008 #Start year of model

2018 #End year of model

4 #number of survey estimates

#Years of survey

2008 2010 2012 2016

#Biomass estimates

294 349 207 336

#Coefficients of variation for biomass estimates

0.29 0.25 0.34 0.3

rwout.rep file

yrs_srv

2008 2010 2012 2016

srv_est

294 349 207 336

srv_sd

0.284166 0.246221 0.330745 0.29356

yrs

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

LCI

227.905 227.906 227.907 227.906 227.905 227.905 227.905 227.904 227.903 227.902 227.901

biomA

301.019 301.02 301.02 301.019 301.018 301.019 301.019 301.019 301.02 301.02 301.02

UCI

397.589 397.588 397.587 397.587 397.587 397.588 397.59 397.592 397.594 397.596 397.599

low90th

238.328 238.329 238.33 238.329 238.328 238.328 238.327 238.327 238.326 238.325 238.324

upp90th

380.202 380.201 380.2 380.199 380.2 380.201 380.202 380.203 380.205 380.207 380.209

biomsd

5.70717 5.70718 5.70718 5.70717 5.70717 5.70717 5.70717 5.70718 5.70718 5.70718 5.70718

biomsd.sd

0.141961 0.14196 0.141958 0.141959 0.141961 0.141961 0.141963 0.141964 0.141966 0.14197 0.141973
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Appendix C. PIGKC stock structure template (adapted from Spencer et al. 2010). Page 1 of 2. 

Factor and criterion Justification 

Harvest and trends 

Fishing mortality 
(5-year average percent of Fabc or Fofl ) 

F, FABC, and FOFL are not estimated for Tier 5 stock.  Total catch 
annual catch is confidential, but has been below the OFLs and ABCs 
established for season.   

Spatial concentration of fishery relative 
to abundance (Fishing is focused in 
areas << management areas) 

Fishery effort and catch is concentrated in Pribilof Canyon, a very 
small area of the Pribilof District, but also an area of concentrated 
golden king crab density (see EBS slope survey data). 

Population trends (Different areas show 
different trend directions) 

Uncertain. Standardized trawl surveys in the Pribilof District have 
only been performed in 2002, 2004, 2008, 2010, 2012, and 2016. 
Total biomass estimates generally increased from 2002 through 
2012; with no substantial increase in 2016.  

Barriers and phenotypic characters 

Generation time 
(e.g., >10 years) 

Unknown, but likely >10 years. 

Physical limitations (Clear physical 
inhibitors to movement) 

Species occurs primarily in the 200-1000 m depth zone. No known 
physical barriers exist in the Pribilof District, although survey and 
fishery data suggest low densities in the 200-1000 m depth zone of 
the EBS slope between Pribilof Canyon and Zhemchug Canyon. 

Growth differences 
(Significantly different LAA, WAA, or LW 
parameters) 

No data for estimating size at age. Spatial differences in length-
weight relationship within Pribilof District have not been 
investigated. Within the Bering Sea males at higher latitudes have 
been estimated to be heavier than equal-sized males at lower 
latitudes. 

Age/size-structure 
(Significantly different size/age 
compositions) 

Age structure data is lacking.  Spatial trends within Pribilof District in 
size structure have not been investigated, but trend of latitudinal 
decrease in mean size may exist over the Bering Sea due to 
latitudinal decrease in size at maturity. 

Spawning time differences (Significantly 
different mean time of spawning) 

Species is known to exhibit an asynchronous reproductive cycle 
lacking distinct seasonal variation; mean spawning time within 
Pribilof District has not been estimated. 
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Appendix C. Page 2 of 2. 

Factor and criterion Justification 

Maturity-at-age/length differences 
(Significantly different mean maturity-
at-age/ length) 

No data for estimating maturity at age. Spatial differences in size at 
maturity within Pribilof District have not been investigated.  Within 
Bering Sea, estimates of size at maturity decrease south-to-north. 

Morphometrics (Field identifiable 
characters) 

Spatial trends within Pribilof District in morphometrics have not 
been investigated.  Latitudinal trends in male morphometrics (chela 
size at length) may exist over the Bering Sea that are related to 
latitudinal trends in size at maturity. 

Meristics (Minimally overlapping 
differences in counts) 

N/A. 

Behavior & movement 

Spawning site fidelity (Spawning 
individuals occur in same location 
consistently) 

Not likely: ovigerous females tend to occur in the shallower depth 
zones at sites throughout the Pribilof District within the species 
depth distribution.  

Mark-recapture data (Tagging data may 
show limited movement) 

Mark-recapture data not available. 

Natural tags (Acquired tags may show 
movement smaller than management 
areas) 

Unknown. 

Genetics 

Isolation by distance 
(Significant regression) 

Unknown. 

Dispersal distance (<<Management 
areas) 

Unknown. 

Pairwise genetic differences (Significant 
differences between geographically 
distinct collections) 

Unknown. 
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Western Aleutian Islands Red King Crab 

– 2017 Tier 5 Assessment

2017 Crab SAFE Report Chapter (September 2017) 

Benjamin Daly, ADF&G, Kodiak 

Alaska Department of Fish and Game 

Division of Commercial Fisheries 

351 Research Ct.  

Kodiak, AK 99615, USA 

Phone: (907) 486-1865 

Email: ben.daly@alaska.gov 

Executive Summary 

1. Stock:

Western Aleutian Islands (the Aleutian Islands, west of 171° W longitude) red king crab,

Paralithodes camtschaticus

There are two districts for State management of commercial red king crab fisheries in waters of 

the Aleutian Islands west of 171º W longitude: the Adak District for waters east of 179º W 

longitude and the Petrel District for waters west of 179º W longitude. Although this stock has 

been referred to colloquially as the “Adak” stock, this report will refer to the stock as the 

“Western Aleutian Islands (WAI) red king crab” stock to avoid confusion with the Adak District. 

2. Catches:

The domestic fishery has been prosecuted since 1960/61 and was opened every year through the

1995/96 crab fishing year. Peak retained catch occurred in 1964/65 at 9,613 t (21,193,000 lb).

During the early years of the fishery through the late 1970s, most or all of the retained catch was

harvested in the area between 172° W longitude and 179°15' W longitude. As the annual retained

catch decreased into the mid-1970s and the early-1980s, the area west of 179°15' W longitude

began to account for a larger portion of the retained catch. Retained catch during the 10-year

period 1985/86–1994/95 averaged 428 t (942,940 lb), but the retained catch in 1995/96 was only

18 t (38,941 lb). The fishery has been opened only occasionally during 1996/97 to present. There

was an exploratory fishery with a low guideline harvest level (GHL) in 1998/99, three

commissioner’s permit fisheries in limited areas during 2000/01–2002/03 to allow for ADF&G-

Industry surveys, and two commercial fisheries with a GHL of 227 t (500,000 lb) in 2002/03 and

2003/04. Most of the retained catch since 1990/91 was harvested in the Petrel Bank area

(between 179° W longitude and 179° E longitude); in 2002/03 and 2003/04 the commercial

fishery was opened only in the Petrel Bank area. Retained catch in the last two years with

commercial fishing was 229 t (505,642 lb) in 2002/03 and 217 t (479,113 lb) in 2003/04. The

fishery has been closed during 2004/05–2016/17. Discarded (non-retained) catch of red king crab

occurs in the directed red king crab fishery (when prosecuted), in the Aleutian Islands golden

king crab fishery, and in groundfish fisheries. Estimated annual weight of bycatch mortality due
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to crab fisheries during 1995/96–2016/17 averaged 1 t (1,902 lb). Estimated annual weight of 

bycatch mortality due to groundfish fisheries during 1993/94–2016/17 averaged 7 t (15,710 lb). 

Estimated weight of annual total fishery mortality during 1995/96–2016/17 averaged 34 t 

(74,890 lb); the average annual retained catch during that period was 26 t (57,278 lb). A 

cooperative red king crab survey was performed by the Aleutian Islands King Crab Foundation 

(an industry group) and ADF&G in the Petrel Bank area in November 2016 (Hilsinger and 

Siddon 2016b), which resulted in an estimated bycatch mortality of 0.03 t (59 lb). Estimated total 

fishery mortality in 2016/17 resulted from groundfish fisheries (0.13 t; 294 lb), the Aleutian 

Islands golden king crab fishery (0.05 t; 100 lb), and the cooperative survey (0.03 t; 59 lb). 

 

3. Stock biomass:   

Estimates of past or present stock biomass are not available for this Tier 5 assessment. 

 

4. Recruitment: 

Estimates of recruitment trends and current levels relative to virgin or historic levels are not 

available for this Tier 5 assessment.  

 

5. Management performance:  

Overfishing did not occur during 2016/17 because the estimated total catch (0.2 t; 454 lb) did not 

exceed the Tier 5 OFL established for 2016/17 (56 t; 123,867 lb). Additionally, the 2016/17 

estimated total catch did not exceed the ABC established for 2016/17 (34 t; 74,320 lb). No 

determination has yet been made for a fishery opening or harvest level, if opened, for 2017/18. 

The OFL and ABC values for 2017/18 in the tables below are the author’s status quo, Alternative 

1 recommended values. 

 

Management Performance Table (values in t) 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TACa 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2012/13 N/A N/A Closed 0 <1 56 34 

2013/14 N/A N/A Closed 0 <1 56 34 

2014/15 N/A N/A Closed 0 <1 56 34 

2015/16 N/A N/A Closed 0 1.3 56 34 

2016/17 N/A N/A Closed 0 <1 56 34 

2017/18 N/A N/A    56 14 

a. Pre-season harvest levels are established as total allowable catch for the rationalized fishery west of 

179° W longitude and as a guideline harvest level for the non-rationalized fishery east of 179° W 

longitude. 
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Management Performance Table (values in lb) 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TACa 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2012/13 N/A N/A Closed 0 624 123,867 74,320 

2013/14 N/A N/A Closed 0 732 123,867 74,320 

2014/15 N/A N/A Closed 0 474 123,867 74,320 

2015/16 N/A N/A Closed 0 2,964 123,867 74,320 

2016/17 N/A N/A Closed 0 454 123,867 74,320 

2017/18 N/A N/A    123,867 30,967 

a. Pre-season harvest levels are established as total allowable catch for the rationalized fishery west of 

179° W longitude and as a guideline harvest level for the non-rationalized fishery east of 179° W 

longitude. 
 

6. Basis for the OFL and ABC:  See table, below; values for 2017/18 are the author’s 

recommended values.  

 

Year Tier 
Years to define 

Average catch (OFL) 

Natural 

Mortality 
Buffer 

2012/13 5 1995/96-2007/08a 0.18b 40% 

2013/14 5 1995/96-2007/08a 0.18b 40% 

2014/15 5 1995/96-2007/08a 0.18b 40% 

2015/16 5 1995/96-2007/08a 0.18b 40% 

2016/17 5 1995/96-2007/08a 0.18b 40% 

2017/18 5 1995/96-2007/08a 0.18b 75% 

a. OFL is for total catch and was determined by the average of the total catch for these years. 

b. Assumed value for FMP king crab in NPFMC (2007); does not enter into OFL estimation for Tier 5 

stock. 
 

7. PDF of the OFL:  Sampling distribution of the recommended (status quo Alternative 1) Tier 

5 OFL was estimated by bootstrapping (see section G.1). The standard deviation of the 

estimated sampling distribution of the recommended OFL is 56 t (CV = 0.42). Note that 

generated sampling distribution and computed standard deviation are meaningful as measures 

in the uncertainty of the OFL only if assumptions on the choice of years used to compute the 

Tier 5 OFL are true (see Section E.4.f). 

 

8. Basis for the ABC recommendation: The recommended ABC of 14 t is less than the ABC 

that was recommended by the SSC for 2012/13 – 2016/17. The recommended ABC is 

lowered because 1) the industry has not expressed interest in a small test fishery during 

2017/18, and 2) because the stock is severely depressed as indicated by the 2016 Petrel 

survey (CPT minutes for May 2017). 

 

At 14 t the ABC provides a 75% buffer on the OFL of 56 t; i.e., (1.0-0.75)·56 t = 14 t. 

 

9. A summary of the results of any rebuilding analyses: Not applicable; stock is not under a 

rebuilding plan. 
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A. Summary of Major Changes 

1. Changes to the management of the fishery: No changes have been made to management of 

the fishery (the fishery has remained closed) and no changes have been made to regulations 

pertaining to the fishery since those adopted by the Alaska Board of Fisheries in March 2014.  

 

2. Changes to the input data:   

• Data on retained catch, discarded catch, and estimates of bycatch mortality in crab and 

groundfish fisheries during 2016/17 have been added, but were not entered into the 

calculation of the recommended 2017/18 total-catch OFL.  

 

3. Changes to the assessment methodology: None: the computation of OFL in this assessment 

follows the methodology recommended by the SSC in June 2010. 

 

4. Changes to the assessment results, including projected biomass, TAC/GHL, total catch 

(including discard mortality in all fisheries and retained catch), and OFL: None: the 

computation of OFL in this assessment follows the methodology recommended by the SSC 

in June 2010 applied to the same data and estimates with the same assumptions that were 

used for estimating the 2010/11–2016/17 OFLs. 

B. Responses to SSC and CPT Comments 

1. Responses to the most recent two sets of SSC and CPT comments on assessments in 

general: 

• CPT, May 2016:  None pertaining to a Tier 5 assessment. 

• SSC, June 2016:  None pertaining to a Tier 5 assessment. 

• CPT, September 2016 (via September 2015 SAFE Introduction chapter): None 

pertaining to a Tier 5 assessment.  

• SSC, October 2015: None pertaining to a Tier 5 assessment.  

 

2. Responses to the most recent two sets of SSC and CPT comments specific to the 

assessment:  

• CPT, May 2016:  None. 

• SSC, June 2015: “The industry expressed no desire to pursue a red king crab fishery 

in the Adak area at this time. However, the Petrel Bank region will be surveyed 

during September 2016.” 

• Response: The Petrel survey was conducted in November 2016 and showed 

very little RKC (ave CPUE=0.11).  

• “The SSC also appreciates the addition of size frequency data in Appendices A1-A4. 

The SSC requests plotting these data to enable visualization of progression of size 

modes in next year’s assessment.” 

▪ Response:  Done. See appendix A5. 

• CPT, September 2016: None. 

• SSC, October 2016: None. 
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C. Introduction  

1. Scientific name: Paralithodes camtschaticus, Tilesius, 1815 

 

2. Description of general distribution:  

The general distribution of red king crab is summarized by NMFS (2004): 

 

Red king crab are widely distributed throughout the BSAI, GOA, Sea of Okhotsk, 

and along the Kamchatka shelf up to depths of 250 m. Red king crab are found 

from eastern Korea around the Pacific rim to northern British Columbia and as far 

north as Point Barrow (page 3-27).  

 

Most red and blue king crab fisheries occur at depths from 50-200 m, but red king 

crab fisheries in the Aleutian Islands sometimes extend to 300 m. 

 

Red king crab is native to waters of 300 m or less extending from eastern Korea, 

the northern coast of the Japan Sea, Hokkaido, the Sea of Okhotsk, through the 

eastern Kamchatkan Peninsula, the Aleutian Islands, the Bering Sea, the GOA, 

and the Pacific Coast of North America as far south as Alice Arm in British 

Columbia. They are not found north of the Kamchatkan Peninsula on the Asian 

Pacific Coast. In North America red king crab range includes commercial 

fisheries in Norton Sound and sparse populations extending through the Bering 

Straits as far east as Barrow on the northern coast of Alaska. Red king crab have 

been acclimated to Atlantic Ocean waters in Russia and northern Norway. In the 

Bering Sea, red king crab are found near the Pribilof Islands and east through 

Bristol Bay; but north of Bristol Bay (58 degrees 39 minutes) they are associated 

with the mainland of Alaska and do not extend to offshore islands such as St. 

Matthew or St. Laurence Islands. 

 

Commercial fishing for WAI red king crab was opened only in the Petrel Bank area (i.e., 

between 179° W longitude and 179° E longitude; Baechler and Cook 2014) during the most 

recent two years that the fishery was prosecuted (2002/03 and 2003/04). Fishery effort during 

those two years typically occurred at depths of 60–90 fathoms (110–165 m); average depth of 

pots fished in the Aleutian Islands area during 2002/03 was 68 fathoms (124 m; Barnard and 

Burt 2004) and during 2003/04 was 82 fathoms (151 m; Burt and Barnard 2005). Depth was 

recorded for 578 pots out of the 580 pot lifts sampled by observers during the 1996/97–2006/07 

Aleutian Islands golden king crab fishery that contained 1 or more red king crab (ADF&G 

observer database, Dutch Harbor, April 2008). Of those, the deepest recorded depth was 266 

fathoms (486 m) and 90% of pot lifts had recorded depths of 100–200 fathoms (183–366 m); no 

red king crab were present in any of the 6,465 pot lifts sampled during the 1996/97–2006/07 

Aleutian Islands golden king crab fishery with depths >266 fathoms (486 m). 

 

In this chapter we will refer to the area west of 171° W longitude within the Aleutian Islands 

king crab Registration Area O as the “Western Aleutian Islands” (WAI). The Aleutian Islands 

king crab Registration Area O is described by Baechler and Cook (2014, page 7) as follows (see 

also Figure 1): 

 

1553



“The Aleutian Islands king crab Registration Area O has as its eastern boundary 

the longitude of Scotch Cap Light (164 44' W longitude), its northern boundary a 

line from Cape Sarichef (54 36' N latitude) to 171 W longitude, north to 55 30' 

N latitude, and as its western boundary the Maritime Boundary Agreement Line 

as that line is described in the text of and depicted in the annex to the Maritime 

Boundary Agreement between the United States and the Union of Soviet Socialist 

Republics signed in Washington, June 1, 1990. Area O encompasses both the 

waters of the Territorial Sea (0-3 nautical miles) and waters of the Exclusive 

Economic Zone (3-200 nautical miles).” 

 

From 1984/85 until the March 1996 Alaska Board of Fisheries meeting, the Aleutian Islands 

king crab Registration Area O as currently defined had been subdivided at 171° W longitude into 

the historic Adak Registration Area R and the Dutch Harbor Registration Area O. The 

geographic boundaries of the WAI red king crab stock are defined here by the boundaries of the 

historic Adak Registration Area R (i.e., the current Aleutian Islands king crab Registration Area 

O, west of 171° W longitude). Note that in March 2014 the Alaska Board of Fisheries 

established two districts for management of commercial fisheries for red king crab in the waters 

of the Aleutian Islands west of 171° W longitude: 1) the Adak District, 171º to 179º W 

longitude; and the Petrel District, west of 179º W longitude. 

 

3. Evidence of stock structure:   

Seeb and Smith (2005) analyzed microsatellite DNA variability in nearly 1,800 individual red 

king crab originating from the Sea of Okhotsk to Southeast Alaska, including a sample 75 

specimens collected during 2002 from the vicinity of Adak Island in the Aleutian Islands (51° 51' 

N latitude, 176° 39' W longitude), to evaluate the degree to which the established geographic 

boundaries between stocks in the BSAI reflect genetic stock divisions.  Seeb and Smith (2005) 

concluded that, “There is significant divergence of the Aleutian Islands population (Adak 

sample) and the Norton Sound population from the southeastern Bering Sea population (Bristol 

Bay, Port Moller, and Pribilof Islands samples).” Recent analysis of patterns of genetic diversity 

among red king crab stocks in the western north Pacific (Asia), eastern North Pacific, and Bering 

Sea by multiple techniques (SNPs, allozymes, and mtDNA) also showed that red king crab 

sampled near Adak Island had greater genetic similarity to stocks in Asia rather than other stocks 

in Alaskan waters including Bristol Bay and the Gulf of Alaska (reviewed in Grant et al. 2014).  

 

To date, population genetic studies of red king crab within the WAI have only grouped samples 

from within this region as one site (i.e., Adak Island) (Grant et al. 2014). Given the complexity 

of currents throughout the WAI and that canyons deeper than the depth restrictions of red king 

crab (>1,000 m) separate several islands, the possibility of fine scale genetic structuring exists, 

but remains uninvestigated. A summary of total retained catch by 1-degree longitude groupings 

during 1985/86–1995/96 (years for which state statistical area definitions allow for grouping by 

1-degree longitude and for which catch distribution was not affected by area closures and 

openings; see Section C.5) shows that catch and, presumably, distribution of legal-sized male red 

king crab is not evenly distributed across the Aleutian Islands. Most catch during that period was 

from Petrel Bank, followed by the vicinity of Adak, Atka, and Amlia Islands (Figure 2). Note 

that the 1-degree longitude grouping of catch does not portray the spatial gaps in catch that are 

apparent upon a closer inspection of the 1985/86–1995/96 catch data by state statistical areas. 
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For example, no catch was reported during 1985/86–1995/96 from the two statistical areas 

(795102 and 795132) that include Amchitka Pass (Amchitka Pass lies between Petrel Bank and 

the Delarof Islands; see Figure 2). 

 

McMullen and Yoshihara (1971) reported the following on male red king crab that were tagged 

in February 1970 on the Bering Sea and Pacific Ocean sides of Atka Island and recovered in the 

subsequent fishery:  

 

“Fishermen landing tagged crabs were questioned carefully concerning the 

location of recapture. In no instance did crabs migrate through ocean passes 

between the Pacific Ocean and Bering Sea.” 

 

4. Description of life history characteristics relevant to stock assessments (e.g., special 

features of reproductive biology): 

Red king crab eggs are fertilized externally and the clutch of fertilized eggs (embryos) are 

carried under the female’s abdominal flap until hatching. Male king crab fertilize eggs by 

passing spermatophores from the fifth periopods to the gonopores and coxae of the female’s third 

periopods; the eggs are fertilized during ovulation and attach to the female’s pleopodal setae 

(Nyblade 1987, McMullen 1967). Females are generally mated within hours after molting 

(Powell and Nickerson 1965), but may mate up to 13 days after molting (McMullen 1969). 

Males must wait at least 10 days after completing a molt before mating (Powell et al. 1973), but, 

unlike females, do not need to molt prior to mating (Powell and Nickerson 1965).  

 

Wallace et al. (1949, page 23) described the “egg laying frequency” of red king crab:  

 

“Egg laying normally takes place once a year and only rarely are mature females 

found to have missed an egg laying cycle. The eggs are laid in the spring 

immediately following shedding [i.e., molting] and mating and are incubated for a 

period of nearly a year. Hatching of the eggs does not occur until the following 

spring just prior to moulting [i.e., molting] season.”   

 

McMullen and Yoshihara (1971) reported that from 804 female red king crab (79–109-mm CL) 

collected during the 1969/70 commercial fishery in the western Aleutians, “Female king crab in 

the western Aleutians appeared to begin mating at 83 millimeters carapace length and virtually 

all females appeared to be mature at 102 millimeters length.” Blau (1990) estimated size at 

maturity for WAI red king crab females as the estimated CL at which 50% of females are mature 

(SM50; as evidenced by presence of clutches of eggs or empty) according to a logistic 

regression:  89-mm CL (SD = 2.6 mm). Size at maturity has not been estimated for WAI male 

red king crab. However, because the estimated SM50 for WAI red king crab females is the same 

as that estimated for Bristol Bay red king crab females (Otto et al. 1990), the estimated maturity 

schedule used for Bristol Bay red king crab males (see SAFE chapter on Bristol Bay red king 

crab) could be applied to males in the WAI stock as a proxy. 

 

Few data are available on the molting and mating period for red king crab specifically in the 

WAI. Among the red king crab captured by ADF&G staff for tagging on the south side of Amlia 

Island (173° W longitude to 174° W longitude) in the first half of April 1971, males and females 
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were molting, females were hatching embryos, and mating was occurring (McMullen and 

Yoshihara 1971). The spring mating period for red king crab is known to last for several months, 

however. For example, although mating activity in the Kodiak area apparently peaks in April, 

mating pairs in the Kodiak area have been documented from January through May (Powell et al. 

2002). Due to the timing of the commercial fishery within a year, little data on reproductive 

condition of WAI red king crab females have been collected by at-sea fishery observers that can 

be used for evaluating the mating period. Most recently, of the 3,211 mature females that were 

examined during the 2002/03 and 2003/04 red king crab fisheries in the Petrel Bank area, which 

were prosecuted in late October, only 10 were scored as “hatching” (ADF&G observer database, 

Dutch Harbor, April 2008). 

 

Data on mating pairs of red king crab collected from the Kodiak area during March–May of 1968 

and 1969 showed that size of the females in the pairs increased from March to May, indicating 

that females tend to release their larvae and mate later in the mating season with increasing body 

size (Powell et al. 2002). Size of the males in those mating pairs did not increase with later 

sampling periods, but did show a decreasing trend in estimated time since last molt. In all the 

data on mating pairs collected from the Kodiak area during 1960–1984, the proportion of males 

that were estimated to have not recently molted prior to mating decreased monthly over the 

mating period (Powell et al. 2002). Those data also suggest that, for males, not molting early in 

the mating period provides the advantage of mating when primiparous and small, multiparous 

females tend to ovulate. Alternatively, males that do molt early in the mating period likely 

participate in mating later, and with larger females.  

 

Current knowledge of red king crab reproductive biology, including male and female maturation, 

migration, mating dynamics, and potential effects of exploitation on reproductive potential, is 

summarized by Webb (2014).  

 

5. Brief summary of management history:  

A complete summary of the management history through 2011/12 is provided by Baechler and 

Cook (2014, pages 7–13). The domestic fishery for red king crab in the WAI began in 1960/61. 

Retained catch of red king crab in the Aleutians west of 172° W longitude averaged 5,259 t 

(11,595,068 lb) during 1960/61–1975/76, with a peak retained catch of 9,613 t (21,193,000 lb) in 

1964/65 (Tables 1a and 1b, Figure 3). Guideline harvest levels (GHL; sometimes expressed as 

ranges, with an upper and lower GHL) for the fishery were established in most years since 

1973/74. The fishery was closed in 1976/77 in the area west of 172º W longitude, but was 

reopened for each year during 1977/78–1995/96. Average retained catch during 1977/78–

1995/96 (for the area west of 172º W longitude prior to 1984/85 and for the area west of 171º W 

longitude since 1984/85) was 470 t (1,036,659 lb); the peak retained catch during that period 

occurred in 1983/84 at 899 t (1,981,579 lb). During the mid-to-late 1980s, significant portions of 

the catch during the WAI red king crab fishery occurred west of 179º E longitude or east of 179º 

W longitude, whereas most of the retained catch was harvested from the Petrel Bank area (179° 

W longitude to 179° W longitude) during 1990/91–1994/95 (Figure 4). Retained catch and 

fishery CPUE (retained crab per pot lift) declined from 1993/94 to 1994/95 and 1995/96; 

retained catch in 1994/95 and, especially, 1995/96 was far below the lower GHL established. 

Due to concerns about the low stock level and poor recruitment indicated by results of the fishery 

in 1994/95–1995/96, the fishery was closed in 1996/97–1997/98.  During 1998/99–2003/04 the 
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fishery was opened only in restricted areas, either as an open fishery managed under a GHL or as 

an ADF&G-Industry survey conducted as a commissioner’s permit fishery (Table 2); peak 

retained catch during that period was 229 t (505,642 lb) harvested from the Petrel Bank area in 

2002/03. The fishery has been closed during 2004/05–2016/17. 

 

Only males of a minimum legal size may be retained by the commercial red king crab fishery in 

the WAI. By State of Alaska regulation (5 AAC 34.620 (a)), the minimum legal size limit is 6.5-

inches (165 mm) carapace width (CW), including spines. A carapace length (CL) ≥138 mm is 

used to identify legal-size males when CW measurements are not available (Table 3-5 in 

NPFMC 2007). Except for the years 1968–1970, the minimum size has been 6.5-inches CW 

since 1950; in 1968 there was a “first-season” minimum size of 6.5-inches CW and a “second-

season” minimum size of 7.0-inches and in 1969–1970 the minimum size was 7.0-inches CW 

(Donaldson and Donaldson 1992). 

 

Red king crab may be commercially fished only with king crab pots (as defined in 5 AAC 

34.050). Pots used to fish for red king crab in the WAI must, since 1996, have at least one-third 

of one vertical surface of the pot composed of not less than nine-inch stretched mesh webbing to 

permit escapement of undersized red king crab and may not be longlined  (5 AAC 34.625 (e)). 

The sidewall of the pot “…must contain an opening equal to or exceeding 18 inches in length... 

The opening must be laced, sewn, or secured together by a single length of untreated, 100 

percent cotton twine, no larger than 30 thread.” (5 AAC 39.145(1)).  

 

The WAI red king crab fishery west of 179° W longitude has been managed since 2005/06  

under the Crab Rationalization program (50 CFR Parts 679 and 680). The WAI red king crab 

fishery in the area east of 179° W longitude was not included in the Crab Rationalization 

program (Baechler and Cook 2014). In March 2014 the Alaska Board of Fisheries established 

two red king crab management districts in state regulations for the Aleutian Islands west of 171° 

W longitude (the Adak District, 171º to 179º W longitude; and the Petrel District, west of 179º 

W longitude) and some notable differences in regulations exist between the two districts. The 

red king crab commercial fishing season in the Adak District is August 1 to February 15, unless 

closed by emergency order (5 AAC 34.610 (a) (1)); the red king crab commercial fishing season 

in the Petrel is October 15 to February 15, unless closed by emergency order (5 AAC 34.610 (a) 

(2)).  Only vessels 60 feet or less in overall length may participate in the commercial red king 

crab fishery within the state waters of the Adak District (5 AAC 34.610 (d)); no vessel size limit 

is established for federal waters in the Adak District or for state or federal waters in the Petrel 

District. Federal waters in the Adak District are opened to commercial red king crab fishing only 

if the season harvest level established by ADF&G for the Adak District is 250,000 lb or more (5 

AAC 34.616 (a) (2)); there is no comparable regulation for the Petrel District. In the Adak 

District, pots commercially fished for red king crab may only be deployed and retrieved between 

8:00 AM and 5:59 PM each day (5 AAC 34.625 (g) (2)) and the following pot limits pertain: 10 

pots per vessel for vessels fishing within state waters (5 AAC 34.625 (g) (1) (A)); and 15 pots 

per vessel for vessels fishing in federal waters (5 AAC 34.625 (g) (1) (B)). In the Petrel District 

there is no regulation pertaining to periods for operation of gear and a pot limit of 250 pots per 

vessel (5 AAC 34.625 (d)). See also “6. Brief description of the annual ADF&G harvest 

strategy,” below. 
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6. Brief description of the annual ADF&G harvest strategy: 

Prior to the March 2014 Alaska Board of Fisheries meeting, when the board adopted a harvest 

strategy for the Adak District only, there was no harvest strategy in state regulation for WAI red 

king crab. Following results of the January/February and November 2001 ADF&G-Industry pot 

surveys for red king crab in the Petrel Bank area, which produced high catch rates of legal males 

(CPUE = 28), but low catches of females and sublegal males, ADF&G opened the fishery in 

2002/03 and 2003/04 with a GHL of 227 t (500,000 lb); that GHL was established as the 

minimum GHL that could be managed inseason, given expected participation and effort 

(Baechler and Cook 2014). The fishery was closed in 2004/05 due to continued uncertainty on 

the status of pre-recruit legal males, a reduction in legal male CPUE from 18 in 2002/03 to 10 in 

2003/04, and a strategy adopted by ADF&G to close the fishery before the CPUE of legal crab 

dropped below 10.  

 

The harvest strategy for red king crab in the Adak District adopted by the Alaska Board of 

Fisheries in March 2014 is as follows: 

 

5 AAC 34.616. Adak District red king crab harvest strategy. (a)  In the Adak District, 

based on the best scientific information available, if the department determines that there 

is a harvestable surplus of   

(1) red king crab available in the waters of Alaska in the Adak District, 

the commissioner may open, by emergency order, a commercial red king 

crab fishery only in the waters of Alaska in the Adak District under 5 

AAC 34.610(a)(1);   

(2) at least 250,000 pounds of red king crab in the Adak District, the 

commissioner may open, by emergency order, a commercial red king crab 

fishery in the entire Adak District under 5 AAC 34.610(a)(1).   

(b) In the Adak District, during a season opened under 5 AAC 34.610(a)(1), 

the operator of a validly registered king crab fishing vessel shall   

(1) report each day to the department   

(A) the number of pot lifts;   

(B) the number of crab retained for the 24-hour fishing period 

preceding the report; and   

(C) any other information the commissioner determines is necessary 

for the management and conservation of the fishery, as specified in 

the vessel registration certificate issued under 5 AAC 34.020; and   

(2) complete and submit a logbook as prescribed and provided by the 

department. 

 

7. Summary of the history of BMSY: Not applicable for this Tier 5 stock. 
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D. Data 

1. Summary of new information: 

• Retained catch data from the 2016/17 directed fishery has been added; the fishery was 

closed and the retained catch was 0 t (0 lb). 

• Data on discarded catch in crab and groundfish fisheries has been updated with data from 

the 2016/17 Aleutian Islands golden king crab fishery and the 2016/17 groundfish 

fisheries in reporting areas 541, 542, and 543 (Figure 5). 

• Discarded catch during the cooperative industry-ADF&G survey in 2016. Data was 

available as number of crab caught per size/sex group (males: legal, sub-lagal, and 

females). Assumptions were made on the representative size (width) of each group, 

which were converted to length then weight. A bycatch mortality rate of 0.2 (as applied 

to crab fisheries) was applied to the estimated total weight caught. 

 

2. Data presented as time series: 

a. Total catch and b. Information on bycatch and discards: 

• Annual retained catch weight for 1960/61–2016/17 (Tables 1a and 1b, Figure 3). 

• Annual retained catch weight and estimated weights of discarded legal males, discarded 

sublegal males, and discarded females captured by commercial crab fisheries during 

1995/96–2016/17 (Table 3). Observer data on size distributions and estimated catch 

numbers of discarded catch were used to estimate the weight of discarded catch of red 

king crab by applying a weight-at-length estimator (see below). Estimates of discarded 

catch prior to 1995/96 are not given due to non-existence of data or to limitations on 

sampling for discarded catch during the crab fisheries: prior to 1988/89 there was no 

fishery observer program for Aleutian Islands crab fisheries and observers were required 

only on vessels processing king crab at sea (including catcher-processor vessels) during 

1988/89–1994/95; observer data from the Aleutian Islands prior to 1990/91 is considered 

unreliable; and the observer data from the directed WAI red king crab fishery in 1990/91 

and 1992/93–1994/95 and golden king crab fishery in the 1993/94–1994/95 are 

confidential due to the limited number of observed vessels. During 1995/96–2004/05, 

observers were required on all vessels fishing for king crab in the Aleutian Islands area at 

all times that a vessel was fishing. With the advent of the Crab Rationalization program 

in 2005/06, all vessels fishing for golden king crab in the Aleutian Islands area are now 

required to carry an observer for a period during which 50% of the vessel’s retained catch 

was obtained during each trimester of the fishery; observers continue to be required at all 

times on a vessel fishing in the red king crab fishery west of 179° W longitude. All red 

king crab that were captured and discarded during the Aleutian Islands golden king crab 

fishery west of 174° W longitude by a vessel while an observer was on board during 

2001/02–2002/03 and 2004/05–2016/17 were counted and recorded for capture location 

and biological data.  

• Annual estimated weight of discarded catch and estimated bycatch mortality in the WAI 

(reporting areas 541, 542, and 543; i.e., Aleutian Islands west of 170° W longitude; 

Figure 5) during federal groundfish fisheries by gear type (fixed or trawl) for 1993/94–

2016/17 (Table 4). Following Foy (2012a, 2012b), the bycatch mortality rate of king crab 

captured by fixed gear during groundfish fisheries was assumed to be 0.5 and of king 

crab captured by trawls during groundfish fisheries was assumed to be 0.8. Estimates of 

discarded catch by gear type for 1992/93 are available, but appear to be suspect because 
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they are extremely low. Annual estimated weight of discarded catch during federal 

groundfish fisheries by reporting area (541, 542, and 543) for 1993/94–2016/17 is also 

presented in Table 5.  

• Annual estimated weight of total fishery mortality for 1995/96–2016/17, partitioned into 

retained catch, estimated bycatch mortality during crab fisheries, and estimated bycatch 

mortality during federal groundfish fisheries (Table 6).  Following Siddeek et al. (2011), 

the bycatch mortality rate of king crab captured and discarded during Aleutian Islands 

king crab fisheries was assumed to be 0.2; bycatch mortality in crab fisheries was 

estimated for Table 6 by applying that assumed bycatch mortality rate to the estimates of 

discarded catch given in Table 3. The estimates of bycatch mortality in groundfish 

fisheries given in Table 6 are from Table 4. 

• Table 7 summarizes the available data on retained catch weight and estimates of 

discarded catch weight. 

 

c. Catch-at-length: Although not used in a Tier 5 assessment, available retained-catch size 

frequency sample data from 1960/61–2016/17 are summarized and presented (Appendices 

A1–A4). 

 

d. Survey biomass estimates:  Not available; there is no program for regular performance of 

standardized surveys sampling from the entirety of the stock range. 

 

e. Survey catch at length: Not used in a Tier 5 assessment; none are presented. 

 

f. Other data time series: Although not used in a Tier 5 assessment, available data on CPUE 

(retained crab per pot lift) from 1972/73–2016/17 directed fisheries are presented (Table 1, 

Figure 6).  

 

3. Data which may be aggregated over time: 

a. Growth-per-molt; frequency of molting, etc. (by sex and perhaps maturity state):  

Not used in a Tier 5 assessment. Growth per molt was estimated for WAI male red king crab by 

Vining et al. (2002) based on information received from recoveries during commercial fisheries 

of tagged red king crab released in the Adak Island to Amlia Island area during the 1970s (see 

Table 5 in Pengilly 2009). Vining et al. (2002) used a logit estimator to estimate the probability 

as a function of carapace length (CL, mm) at release that a male WAI red king tagged and 

released in new-shell condition would molt within 8–14 months after release (see Tables 6 and 7 

in Pengilly 2009).  

 

b. Weight-at length or weight-at-age (by sex): 

Parameters (A and B) used for estimating weight (g) from carapace length (CL, mm) of male and 

female red king crab according to the equation, Weight = A*CLB (from Table 3-5, NPFMC 

2007) are: A = 0.000361 and B = 3.16 for males and A = 0.022863 and B = 2.23382 for females; 

note that although the estimated parameters, A and B, are those estimated for ovigerous females, 

those parameters were used to estimate the weight of all females without regard to reproductive 

status. Estimated weights in grams were converted to lb by dividing by 453.6. 
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c. Natural mortality rate:  

Not used in a Tier 5 assessment. NPFMC (2007) assumed a natural mortality rate of M = 0.18 

for king crab species, but natural mortality rate has not been estimated specifically for red king 

crab in the WAI. 

 

4. Information on any data sources that were available, but were excluded from the 

assessment: 

• Distribution of effort and catch during the 2006 ADF&G Petrel Bank red king crab pot 

survey (Gish 2007) and the 2009 ADF&G Petrel Bank red king crab pot survey (Gish 

2010). 

• Sex-size distribution of catch and distribution of effort and catch during the 

January/February 2001 and November 2001 ADF&G-Industry red king crab survey of 

the Petrel Bank area (Bowers et al. 2002) and ADF&G-Industry red king crab pot survey 

conducted as a commissioner’s permit fishery in November 2002 in the Adak Island and 

Atka-Amlia Islands areas (Granath 2003). 

• Observer data on size distribution and geographic distribution of discarded catch of red 

king crab in the WAI red king crab fishery and the Aleutian Islands golden king crab 

fishery, 1988/89–2016/17 (ADF&G observer database).  

• Summary of data collected by ADF&G WAI red king crab fishery observers or surveys 

during 1969–1987 (Blau 1993).  

  

E. Analytic Approach 

1. History of modeling approaches for this stock:  This is a Tier 5 assessment. 

2. Model Description:  Subsections a–i are not applicable to a Tier 5 assessment. 

There is no regular survey of this stock. No assessment model for the WAI red king crab stock 

exists and none is in development. The SSC in June 2010 recommended that: the WAI red king 

crab stock be managed as a Tier 5 stock; the OFL be specified as a total-catch OFL; the total-

catch OFL be established as the estimated average annual weight of the retained catch and 

bycatch mortality in crab and groundfish fisheries over the period 1995/96–2007/08; and the 

period used for computing the Tier 5 total-catch OFL be fixed at 1995/96–2007/08.  

 

Given the strong recommendations from the SSC in June 2010, Tier 5 total-catch OFLs would 

change only if retained catch data and estimates of discarded catch for the period 1995/96–

2007/08 or assumed values of bycatch mortality rates used in the 2010 SAFE were revised. 

Given that no need has been shown to revise either the retained catch data or the discarded catch 

estimates for the period 1995/96–2007/08 or assumed values of bycatch mortality rates used in 

the 2010 SAFE, the recommended approach for establishing the 2017/18 OFL is the approach 

identified by the SSC in June 2010 and no alternative approaches are suggested by the author. 

Hence the recommended total-catch OFL for 2017/18 is computed according to the status quo 

“Alternative 1” approach as:  

 

OFL2017/18 = RET95/96-07/08 + BMCF, 95/96-07/08 + BMGF, 95/96-07/08, 

 

where, 
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• RET95/96-07/08 is the average annual retained catch in the directed crab fishery during 

1995/96–2007/08 

• BMCF, 95/96-07/08 is the estimated average annual bycatch mortality in the directed and 

non-directed crab fisheries during 1995/96–2007/08, and 

• BMGF, 95/96-07/08 is the estimated average annual bycatch mortality in the groundfish 

fisheries during 1995/96–2007/08. 

 

Given the June 2010 SSC recommendations, items E.2 a–i are not applicable. 

 

3. Model Selection and Evaluation: 

 

a. Description of alternative model configurations 

Not applicable; see section E.2. 

 

b. Show a progression of results from the previous assessment to the preferred base model by 

adding each new data source and each model modification in turn to enable the impacts of 

these changes to be assessed:  None; see section A.4. 

 

c. Evidence of search for balance between realistic (but possibly over-parameterized) and 

simpler (but not realistic) models:  None; see the section A.4. 

 

d. Convergence status and convergence criteria for the base-case model (or proposed base-

case model):  Not applicable. 

 

e. Table (or plot) of the sample sizes assumed for the compositional data: Not applicable. 

 

f. Do parameter estimates for all models make sense, are they credible?: 

Use of the 1995/96–2007/08 time period for estimating annual total fishery mortality and 

computing a Tier 5 OFL was established by the SSC in 2010. 

  

g. Description of criteria used to evaluate the model or to choose among alternative models, 

including the role (if any) of uncertainty:  Use of the 1995/96–2007/08 time period for 

estimating annual total fishery mortality and computing a Tier 5 OFL was established by the 

SSC in 2010. 

 

h. Residual analysis (e.g. residual plots, time series plots of observed and predicted values or 

other approach):  Not applicable. 

 

i. Evaluation of the model, if only one model is presented; or evaluation of alternative 

models and selection of final model, if more than one model is presented:  The model 

follows the June 2010 SSC recommendations to freeze the time period for estimation of the 

Tier 5 OFL. 
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4. Results (best model(s)): 

 

a. List of effective sample sizes, the weighting factors applied when fitting the indices, and the 

weighting factors applied to any penalties:  Not applicable to a Tier 5 assessment. 

 

b. Tables of estimates (all quantities should be accompanied by confidence intervals or other 

statistical measures of uncertainty, unless infeasible; include estimates from previous 

SAFEs for retrospective comparisons):  See Table 6. 

 

c. Graphs of estimates (all quantities should be accompanied by confidence intervals or other 

statistical measures of uncertainty, unless infeasible):  Not applicable to a Tier 5 

assessment. 

 

d. Evaluation of the fit to the data:  Not applicable to a Tier 5 assessment. 

 

e. Retrospective and historic analyses (retrospective analyses involve taking the “best” model 

and truncating the time-series of data on which the assessment is based; a historic analysis 

involves plotting the results from previous assessments):  Not applicable to a Tier 5 

assessment. 

 

f. Uncertainty and sensitivity analyses (this section should highlight unresolved problems 

and major uncertainties, along with any special issues that complicate scientific 

assessment, including questions about the best model, etc.):  For a Tier 5 assessment, the 

major uncertainties are: 

 

• Whether the time period is “representative of the production potential of the stock” and if 

it serves to “provide the required risk aversion for stock conservation and utilization 

goals.”  Or whether any such time period exists. 

o In this regard, the CPT (May 2011 minutes) noted that the OFL (56 t; 0.12-million 

lb) that was established for this stock by the SSC in June 2010 “could be 

considered biased high because of years of high exploitation” and questioned 

“whether the time frame used to compute the OFL is meaningful as an estimate of 

the productivity potential of this stock.”   

• The bycatch mortality rates used in estimation of total catch. Being as most (78%) of the 

estimated total mortality during 1995/96–2007/08 is due to the retained catch component, 

the total catch estimate is not severely sensitive to the assumed bycatch mortality rates. 

Doubling the assumed bycatch mortality during crab fisheries from 0.2 to 0.4 would 

increase the OFL by a factor of 1.02; halving that assumed rate from 0.2 to 0.1 would 

decrease the OFL by a factor of 0.99. Increasing the assumed bycatch mortality rate for 

all groundfish fisheries (regardless of gear type) to 1.0, would increase the OFL by a 

factor of 1.07. 
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F. Calculation of the OFL 

1. Specification of the Tier level and stock status level for computing the OFL: 

• Recommended as Tier 5, total-catch OFL computed as the estimated average annual total 

catch over a specified period. 

• Recommended time period for computing retained-catch portion of the OFL: 1995/96–

2007/08.  

• Recommended time period for computing bycatch mortality due to crab fisheries: 

1995/96–2007/08. 

• Recommended time period for computing bycatch mortality due to groundfish fisheries: 

1995/96–2007/08. 

• Recommended bycatch mortality rates: 0.2 for crab fisheries; 0.5 for fixed-gear 

groundfish fisheries; 0.8 for trawl groundfish fisheries. 

• Recommended OFL for 2017/18 is estimated by, 

 

OFL2017/18 = RET95/96-07/08 + BMCF, 95/96-07/08 + BMGF, 95/96-07/08, 

 

where, 

 

• RET95/96-07/08 is the average annual retained catch in the directed crab fishery during 

1995/96–2007/08 

• BMCF, 95/96-07/08 is the estimated average annual bycatch mortality in the directed and 

non-directed crab fisheries during 1995/96–2007/08, and 

• BMGF, 95/96-07/08 is the estimated average annual bycatch mortality in the groundfish 

fisheries during 1995/96–2007/08. 

 

Statistics on the data and estimates used to calculate RET95/96-07/08, BMCF, 95/96-07/08, and 

BMGF,95/96-07/08 are provided in the “Mean, 1995/96–2007/08” row of Table 6. Using the 

calculated values of RET95/96-07/08, BMCF, 95/96-07/08, and BMGF,95/96-07/08, OFL 2016/17 is, 

 

OFL2017/18 = 43.97 t + 1.36  t + 10.86 t  = 56 t (123,867 lb). 

 

2. List of parameter and stock size estimates (or best available proxies thereof) required 

by limit and target control rules specified in the fishery management plan:  Not 

applicable to Tier 5 assessment. 

 

3. Specification of the OFL: 

a. Provide the equations (from Amendment 24) on which the OFL is to be based:  

From Federal Register / Vol. 73, No. 116, page 33926, “For stocks in Tier 5, the overfishing 

level is specified in terms of an average catch value over an historical time period, unless the 

Scientific and Statistical Committee recommends an alternative value based on the best available 

scientific information.”  Additionally, “For stocks where nontarget fishery removal data are 

available, catch includes all fishery removals, including retained catch and discard losses. 

Discard losses will be determined by multiplying the appropriate handling mortality rate by 

observer estimates of bycatch discards. For stocks where only retained catch information is 

available, the overfishing level is set for and compared to the retained catch” (FR/Vol. 73, No. 

116, 33926).  That compares with the specification of NPFMC (2007) that the OFL “represent[s] 
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the average retained catch from a time period determined to be representative of the production 

potential of the stock.” 

 

b. Basis for projecting MMB to the time of mating:  Not applicable to Tier 5 assessment. 

 

c. Specification of FOFL, OFL, and other applicable measures (if any) relevant to determining 

whether the stock is overfished or if overfishing is occurring:  See Management 

Performance tables, below. No vessels participated in the 2016/17 directed fishery and but 

some bycatch was observed in the Aleutian Islands golden king crab fishery in 2016/17. 

Total catch mortality in 2016/17 consists of what occurred during the Aleutian Islands golden 

king crab fishery and groundfish fisheries (0.18 t) and the cooperative industry-ADF&G 

survey (0.03 t). Overfishing did not occur in 2016/17. The OFL and ABC values for 2017/18 

in the table below are the author’s recommended values. The 2017/18 TAC has not yet been 

established.  

 

Management Performance Table (values in t) 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TACa 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2012/13 N/A N/A Closed 0 <1 56 34 

2013/14 N/A N/A Closed 0 <1 56 34 

2014/15 N/A N/A Closed 0 <1 56 34 

2015/16 N/A N/A Closed 0 1.3 56 34 

2016/17 N/A N/A Closed 0 <1 56 34 

2017/18 N/A N/A    56 14 

a. Pre-season harvest levels are established as total allowable catch for the rationalized fishery west of 

179° W longitude and as a guideline harvest level for the non-rationalized fishery east of 179° W 

longitude. 

 

Management Performance Table (values in lb) 

Fishing 

Year 

 

MSST 

Biomass 

(MMB) 
TACa 

Retained 

Catch 

Total 

Catch 
OFL ABC 

2012/13 N/A N/A Closed 0 624 123,867 74,320 

2013/14 N/A N/A Closed 0 732 123,867 74,320 

2014/15 N/A N/A Closed 0 474 123,867 74,320 

2015/16 N/A N/A Closed 0 2,964 123,867 74,320 

2016/17 N/A N/A Closed 0 454 123,867 74,320 

2017/18 N/A N/A    123,867 30,967 

a. Pre-season harvest levels are established as total allowable catch for the rationalized fishery west of 

179° W longitude and as a guideline harvest level for the non-rationalized fishery east of 179° W 

longitude. 
 

4. Specification of the recommended retained-catch portion of the total-catch OFL:  

a. Equation for recommended retained portion of the total-catch OFL, 

Retained-catch portion = average retained catch during 1995/96–2007/08 

   = 44 t (96,932 lb). 
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5. Recommended FOFL, OFL total catch and the retained portion for the coming year: 

See sections F.3 and F.4, above; no FOFL is recommended for a Tier 5 assessment. 

G. Calculation of ABC 

1. PDF of OFL. A bootstrap estimate of the sampling distribution (assuming no error in 

estimation of the discarded catch) of the OFL is shown in Figure 7 (the sample means of 1,000 

samples drawn with replacement from the 1995/96–2007/08 estimates of total fishery mortality 

in Table 6). The mean (56 t) and CV (0.42) computed from the 1,000 replicates are essentially 

the same as for the mean and CV of the 1995/96–2007/08 total catch estimates given in Table 6. 

Note that generated sampling distribution is meaningful as a measure in the uncertainty of the 

OFL only if assumptions on the choice of years used to compute the Tier 5 OFL are true (see 

Section E.4.f). 

 

2. List of variables related to scientific uncertainty. 

• The time period to compute the average catch relative to the assumption that it represents 

“a time period determined to be representative of the production potential of the stock.” 

• Bycatch mortality rate in each fishery that bycatch occurs. Note that for a Tier 5 

assessment, an increase in an assumed bycatch mortality rate will increase the OFL (and 

hence the ABC), but has no effect on the retained catch portion of the OFL or the retained 

catch portion of the ABC.  

• Estimated discarded catch and bycatch mortality during each fishery that bycatch 

occurred in during 1995/96–2007/08. 

 

3. List of additional uncertainties for alternative sigma-b. Not applicable to this Tier 5 

assessment. 

 

4. Author recommended ABC: 14 t (30,967 lb). This is lower than the ABC that has been 

recommended by the author since the SSC recommended a 34 t (74,320 lb) ABC for 2012/13. 

The SSC’s recommended ABC of 34 t for 2012/13 was determined as a value “sufficient to 

cover bycatch and the proposed test fishery catch” (June 2012 SSC meeting minutes, page 10). It 

provides a 40% buffer on the OFL of 56 t (123,867 lb). However, the industry has not expressed 

interest in conducting a test fishery for 2017/18. Further, the 2016 Petrel survey indicated the 

stock is severely depressed. Thus, the author and CPT recommend increasing the buffer to 75%.  

H. Rebuilding Analyses 

Entire section is not applicable; this stock has not been declared overfished. 

 

I. Data Gaps and Research Priorities 

This fishery has a long history, with the domestic fishery dating back to 1960/61. However, 

much of the data on this stock prior to the early-mid 1980s is difficult to retrieve for analysis. 

Fishery data summarized to the level of statistical area are presently not available prior to 

1980/81. Changes in definitions of fishery statistical areas between 1984/85 and 1985/86 also 

make it difficult to assess geographic trends in effort and catch over much of the fishery’s 

history. An effort to compile all fishery data and other written documentation on the stock and 

fishery and to enter all existing fishery, observer, survey, and tagging data into a database that 
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allows for analysis of all data from the fishery and stock through the history of the fishery would 

be time-consuming, challenging, and – perhaps – disappointing, but could provide valuable 

information if successful. 

 

The SSC in October 2008, June 2011, and June 2013 noted the need for systematic surveys to 

obtain the data to estimate the biomass of this stock. Surveys on this stock have, however, been 

few and the geographic scope of the surveyed area is limited. Aside from the pot surveys 

performed in the Adak-Atka area during the mid-1970s (ADF&G 1978, Blau 1993), the only 

standardized surveys for red king crab performed by ADF&G were performed in November 

2006 and November 2009 and those were limited to the Petrel Bank area (Gish 2007, 2010).  

ADF&G-Industry surveys, conducted as limited fisheries that allowed retention of captured legal 

males under provisions of a commissioner’s permit, have been performed in limited areas of the 

WAI: during January–February 2001 and November 2001 in the Petrel Bank area (Bowers et al. 

2002) and during November 2002 in the Adak-Atka-Amlia area (Granath 2003). A very limited 

(18 pot lifts) Industry exploratory survey without any retention of crab was performed during 

mid-October to mid-December 2009 between 178°00' E longitude and 175°30' E longitude 

produced a catch of one red king crab, a legal-sized male (Baechler and Cook 2014). Based on 

requests from Industry in 2012, ADF&G designed a state-waters red king crab pot survey for the 

Adak Island group. Twenty-five stations were designated with 20 pot lifts in each station. To 

defray cost of the survey, participants would be allowed to sell up to 14 t (31,417 lb) of red king 

crab. In addition, bycatch mortality during the proposed survey was assumed not to exceed 9 t 

based on assumed maximum discarded catch weight and an assumed bycatch mortality rate of 

0.2. In 2012 the CPT and SSC recommended an ABC of 34 t (0.74-million lb) for 2012/13 to 

accommodate total fishery mortality due the proposed red king crab survey in addition to 

estimated bycatch mortality due to non-directed fisheries (12 t). In late summer 2012, Industry 

advocates decided to forgo the fall 2012 survey. 

 

Trawl surveys are preferable relative to pot surveys for providing density estimates, but crab pots 

may be the only practical gear for sampling king crab in the Aleutians. Standardized pot surveys 

are a prohibitively expensive approach to surveying the entire WAI. Surveys or exploratory 

fishing performed by industry in cooperation with ADF&G, with or without allowing retention 

of captured legal males, reduce the costs to agencies. Agency-Industry cooperation can provide a 

means to obtain some information on distribution and density during periods of fishery closures. 

However, there can be difficulties in assuring standardization of procedures during ADF&G-

Industry surveys (Bowers et al. 2002). Moreover, costs of performing a survey have resulted in 

incompletion of ADF&G-Industry surveys (Granath 2003). Hence surveys performed by 

Industry in cooperation with ADF&G cannot be expected to provide sampling over the entire 

WAI during periods of limited stock distribution and overall low density, as apparently currently 

exists.  

 

A cooperative survey between industry and ADF&G was performed in the Adak area in 

September 2015 (Hilsinger et al. 2016a). A total of 442 red king crab (23 legal males, 74 pre 

recruit males, 140 juvenile males, and 204 females) were captured in Sitkin Sound and 

Expedition Harbor from 730 pots. Since RKC were highly aggregated (most were in inner Sitkin 

Sound) and few crab were legal males, further surveys of RKC in this area are a low priority. A 

cooperative survey between industry and ADF&G was also performed in the Petrel area in 
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November 2016 (Hilsinger et al. 2016b). A total of 40 red king crab (39 legal males, 1 sub-legal 

male, and 0 females) were captured. 
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Table 1a. Commercial fishery history for the western Aleutian Islands red king crab commercial fishery, 1960/61–2016/17: 

number of vessels, guideline harvest level (GHL; established in lb, converted to t) for 1973/74–2004/05, total allowable catch 

(TAC; established in lb, converted to t) in the area west of 179° W longitude combined with GHL (established in lb, converted 

to t) in the area east of 179° W longitude for 2005/06–2016/17, weight of retained catch (Harvest; t), number of retained crab, 

pot lifts, fishery catch per unit effort (CPUE; retained crab per pot lift), and average weight (kg) of retained crab. 

 
Note:  NA = Not available, FC = fishery closed, CF = confidential. 
a   Deadloss included. 
b   GHL includes all king crab species. Golden king crab incidental to red king crab.  
c   January/February 2001 Petrel Bank survey. 
d   November 2001 Petrel Bank survey. 

Crab fishing year Area Vessels GHL/TAC Harvest
a

Crab
a

Pots lifted CPUE Weight

1960/61 West of 172° W 4 - 941 NA NA NA NA

1961/62 West of 172° W 8 - 2,773 NA NA NA NA

1962/63 West of 172° W 9 - 3,631 NA NA NA NA

1963/64 West of 172° W 11 - 8,121 NA NA NA NA

1964/65 West of 172° W 18 - 9,613 NA NA NA NA

1965/66 West of 172° W 10 - 5,858 NA NA NA NA

1966/67 West of 172° W 10 - 2,668 NA NA NA NA

1967/68 West of 172° W 22 - 6,410 NA NA NA NA

1968/69 West of 172° W 30 - 7,303 NA NA NA NA

1969/70 West of 172° W 33 - 8,172 NA 115,929 NA 2.5

1970/71 West of 172° W 35 - 7,283 NA 124,235 NA NA

1971/72 West of 172° W 40 - 7,020 NA 46,011 NA NA

1972/73 West of 172° W 43 - 8,493 3,461,025 81,133 43 2.5

1973/74 West of 172° W 41 9,072
b

4,419 1,844,974 70,059 26 2.4

1974/75 West of 172° W 36 9,072
b

1,259 532,298 32,620 16 2.4

1975/76 West of 172° W 20 6,804
b

187 79,977 8,331 10 2.3

1976/77 West of 172° W FC FC FC FC FC FC FC

1977/78 West of 172° W 12 113−1,134 411 160,343 7,269 22 2.6

1978/79 West of 172° W 13 227−1,361 366 149,491 13,948 11 2.4

1979/80 West of 172° W 18 227−1,361 212 82,250 9,757 8 2.6

1980/81 West of 172° W 17 227−1,361 644 254,390 20,914 12 2.5

1981/82 West of 172° W 46 227−1,361 748 291,311 40,697 7 2.6

1982/83 West of 172° W 72 227−1,361 772 284,787 66,893 4 2.7

1983/84 West of 172° W 106 227−1,361 899 298,958 60,840 5 3.0

1984/85 West of 171° W 64 680−1,361 588 196,276 48,642 4 3.0

1985/86 West of 171° W 35 227−907 394 156,097 29,095 5 2.5

1986/87 West of 171° W 33 227−680 323 126,204 29,189 4 2.6

1987/88 West of 171° W 71 227−680 551 211,692 43,433 5 2.6

1988/89 West of 171° W 73 454 711 266,053 64,334 4 2.7

1989/90 West of 171° W 56 771 502 193,177 54,213 4 2.6

1990/91 West of 171° W 7 NA 376 146,903 10,674 14 2.6

1991/92 West of 171° W 10 NA 431 165,356 16,636 10 2.6

1992/93 West of 171° W 12 NA 584 218,049 16,129 14 2.7

1993/94 West of 171° W 12 NA 317 119,330 13,575 9 2.7

1994/95 West of 171° W 20 454−680 89 30,337 18,146 2 2.9

1995/96 West of 171° W 4 454−680 18 6,880 1,986 3 2.6

1996/97−1997/98 West of 171° W FC FC FC FC FC FC FC

1998/99 174°−179° W; west of 179° E 1 7 CF CF CF CF CF

1999/00 West of 171° W FC FC FC FC FC FC FC

2000/01
c

179° W−179° E 1 (Permit/Survey) 35 11,299 496 23 3.1

2001/02
d

179° W−179° E 4 (Permit/Survey) 70 22,080 564 39 3.2

2002/03 179° W−179° E 33 227 229 68,300 3,786 18 3.4

2003/04 179° W−179° E 30 227 217 59,828 5,774 10 3.6

2004/05−2016/17 West of 171° W FC FC FC FC FC FC FC
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Table 1b. Commercial fishery history for the western Aleutian Islands red king crab commercial fishery, 1960/61–

2016/17 number of vessels, guideline harvest level (GHL; lb) for 1973/74–2004/05, total allowable catch (TAC; lb) 

in the area west of 179° W longitude combined with GHL (lb) in the area east of 179° W longitude for 2005/06–

2016/17, weight of retained catch (Harvest; lb), number of retained crab, pot lifts, fishery catch per unit effort  

(CPUE; retained crab per pot lift), and average weight (lb) of retained crab. 

 
Note:  NA = Not available, FC = fishery closed, CF = confidential. 
a   Deadloss included. 
b   GHL includes all king crab species. Golden king crab incidental to red king crab.  
c   January/February 2001 Petrel Bank survey. 
d   November 2001 Petrel Bank survey.  

Crab fishing year Area Vessels GHL/TAC Harvest
a

Crab
a

Pots lifted CPUE Weight

1960/61 West of 172° W 4 - 2,074,000 NA NA NA NA

1961/62 West of 172° W 8 - 6,114,000 NA NA NA NA

1962/63 West of 172° W 9 - 8,006,000 NA NA NA NA

1963/64 West of 172° W 11 - 17,904,000 NA NA NA NA

1964/65 West of 172° W 18 - 21,193,000 NA NA NA NA

1965/66 West of 172° W 10 - 12,915,000 NA NA NA NA

1966/67 West of 172° W 10 - 5,883,000 NA NA NA NA

1967/68 West of 172° W 22 - 14,131,000 NA NA NA NA

1968/69 West of 172° W 30 - 16,100,000 NA NA NA NA

1969/70 West of 172° W 33 - 18,016,000 NA 115,929 NA 6.5

1970/71 West of 172° W 35 - 16,057,000 NA 124,235 NA NA

1971/72 West of 172° W 40 - 15,475,940 NA 46,011 NA NA

1972/73 West of 172° W 43 - 18,724,140 3,461,025 81,133 43 5.4

1973/74 West of 172° W 41 20,000,000
b

9,741,464 1,844,974 70,059 26 5.3

1974/75 West of 172° W 36 20,000,000
b

2,774,963 532,298 32,620 16 5.2

1975/76 West of 172° W 20 15,000,000
b

411,583 79,977 8,331 10 5.2

1976/77 West of 172° W FC FC FC FC FC FC FC

1977/78 West of 172° W 12 0.25 - 2.5 million 905,527 160,343 7,269 22 5.7

1978/79 West of 172° W 13 0.5 - 3.0 million 807,195 149,491 13,948 11 5.4

1979/80 West of 172° W 18 0.5 - 3.0 million 467,229 82,250 9,757 8 5.7

1980/81 West of 172° W 17 0.5 - 3.0 million 1,419,513 254,390 20,914 12 5.6

1981/82 West of 172° W 46 0.5 - 3.0 million 1,648,926 291,311 40,697 7 5.7

1982/83 West of 172° W 72 0.5 - 3.0 million 1,701,818 284,787 66,893 4 6.0

1983/84 West of 172° W 106 0.5 - 3.0 million 1,981,579 298,958 60,840 5 6.6

1984/85 West of 171° W 64 1.5 - 3.0 million 1,296,385 196,276 48,642 4 6.6

1985/86 West of 171° W 35 0.5 - 2.0 million 868,828 156,097 29,095 5 5.6

1986/87 West of 171° W 33 0.5 - 1.5 million 712,543 126,204 29,189 4 5.7

1987/88 West of 171° W 71 0.5 - 1.5 million 1,213,892 211,692 43,433 5 5.7

1988/89 West of 171° W 73 1.0 million 1,567,314 266,053 64,334 4 5.9

1989/90 West of 171° W 56 1.7 million 1,105,971 193,177 54,213 4 5.7

1990/91 West of 171° W 7 NA 828,105 146,903 10,674 14 5.6

1991/92 West of 171° W 10 NA 951,278 165,356 16,636 10 5.8

1992/93 West of 171° W 12 NA 1,286,424 218,049 16,129 14 6.0

1993/94 West of 171° W 12 NA 698,077 119,330 13,575 9 5.9

1994/95 West of 171° W 20 1.0 - 1.5 million 196,967 30,337 18,146 2 6.5

1995/96 West of 171° W 4 1.0 - 1.5 million 38,941 6,880 1,986 3 5.7

1996/97−1997/98 West of 171° W FC FC FC FC FC FC FC

1998/99 174°−179° W; west of 179° E 1 15,000 CF CF CF CF CF

1999/00 West of 171° W FC FC FC FC FC FC FC

2000/01
c

179° W−179° E 1 (Permit/Survey) 76,562 11,299 496 23 6.8

2001/02
d

179° W−179° E 4 (Permit/Survey) 153,961 22,080 564 39 7.0

2002/03 179° W−179° E 33 500,000 505,642 68,300 3,786 18 7.4

2003/04 179° W−179° E 30 500,000 479,113 59,828 5,774 10 8.0

2004/05−2016/17 West of 171° W FC FC FC FC FC FC FC
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Table 2. A summary of relevant fishery activities and management measures pertaining to the 

Western Aleutian Islands red king crab fishery since 1996/97. 

 

Crab 

fishing year 

Fishery Activities and Management Measures 

1996/97–

1997/98 
• Fishery closed. 

1998/99 • GHL of 7 t (15,000 lb) for exploratory fishing with fishery closed in the Petrel 

Bank area (i.e., between 179° W longitude and 179° E longitude) 

o 1 vessel 

1999/00 • Fishery closed 

2000/01 • Fishery closed 

• Catch retained during ADF&G-Industry survey of Petrel Bank area (i.e., 

between 179° W longitude and 179° E longitude) conducted as 

commissioner’s permit fishery, Jan–Feb 2001 

o 1 vessel 

o Retained catch weight = 35 t (76,562 lb) 

o CPUE = 23 retained crab per pot lift 

2001/02 • Fishery closed 

• Catch retained ADF&G-Industry survey of Petrel Bank area (i.e., between 

179° W longitude and 179° E longitude) conducted as commissioner’s permit 

fishery, November 2001 

o 4 vessels 

o Retained catch weight = 70 t (153,961 lb) 

o CPUE = 39 retained crab per pot lift 

2002/03 • Fishery opened with GHL of 227 t (500,000 lb) restricted to Petrel Bank area 

(i.e., between 179° W longitude and 179° E longitude) 

o 33 vessels 

o Retained catch weight = 229 t (505,642 lb) 

o CPUE = 18 retained crab per pot lift 

• ADF&G-Industry survey of the Adak, Atka, and Amlia Islands area 

conducted as a commissioner’s permit fishery 

o 4 legal males captured in 1,085 pot lifts 

2003/04 • Fishery opened with GHL of 227 t (500,000 lb) restricted to Petrel Bank area 

(i.e., between 179° W longitude and 179° E longitude) 

o 30 vessels 

o Retained catch weight = 217 t (479,113) lb 

o 10 retained crab per pot lift 

2004/05–

2016/17 
• Fishery closed 

o 2006 and 2009 ADF&G pot surveys on Petrel Bank   

o 2015 exploratory/reconnaissance survey in Adak Island area. 

o 2016 exploratory/reconnaissance survey in the Petrel Bank area. 
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Table 3. Annual retained catch (t) of Western Aleutian Islands red king crab, with the estimated 

annual discarded catch (t; not discounted for an assumed bycatch mortality rate) and 

components of discarded catch (legal males, sublegal males, and females) during 

commercial crab fisheries, 1995/96–2016/17. 

 

  
a. Data on discarded catch of red king crab during the red king crab fishery not available (see Moore et 

al. 2000). 

  

  

Crab fishing Total

year Retained Legal male Sublegal male Female Legal male Sublegal male Female Discarded

1995/96 17.66 0.00 9.38 12.53 0.00 0.93 0.14 22.98

1996/97 0.00 0.00 0.00 0.00 1.49 0.92 0.30 2.71

1997/98 0.00 0.00 0.00 0.00 0.08 0.26 0.08 0.42

1998/99
a

2.68 −a −a −a
0.34 0.06 0.08 −a

1999/00 0.00 0.00 0.00 0.00 0.07 0.34 0.04 0.46

2000/01 34.73 0.00 0.35 0.17 0.17 0.12 0.02 0.83

2001/02 69.84 0.08 2.98 3.80 9.07 0.00 0.17 16.09

2002/03 229.36 0.75 2.73 7.91 9.86 0.16 0.23 21.65

2003/04 217.32 0.29 2.99 3.61 4.28 2.88 3.03 17.08

2004/05 0.00 0.00 0.00 0.00 0.97 0.10 0.00 1.07

2005/06 0.00 0.00 0.00 0.00 0.09 0.00 0.02 0.11

2006/07 0.00 0.00 0.00 0.00 0.15 0.05 0.02 0.22

2007/08 0.00 0.00 0.00 0.00 0.28 0.83 0.25 1.36

2008/09 0.00 0.00 0.00 0.00 0.10 0.01 0.04 0.15

2009/10 0.00 0.00 0.00 0.00 0.26 0.11 0.02 0.39

2010/11 0.00 0.00 0.00 0.00 1.96 0.08 0.04 2.07

2011/12 0.00 0.00 0.00 0.00 0.43 0.01 0.04 0.49

2012/13 0.00 0.00 0.00 0.00 0.40 0.03 0.02 0.44

2013/14 0.00 0.00 0.00 0.00 1.34 0.05 0.08 1.46

2014/15 0.00 0.00 0.00 0.00 0.24 0.01 0.03 0.28

2015/16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2016/17 0.00 0.00 0.00 0.00 0.15 0.01 0.07 0.23

Average 25.98 0.05 0.88 1.33 1.49 0.33 0.22 4.31

WAI red king crab fishery AI golden king crab fishery

Discarded
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Table 4. Estimated annual weight (t) of discarded catch of red king crab (all sizes, males and 

females) and estimated annual bycatch mortality (t) during federal groundfish fisheries 

by gear type (fixed or trawl) in reporting areas 541, 542, and 543 (Aleutian Islands west 

of 170° W longitude), 1993/94–2016/17 (assumes bycatch mortality rate of 0.5 for fixed-

gear fisheries and 0.8 for trawl fisheries).  
 

 

 

Crab fishing

year Fixed Gear Trawl Gear Fixed Gear Trawl Gear Total

1993/94 0.60 40.09 0.30 32.07 32.37

1994/95 1.36 10.34 0.68 8.27 8.95

1995/96 2.63 6.93 1.32 5.55 6.86

1996/97 1.30 20.26 0.65 16.21 16.86

1997/98 1.73 5.31 0.87 4.25 5.12

1998/99 4.60 20.65 2.30 16.52 18.82

1999/00 17.13 12.69 8.57 10.15 18.72

2000/01 1.22 6.30 0.61 5.04 5.65

2001/02 2.42 27.01 1.21 21.61 22.82

2002/03 5.12 33.12 2.56 26.50 29.06

2003/04 1.62 4.15 0.81 3.32 4.13

2004/05 0.36 5.86 0.18 4.69 4.87

2005/06 1.61 1.07 0.80 0.86 1.66

2006/07 3.08 0.28 1.54 0.22 1.76

2007/08 7.70 1.19 3.85 0.95 4.80

2008/09 4.89 4.67 2.44 3.73 6.18

2009/10 0.14 6.40 0.07 5.12 5.19

2010/11 0.04 1.99 0.02 1.59 1.61

2011/12 1.19 0.82 0.60 0.41 1.01

2012/13 0.01 0.24 0.00 0.19 0.19

2013/14 0.01 0.04 0.01 0.03 0.04

2014/15 0.00 0.11 0.00 0.09 0.09

2015/16 0.03 1.46 0.02 1.17 1.19

2016/17 0.00 0.17 0.00 0.13 0.13

Average 2.45 8.80 1.23 7.03 8.25

Discarded catch Bycatch Mortality
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Table 5.  Estimated annual weight of discarded catch (t; not discounted by an assumed bycatch 

mortality rate) of red king crab in reporting areas 541, 542, and 543 (Aleutian Islands 

west of 170° W longitude) during federal groundfish fisheries (all gear types 

combined) by reporting area, 1993/94–2016/17.   

 

  
  

Crab fishing

year 541 542 543 Total

1993/94 37.9893 2.6590 0.0372 40.6855

1994/95 10.7216 0.8718 0.1025 11.6959

1995/96 5.9520 1.8398 1.7763 9.5681

1996/97 1.9477 3.0890 16.5258 21.5624

1997/98 1.0061 3.9639 2.0770 7.0470

1998/99 6.7549 7.1659 11.3335 25.2542

1999/00 16.3416 8.0535 5.4227 29.8183

2000/01 1.7686 3.6541 2.0961 7.5192

2001/02 3.4750 24.0341 1.9250 29.4341

2002/03 10.9996 21.3098 5.9384 38.2483

2003/04 2.2294 3.5280 0.0163 5.7733

2004/05 0.5280 5.6803 0.0154 6.2237

2005/06 1.6057 0.0395 1.0333 2.6785

2006/07 2.9688 0.3869 0.0000 3.3557

2007/08 5.1233 3.0427 0.7248 8.8909

2008/09 1.1440 7.5455 0.8668 9.5563

2009/10 1.6719 3.7548 1.1136 6.5404

2010/11 0.2123 1.8162 0.0005 2.0289

2011/12 0.8768 1.1335 0.0000 2.0108

2012/13 0.1560 0.0903 0.0000 0.2463

2013/14 0.0000 0.0435 0.0118 0.0553

2014/15 0.0000 0.1148 0.0005 0.1152

2015/16 0.0000 0.8864 0.6102 1.4966

2016/17 0.0000 0.0718 0.0950 0.1669

Average 4.7280 4.3656 2.1551 11.2488

Reporting Area
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Table 6. Estimated annual weight (t) of total fishery mortality to Western Aleutian Islands red 

king crab, 1995/96–2016/17, partitioned by source of mortality: retained catch, estimated 

bycatch mortality during crab fisheries, and estimated bycatch mortality during 

groundfish fisheries.  

 

  
a. No discarded catch data was available from the 1998/99 directed fishery for red king crab (see Table 

2); bycatch mortality due to the 1998/99 crab fisheries was estimated by multiplying the retained catch 

for the 1998/99 directed red king crab fishery by the ratio of the 1995/96 bycatch mortality in crab 

fisheries to the 1995/96 retained catch. 

  

Total Estimated

Crab fishing year Retained Catch Crab Groundfish Fishery mortality

1995/96 17.66 4.60 6.86 29.12

1996/97 0.00 0.54 16.86 17.40

1997/98 0.00 0.08 5.12 5.20

1998/99
a

2.68 0.70 18.82 22.19

1999/00 0.00 0.09 18.72 18.81

2000/01 34.73 0.17 5.65 40.54

2001/02 69.84 3.22 22.82 95.88

2002/03 229.36 4.33 29.06 262.75

2003/04 217.32 3.42 4.13 224.87

2004/05 0.00 0.21 4.87 5.08

2005/06 0.00 0.02 1.66 1.68

2006/07 0.00 0.04 1.76 1.81

2007/08 0.00 0.27 4.80 5.08

2008/09 0.00 0.03 6.18 6.21

2009/10 0.00 0.08 5.19 5.27

2010/11 0.00 0.41 1.61 2.02

2011/12 0.00 0.10 1.01 1.10

2012/13 0.00 0.09 0.19 0.28

2013/14 0.00 0.29 0.04 0.33

2014/15 0.00 0.06 0.09 0.15

2015/16 0.00 0.16 1.19 1.34

2016/17 0.00 0.07 0.13 0.21

Mean, 1995/96–2007/08 43.97 1.36 10.86 56.19

CV of mean 0.52 0.37 0.23 0.43

Mean, 1995/96–2016/17 25.98 0.86 7.13 33.97

CV of mean 0.54 0.37 0.25 0.45

Bycatch Mortality

by Fishery Type
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Table 7. Annual retained catch weight (t) and estimates of annual discarded catch weight (t; not discounted for an assumed 

bycatch mortality rate) of Western Aleutian Islands red king crab available for a Tier 5 assessment; shaded, bold values are used 

in computation of the recommended (status quo) 2017/18 Tier 5 OFL. 

  

Retained catch weight

Fish tickets Observer data: lengths, catch per sampled pot

Crab Fishing Year Directed fishery Crab fisheries Fixed gear, groundfish Trawl gear, groundfish

1960/61 940.75 — — —

1961/62 2773.27 — — —

1962/63 3631.46 — — —

1963/64 8121.13 — — —

1964/65 9612.99 — — —

1965/66 5858.15 — — —

1966/67 2668.49 — — —

1967/68 6409.72 — — —

1968/69 7302.85 — — —

1969/70 8171.93 — — —

1970/71 7283.34 — — —

1971/72 7019.78 — — —

1972/73 8493.14 — — —

1973/74 4418.66 — — —

1974/75 1258.70 — — —

1975/76 186.69 — — —

1976/77 0.00 — — —

1977/78 410.74 — — —

1978/79 366.14 — — —

1979/80 211.93 — — —

1980/81 643.88 — — —

1981/82 747.94 — — —

1982/83 771.93 — — —

1983/84 898.83 — — —

1984/85 588.03 — — —

1985/86 394.09 — — —

1986/87 323.20 — — —

1987/88 550.61 — — —

1988/89 710.92 — — —

1989/90 501.66 — — —

1990/91 375.62 Confidential — —

1991/92 431.49 Confidential — —

1992/93 583.51 Confidential — —

1993/94 316.64 Confidential 0.60 40.09

1994/95 89.34 Confidential 1.36 10.34

1995/96 17.66 22.98 2.63 6.93

1996/97 0.00 2.71 1.30 20.26

1997/98 0.00 0.42 1.73 5.31

1998/99 2.68 3.48 4.60 20.65

1999/00 0.00 0.46 17.13 12.69

2000/01 34.73 0.83 1.22 6.30

2001/02 69.84 16.09 2.42 27.01

2002/03 229.36 21.65 5.12 33.12

2003/04 217.32 17.08 1.62 4.15

2004/05 0.00 1.07 0.36 5.86

2005/06 0.00 0.11 1.61 1.07

2006/07 0.00 0.22 3.08 0.28

2007/08 0.00 1.36 7.70 1.19

2008/09 0.00 0.15 4.89 4.67

2009/10 0.00 0.39 0.14 6.40

2010/11 0.00 2.07 0.04 1.99

2011/12 0.00 0.49 1.19 0.82

2012/13 0.00 0.44 0.01 0.24

2013/14 0.00 1.46 0.01 0.04

2014/15 0.00 0.28 0.00 0.11

2015/16 0.00 0.00 0.03 1.46

2016/17 0.00 0.23 0.00 0.17

Discarded catch weight (estimated)

Blend method; Catch Accounting System
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Figure 1. Aleutian Islands, Area O, red and golden king crab management area (from Baechler 

and Cook 2014, updated to show boundaries of the Adak and Petrel Districts for red 

king crab as established by the Alaska Board of Fisheries in March 2014). 

 

 

(Red king crab Adak District) 

         (Red king crab Petrel District) 
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Figure 2. Retained catch (t) in the Western Aleutian Islands red king crab fishery, 1985/86–

1995/96 by 1-degree longitude grouping, summarized from fish ticket catch by state 

statistical area landing data. 
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Figure 3. Retained catch (t) in the Western Aleutian Islands red king crab fishery, 1960/61–

2016/17 (catch is for the area west of 172° W longitude during 1960/61–1983/84 and 

for the area west of 171° W longitude during 1984/85–2016/17; see Table 1a). 
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Figure 4. Annual retained catch (t) in the Western Aleutian Islands red king crab fishery during 

1985/86–1995/96, partitioned into three longitudinal zones: 171º W longitude to 179º 

W longitude (white bars); 179º W longitude to 179º E longitude (black bars); and 179º 

E longitude to 171º E longitude.  
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Figure 5. Map of federal groundfish fishery reporting areas for the Bering Sea and Aleutian 

Islands. Areas 541, 542, and 543 are used to obtain data on discarded catch of Western 

Aleutian Islands red king crab during groundfish fisheries 

(from http://www.alaskafisheries.noaa.gov/rr/figures/fig1.pdf). 
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Figure 6. Retained catch (number of crab) and CPUE (number of retained crab per pot lift) in the 

western Aleutian Islands red king crab fishery, 1972/73–2016/17 (from Table 1a). Data 

for 1972/73–1983/84 are for the area west of 172° W longitude; data for 1984/85–

1997/98, 1999/00, and 2004/05–2016/17 are for the area west of 171° W longitude; 

data for 1998/99 are for the area west of 174° W longitude; and data for 2000/01–

2003/04 are for the area between 179° W longitude and 179° E longitude. 
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Figure 7. Bootstrapped estimate of the sampling distribution of the recommended 2016/2017 

Tier 5 OFL (total-catch, t) for the Western Aleutian Islands red king crab stock; 

histogram in left column, cumulative distribution in right column. 
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Appendix A1. Summary of retained catch size frequency data available from Western Aleutian 

Islands directed red king crab fishery, 1960/61–2015/16. 

 

Crab fishing year N 

1960/61 0 

1961/62 386 

1962/63 661 

1963/64 0 

1964/65 1,285 

1965/66 423 

1966/67 0 

1967/68 0 

1968/69 0 

1969/70 0 

1970/71 0 

1971/72 0 

1972/73 10,043 

1973/74 9,789 

1974/75 2,609 

1975/76 680 

1976/77 0 

1977/78 666 

1978/79 1,485 

1979/80 963 

1980/81 2,537 

1981/82 2,175 

1982/83 6,287 

1983/84 3,806 

1984/85 1,805 

1985/86 1,217 

1986/87 422 

1987/88 441 

1988/89 4,860 

1989/90 12,405 

1990/91 9,406 

1991/92 8,306 

1992/93 5,195 

1993/94 4,426 

1994/95 1,037 

1995/96 978 

1996/97−1997/98 Closed 

1998/99 0 

1999/00 Closed 

2000/01 460 

2001/02 589 

2002/03 2,056 

2003/04 2,381 

2004/05−2016/17 Closed 
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Appendix A2. Available retained catch size frequency sample data 1961/62–1979/80 western 

Aleutian Islands directed red king crab fishery. Page 1 of 3.  

CL (mm) 1961/62 1962/63 1964/65 1965/66 1972/73 1973/74 1974/75 1975/76 1977/78 1978/79 1979/80 

98 0 0 0 0 0 0 0 0 0 0 0 

99 0 0 0 0 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 0 0 0 0 

101 0 0 0 0 0 0 0 0 0 0 0 

102 0 0 0 0 0 0 0 0 0 0 0 

103 0 0 0 0 0 0 0 0 0 0 0 

104 0 0 0 0 0 0 0 0 0 0 0 

105 0 0 0 0 0 0 0 0 0 0 0 

106 0 0 0 0 0 0 0 0 0 0 0 

107 0 0 0 0 0 0 0 0 0 0 0 

108 0 0 0 0 0 0 0 0 0 0 0 

109 0 0 0 0 0 0 0 0 0 0 0 

110 0 0 0 0 0 0 0 0 0 0 0 

111 0 0 0 0 0 0 0 0 0 0 0 

112 0 0 0 0 0 0 0 0 0 0 0 

113 0 0 0 0 0 0 0 0 0 0 0 

114 0 0 0 0 0 0 0 0 0 0 0 

115 0 0 0 0 0 0 0 0 0 0 0 

116 0 0 0 0 0 0 0 0 0 0 0 

117 0 0 0 0 0 0 0 0 0 0 0 

118 0 0 0 0 0 0 0 0 0 0 0 

119 0 0 0 0 0 0 0 0 0 0 0 

120 0 0 0 0 0 0 0 0 0 0 0 

121 0 0 0 0 0 0 0 0 0 0 0 

122 0 0 0 0 0 0 0 0 0 0 0 

123 0 0 0 0 0 0 0 0 0 0 0 

124 0 2 0 0 0 0 0 0 0 0 0 

125 0 1 0 0 0 0 0 0 0 0 0 

126 0 2 0 0 0 0 0 0 0 0 0 

127 0 3 0 0 0 0 0 0 0 0 0 

128 0 2 0 0 0 0 0 0 0 0 0 

129 0 1 0 0 0 0 0 0 0 1 0 

130 0 7 0 0 3 1 0 0 0 3 0 

131 0 2 0 0 1 0 0 0 0 1 0 

132 0 1 0 0 1 7 6 1 0 1 1 

133 0 3 0 0 13 15 9 1 0 7 4 

134 0 3 2 0 22 24 15 0 1 4 1 

135 0 5 0 0 52 58 31 7 0 12 9 

136 0 4 0 1 91 107 30 7 5 13 3 

137 0 3 2 0 179 174 52 17 11 37 8 

 

  

1590



Appendix A2. Page 2 of 3. 
CL (mm) 1961/62 1962/63 1964/65 1965/66 1972/73 1973/74 1974/75 1975/76 1977/78 1978/79 1979/80 

138 0 3 4 0 313 281 114 20 16 40 9 
139 0 6 3 1 267 295 103 22 15 38 15 

140 0 9 1 2 434 362 119 37 19 45 28 

141 0 11 2 1 384 403 102 31 17 53 15 
142 0 9 3 0 476 445 150 46 29 65 33 

143 0 8 3 2 532 462 136 44 35 71 32 

144 0 6 7 1 473 497 112 49 35 52 32 
145 2 7 14 1 547 549 109 37 30 82 49 

146 2 15 10 4 508 514 119 31 16 63 39 

147 0 5 9 7 552 488 114 25 35 80 43 
148 2 3 11 4 589 478 101 46 41 101 36 

149 2 10 17 4 477 488 79 29 15 64 50 

150 8 9 23 5 524 490 84 28 24 59 38 
151 4 12 10 1 393 432 65 21 17 58 46 

152 10 16 20 7 436 409 93 21 21 69 40 

153 0 13 29 9 439 367 69 13 12 45 32 
154 10 11 33 6 324 318 76 17 17 53 37 

155 2 13 42 8 330 337 67 14 27 56 49 

156 2 19 32 9 272 285 60 10 24 37 35 
157 4 22 28 6 203 229 63 11 12 43 36 

158 12 10 39 16 226 234 62 17 17 31 36 

159 10 17 34 14 147 174 51 6 11 24 22 
160 18 13 38 15 180 146 53 5 20 25 30 

161 18 12 30 10 127 129 40 7 6 23 21 
162 8 16 32 17 120 145 45 8 17 14 21 

163 8 7 44 15 99 93 39 10 15 17 12 

164 4 13 34 9 74 70 33 5 11 13 15 
165 6 16 54 17 46 56 31 5 6 15 16 

166 16 18 39 13 51 43 25 6 6 12 14 

167 10 13 55 24 40 37 21 4 7 16 5 
168 24 13 47 19 24 30 19 5 15 7 8 

169 10 20 36 12 14 29 10 3 12 9 13 

170 22 20 28 23 16 18 16 2 7 2 10 
171 18 14 43 16 9 15 6 2 8 6 3 

172 16 15 36 18 10 9 13 2 5 5 4 

173 8 9 42 12 6 7 7 0 8 4 1 
174 8 12 25 8 5 7 5 2 3 0 1 

175 22 27 30 14 4 6 7 3 7 1 3 

176 14 19 30 11 1 3 3 0 1 3 3 
177 12 10 22 9 4 5 1 0 1 0 1 

178 14 17 23 12 2 6 4 1 4 1 0 
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Appendix A2. Page 3 of 3. 

CL (mm) 1961/62 1962/63 1964/65 1965/66 1972/73 1973/74 1974/75 1975/76 1977/78 1978/79 1979/80 

179 0 11 21 10 2 2 4 1 2 0 0 

180 10 13 20 9 0 3 4 1 0 2 1 

181 2 14 13 3 0 1 1 0 0 0 2 

182 4 11 23 6 0 2 2 0 1 0 0 

183 8 8 13 3 0 1 2 0 1 1 0 

184 4 7 16 1 1 0 3 0 0 1 1 

185 6 2 10 3 0 1 1 0 1 0 0 

186 2 4 15 1 0 0 5 0 0 0 0 

187 8 8 11 1 0 0 4 0 0 0 0 

188 6 4 10 2 0 0 2 0 0 0 0 

189 0 5 11 1 0 0 0 0 0 0 0 

190 2 4 12 0 0 0 2 0 0 0 0 

191 0 3 8 0 0 0 1 0 0 0 0 

192 0 2 8 0 0 1 3 0 0 0 0 

193 0 1 5 0 0 0 1 0 0 0 0 

194 0 1 5 0 0 1 1 0 0 0 0 

195 0 0 2 0 0 0 0 0 0 0 0 

196 0 1 3 0 0 0 0 0 0 0 0 

197 0 1 5 0 0 0 0 0 0 0 0 

198 0 0 3 0 0 0 2 0 0 0 0 

199 2 1 3 0 0 0 2 0 0 0 0 

200 2 3 0 0 0 0 0 0 0 0 0 

201 0 0 0 0 0 0 0 0 0 0 0 

202 0 0 1 0 0 0 0 0 0 0 0 

203 4 0 0 0 0 0 0 0 0 0 0 

204 0 0 1 0 0 0 0 0 0 0 0 

205 0 0 0 0 0 0 0 0 0 0 0 

206 0 0 0 0 0 0 0 0 0 0 0 

207 0 0 0 0 0 0 0 0 0 0 0 

208 0 0 0 0 0 0 0 0 0 0 0 

209 0 0 0 0 0 0 0 0 0 0 0 

210 0 0 0 0 0 0 0 0 0 0 0 

Total 386 661 1,285 423 10,043 9,789 2,609 680 666 1,485 963 
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Appendix A3. Available retained catch size frequency sample data 1980/81–1989/90 Western 

Aleutian Islands directed red king crab fishery. Page 1 of 3. 

CL (mm) 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 1986/87 1987/88 1988/89 1989/90 

98 0 0 0 0 0 0 0 0 0 0 

99 0 0 0 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 0 0 0 

101 0 0 0 0 0 0 0 0 0 0 

102 0 0 0 0 0 0 0 0 0 0 

103 0 0 0 0 0 0 0 0 0 0 

104 0 0 0 0 0 0 0 0 0 0 

105 0 0 0 0 0 0 0 0 0 0 

106 0 0 0 0 0 0 0 0 0 0 

107 0 0 0 0 0 0 0 0 0 0 

108 0 0 0 0 0 0 0 0 0 0 

109 0 0 0 0 0 0 0 0 0 1 

110 0 0 0 0 0 0 0 0 0 0 

111 0 0 0 0 0 0 0 0 0 0 

112 0 0 0 0 0 0 0 0 0 0 

113 0 0 0 0 0 0 0 0 0 0 

114 0 0 0 0 0 0 0 0 0 0 

115 0 0 0 0 0 0 0 0 0 0 

116 0 0 0 0 0 0 0 0 0 0 

117 0 0 0 0 0 0 0 0 0 0 

118 0 0 0 0 0 0 0 0 0 0 

119 0 0 0 0 0 0 0 0 0 0 

120 0 0 0 0 0 0 0 0 0 0 

121 0 0 0 0 0 0 0 0 0 0 

122 0 0 0 1 0 0 1 0 0 1 

123 0 0 0 0 0 0 0 0 0 0 

124 0 0 0 0 1 0 0 0 0 0 

125 0 0 0 0 0 0 0 0 0 1 

126 0 0 0 0 0 1 0 0 0 0 

127 1 1 1 0 0 3 0 0 0 2 

128 0 0 1 0 1 0 0 0 1 0 

129 2 1 0 0 0 1 0 0 3 1 

130 3 4 2 3 1 2 1 1 5 8 

131 4 3 8 2 3 7 0 3 7 29 

132 6 6 23 8 6 9 2 2 5 51 

133 15 11 34 10 6 19 2 5 18 88 

134 25 11 55 17 9 10 5 8 19 161 

135 34 25 70 25 19 27 3 10 38 280 

136 53 51 92 27 21 18 8 8 55 276 

137 72 45 145 32 33 23 12 11 92 370 
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Appendix A3. Page 2 of 3. 

CL (mm) 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 1986/87 1987/88 1988/89 1989/90 

138 89 76 187 49 39 29 10 10 108 497 

139 106 55 184 49 30 39 10 11 121 532 

140 119 76 221 74 30 48 16 17 134 631 

141 99 78 224 58 46 48 16 13 118 529 

142 128 104 256 97 41 59 16 20 157 562 

143 127 110 323 94 57 38 13 18 161 514 

144 96 100 226 73 39 33 14 21 139 494 

145 115 105 224 94 56 28 25 21 179 559 

146 95 112 208 107 49 21 14 25 164 460 

147 103 97 250 99 47 36 14 17 186 460 

148 98 93 269 128 55 36 11 10 158 483 

149 94 79 186 94 36 28 14 17 170 399 

150 85 100 249 122 61 42 16 21 177 451 

151 76 82 172 87 47 27 13 18 146 283 

152 59 98 215 121 48 24 13 5 191 371 

153 66 75 234 134 58 27 8 17 170 361 

154 59 72 184 104 40 30 14 16 152 292 

155 45 73 176 104 58 39 12 13 147 370 

156 53 63 152 99 44 24 15 12 129 265 

157 59 59 164 111 41 31 6 7 132 244 

158 32 54 162 117 42 35 10 17 132 256 

159 41 27 131 70 30 36 14 6 105 232 

160 40 34 126 100 62 31 7 5 128 233 

161 30 33 99 93 30 17 6 9 105 190 

162 42 37 89 83 53 34 6 7 98 178 

163 31 21 106 94 52 23 6 4 97 185 

164 40 24 87 77 26 34 7 9 108 134 

165 43 18 86 88 50 24 5 8 92 153 

166 27 7 69 161 38 18 5 5 72 92 

167 32 11 90 80 41 17 3 2 71 92 

168 29 5 86 73 45 19 2 3 70 76 

169 21 1 46 51 32 18 5 2 57 85 

170 20 11 45 69 39 12 5 2 65 85 

171 18 3 37 47 22 3 3 1 45 65 

172 19 9 42 59 30 12 1 1 50 51 

173 15 1 45 57 24 7 2 1 32 48 

174 13 3 41 44 30 10 3 0 48 32 

175 12 3 28 36 24 5 1 0 48 35 

176 7 1 20 40 17 7 3 0 28 23 

177 9 2 20 39 17 2 0 0 19 26 

178 6 0 19 34 18 7 1 0 21 18 
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Appendix A3. Page 3 of 3. 

CL (mm) 1980/81 1981/82 1982/83 1983/84 1984/85 1985/86 1986/87 1987/88 1988/89 1989/90 

179 8 1 13 33 12 1 6 0 14 19 

180 2 2 14 28 8 4 2 0 13 16 

181 3 0 10 15 7 1 0 0 15 9 

182 2 0 12 23 4 5 1 1 5 4 

183 2 0 4 22 6 2 2 0 7 12 

184 1 0 8 27 3 5 3 0 6 4 

185 1 0 6 21 5 1 2 0 5 5 

186 2 1 2 14 3 0 0 0 5 2 

187 0 0 1 14 1 2 2 1 4 2 

188 0 1 4 10 2 2 1 0 7 3 

189 1 0 2 11 2 3 0 0 2 4 

190 1 0 0 13 4 1 0 0 1 4 

191 0 0 1 10 1 1 0 0 1 2 

192 0 0 0 2 0 3 0 0 1 0 

193 1 0 0 10 0 2 1 0 0 2 

194 0 0 1 4 0 2 1 0 1 0 

195 0 0 0 6 2 0 1 0 0 1 

196 0 0 0 4 0 0 0 0 0 0 

197 0 0 0 1 0 0 0 0 0 0 

198 0 0 0 1 1 2 0 0 0 1 

199 0 0 0 0 0 0 0 0 0 0 

200 0 0 0 1 0 0 0 0 0 0 

201 0 0 0 0 0 0 0 0 0 0 

202 0 0 0 0 0 0 1 0 0 0 

203 0 0 0 0 0 1 0 0 0 0 

204 0 0 0 0 0 1 0 0 0 0 

205 0 0 0 0 0 0 0 0 0 0 

206 0 0 0 0 0 0 0 0 0 0 

207 0 0 0 0 0 0 0 0 0 0 

208 0 0 0 0 0 0 0 0 0 0 

209 0 0 0 0 0 0 0 0 0 0 

210 0 0 0 1 0 0 0 0 0 0 

Total 2,537 2,175 6,287 3,806 1,805 1,217 422 441 4,860 12,405 
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Appendix A4. Available retained catch size frequency sample data 1990/91–2003/04 Western 

Aleutian Islands directed red king crab fishery. Page 1 of 3. 

CL (mm) 1990/91 1991/92 1992/93 1993/94 1994/95 1995/96 2000/01 2001/02 2002/03 2003/04 

98 1 0 0 0 0 0 0 0 0 0 

99 0 0 0 0 0 0 0 0 0 0 

100 0 0 0 0 0 0 0 0 0 0 

101 0 0 0 0 0 0 0 0 0 0 

102 0 0 0 0 0 0 0 0 0 0 

103 1 0 0 0 0 0 0 0 0 0 

104 0 0 0 0 0 0 0 0 0 0 

105 0 0 0 0 0 0 0 0 0 0 

106 0 0 0 0 0 0 0 0 0 0 

107 0 0 0 0 0 0 0 0 0 0 

108 0 0 0 0 0 0 0 0 0 0 

109 0 0 0 0 0 0 0 0 0 0 

110 0 0 0 0 0 0 0 0 0 0 

111 0 0 0 0 0 0 0 0 0 0 

112 0 0 0 0 0 0 0 0 0 0 

113 0 0 0 0 0 0 0 0 0 0 

114 0 0 0 0 0 0 0 0 0 0 

115 0 0 0 0 0 0 0 0 0 0 

116 0 0 0 0 0 0 0 0 0 0 

117 1 0 0 0 0 0 0 0 0 0 

118 0 0 0 0 0 0 0 0 0 0 

119 0 0 0 0 0 0 0 0 0 0 

120 0 0 0 0 0 0 0 0 0 0 

121 0 0 0 0 0 0 0 0 0 0 

122 0 0 0 1 0 0 0 0 0 0 

123 0 0 0 0 0 0 0 0 0 0 

124 0 0 0 0 0 0 0 0 0 0 

125 0 0 0 0 0 0 0 0 0 0 

126 0 0 0 0 0 0 0 0 0 0 

127 2 0 0 0 0 0 0 0 0 0 

128 0 0 0 0 0 0 0 0 0 0 

129 2 0 0 0 0 0 0 0 0 1 

130 4 0 1 1 0 1 0 0 0 0 

131 9 0 1 2 0 0 0 0 0 0 

132 12 3 6 1 2 4 0 0 0 0 

133 22 13 6 4 1 3 0 0 0 0 

134 46 47 19 9 5 8 0 0 0 0 

135 108 65 47 15 8 9 0 0 1 0 

136 152 115 59 15 10 11 0 3 1 1 

137 223 173 76 32 15 17 0 2 5 1 
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Appendix A4. Page 2 of 3. 

CL (mm) 1990/91 1991/92 1992/93 1993/94 1994/95 1995/96 2000/01 2001/02 2002/03 2003/04 

138 310 211 118 35 11 27 0 3 6 1 

139 381 255 101 41 18 24 1 2 2 0 

140 391 289 186 63 12 24 0 4 7 3 

141 455 315 156 89 16 31 1 5 14 4 

142 467 341 184 92 24 32 1 9 10 3 

143 449 392 216 102 20 23 2 8 13 6 

144 521 342 206 114 23 32 2 11 15 5 

145 483 359 220 148 16 32 3 7 18 11 

146 456 356 229 162 27 38 4 7 30 8 

147 469 390 244 155 29 24 3 7 18 12 

148 408 304 221 183 31 27 6 16 18 9 

149 428 319 160 136 20 30 7 10 30 8 

150 386 364 251 177 39 24 12 13 26 19 

151 315 288 145 186 29 25 15 16 35 22 

152 333 344 233 169 31 29 19 25 43 17 

153 292 369 170 180 38 18 20 22 41 27 

154 288 320 145 180 19 33 12 28 63 36 

155 311 295 164 174 28 34 14 18 58 39 

156 223 280 165 182 30 18 22 14 74 46 

157 203 294 148 154 25 30 17 24 74 33 

158 169 211 158 167 30 37 12 23 81 52 

159 167 199 86 154 25 23 20 20 97 56 

160 136 149 142 154 43 23 26 19 81 78 

161 106 121 88 149 28 21 16 15 69 64 

162 103 115 92 114 33 27 22 25 84 72 

163 77 118 96 115 34 16 15 30 78 57 

164 78 80 76 117 30 23 26 25 100 98 

165 78 66 79 95 21 22 20 13 75 115 

166 48 51 52 85 33 17 22 17 91 95 

167 59 56 74 77 24 29 21 24 82 105 

168 34 47 69 68 24 33 13 18 80 99 

169 33 43 29 70 16 13 20 13 53 99 

170 25 33 52 39 22 15 9 13 71 126 

171 29 33 33 47 13 10 16 6 58 87 

172 24 20 37 30 14 16 12 13 60 119 

173 14 19 23 19 17 10 4 18 41 99 

174 17 15 20 27 13 6 7 5 44 86 

175 18 12 19 23 8 11 6 9 49 92 

176 11 11 19 12 13 4 3 4 35 62 

177 4 5 12 19 13 2 5 4 27 68 

178 6 3 12 7 4 5 0 2 20 50 
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Appendix A4. Page 3 of 3. 

CL (mm) 1990/91 1991/92 1992/93 1993/94 1994/95 1995/96 2000/01 2001/02 2002/03 2003/04 

179 7 7 11 9 3 1 1 6 20 53 

180 1 8 9 5 6 1 2 2 20 45 

181 1 13 6 5 7 1 0 2 9 44 

182 2 5 5 6 3 1 0 3 12 37 

183 0 8 3 2 3 1 0 2 3 22 

184 2 2 2 4 4 0 1 1 2 26 

185 1 1 3 0 6 0 0 0 0 11 

186 2 0 3 2 2 0 0 0 7 14 

187 1 2 0 1 4 1 0 1 1 13 

188 0 3 1 0 0 1 0 1 1 1 

189 1 1 1 1 5 0 0 0 0 6 

190 0 1 1 1 3 0 0 0 3 6 

191 0 1 1 0 1 0 0 1 0 2 

192 0 1 1 0 2 0 0 0 0 4 

193 0 0 1 0 0 0 0 0 0 3 

194 0 1 1 0 2 0 0 0 0 3 

195 0 0 1 0 1 0 0 0 0 0 

196 0 2 0 0 0 0 0 0 0 0 

197 0 0 0 0 0 0 0 0 0 0 

198 0 0 0 0 0 0 0 0 0 0 

199 0 0 0 0 0 0 0 0 0 0 

200 0 0 0 0 0 0 0 0 0 0 

201 0 0 0 0 0 0 0 0 0 0 

202 0 0 0 0 0 0 0 0 0 0 

203 0 0 0 0 0 0 0 0 0 0 

204 0 0 0 0 0 0 0 0 0 0 

205 0 0 0 0 0 0 0 0 0 0 

206 0 0 0 0 0 0 0 0 0 0 

207 0 0 0 0 0 0 0 0 0 0 

208 0 0 0 0 0 0 0 0 0 0 

209 0 0 0 0 0 0 0 0 0 0 

210 0 0 0 0 0 0 0 0 0 0 

Total 9,406 8,306 5,195 4,426 1,037 978 460 589 2,056 2,381 
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Appendix A5. Page 1 of 1. Plot of available retained catch size frequency sample data 1961/62–

2003/04 western Aleutian Islands directed red king crab fishery (data listed in 

Appendices A2-A4). 
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ECONOMIC STATUS REPORT SUMMARY:
BSAI CRAB FISHERIES, 2017

The Bering Sea/Aleutian Islands (BSAI) crab fisheries managed under the North Pacific Fishery
Management Council’s Fishery Management Plan (FMP) are currently (as of calendar year 2016)
prosecuted by an active fleet of 116 catcher vessels and two catcher processors, and landed and
processed at 12 processing facilities throughout the region. Of the 10 crab stocks and 11 fisheries
managed under the FMP1, seven fisheries were open to targeted fishing in 2016. After closure
for the 2010/11 through 2012/13 seasons, the Bering Sea Tanner (BST) crab fisheries opened for
targeted fishing for 2013/14 through 2015/16 seasons, but were subsequently closed for the 2016/17
season.2 Pribilof Islands red and blue king, and Western Aleutian red king crab stocks are currently
designated overfished, as detailed in the assessments for these stocks. The Saint Matthew blue
king (SMB) crab fishery was closed for the 2013/14 season under the State of Alaska’s management
strategy, reopened for the 2014/15 and 2015/16 seasons, and closed again for 2016/17.

This report provides a brief summary of key indicators of economic status and performance of BSAI
crab fisheries for the 2012 through 2016 calendar year operations. The full Economic Status Report
for BSAI Crab Fisheries, 2017 (Crab Economic SAFE, currently being updated for annual release in
February, 2018) provides detailed information regarding production, sales, revenue, and price indices
in the harvesting and processing sectors, income, employment, and demographics of labor in both
sectors, capital and operating expenditures in the fishery, quota share lease and sale market activity,
changes in distribution of quota holdings, productivity in the harvesting sector, U.S. imports and
exports of king and Tanner crab, price forecasts, performance metrics for catch share programs, and
other information regarding data collection and ongoing economic and social science research related
the BSAI crab fisheries and related communities. The following document summarizes three sets
of primary indicators describing aggregate changes in gross volume and value of production, labor
earnings and employment in the crab processing and harvesting sectors, and crab harvest quota
leasing activity. Note that results presented below for 2016 calendar year fisheries are preliminary
pending completion of data validation and additional analyses, and may be revised in the final
update of the full Economic Status Report.

1
There are currently 11 distinctly managed fisheries on the 10 crab stocks managed under the FMP; catch allocations

and other management elements are administered separately for the Eastern and Western components of the Bering Sea

Tanner crab stock, and for the Eastern and Western components of the Aleutian Islands golden king crab stock, and

the Pribilof Island blue and red king crab stocks are managed collectively as a single fishery. For fisheries characterized

by a small number of participating entities, individual statistics where indicated in Tables 1 - 3, and elsewhere in

the report, are suppressed due to confidentiality restrictions; this includes most values for the Pribilof Island golden

king (PIG) crab fishery and the Norton Sound red king (NSR) crab fisheries, and statistics for both Aleutian Islands

golden king crab fisheries and both Bering Sea Tanner crab fisheries are reported in aggregate, respectively. Values

that are indicated as suppressed for a specific fishery are also excluded from values reported in aggregate over multiple

crab fisheries. Except where noted, the suppressed values are su�ciently small that they have minimal e↵ect on the

accuracy of aggregate information at the level of precision reported here.

2
Most activity in the BSS and BST fisheries occur during January through March of the crab season/year, such

that e↵ects of closing the 2016/17 BST fishery occurred primarily during calendar year 2017 and are not reflected in

this report.

1
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Fishery production and economic value

Harvest and processing sector production statistics by crab fishery, including ex-vessel and first
wholesale output, estimated revenue, and average prices are shown in Table 1 for calendar years
2012 through 2016 and summarized in Figure 1. Across all fisheries managed under the BSAI
Crab FMP, the total volume of ex-vessel landings commercially sold to processors during 2016
was 64 million pounds (29 thousand metric tons), a 30 percent decrease from the previous year.
Processing sector finished production volume during 2016 was 42.3 million pounds (19.2 thousand
metric tons) aggregated over all BSAI crab species and product forms, also declining 30 percent from
the previous year. The e↵ect of fishery closures and reduced production over all fisheries combined
with o↵setting price increases produced an aggregate 3.6 percent decrease in total ex-vessel revenues
over all fisheries in 2016, totaling $259.33 million for the year, and with aggregate first wholesale
revenues declining by 3.9 percent to $349 million.

As of 2016, allowable catch quantities in all BSAI crab fisheries currently open to targeted fishing are
fully exploited (> 98% of total allocation landed), and recent inter-annual variation in commercial
landings largely reflects the results of stock assessments and the State of Alaska’s specified catch
limits rather than changes in fishing capacity or exploitation rate. The decrease in aggregate
production during 2016 reflected declines across nearly all fisheries compared to 2015, with the total
catch of 39.6 million pounds (17.6 thousand mt) landed in the Bering Sea snow crab (BSS) fishery
representing the largest decline in both absolute and proportional (-35%) terms. Landings in the
BST fisheries decreased 30 percent from 2015 levels, to 10.6 million pounds (4.7 thousand mt), and
landings of 8.4 million pounds (3.8 metric tons) in the Bristol Bay red king crab (BBR) fishery
declined 14 percent. The 5.6 million pounds (2.5 metic tons) landed in the Aleutian Islands golden
king crab (AIG) fisheries during 2016 represented a relatively modest reduction of 3.4 percent from
2015.

3
All monetary values in the report, unless otherwise noted, are inflation-adjusted to 2015-equivalent dollars using

the GDP-chaintype price index (https://research.stlouisfed.org/fred2/series/GDPCTPI). The GDP price index

is used to adjust fishery production revenues and costs to account for the change in general US production prices over

time.

2
1604

https://research.stlouisfed.org/fred2/series/GDPCTPI


Figure 1: BSAI Crab Ex-vessel and First Wholesale Production, 2012 - 2016

Source: ADF&G fish tickets, eLandings, CFEC pricing, ADF&G Commercial Operator’s Annual Report, NMFS AFSC BSAI Crab Economic Data Report (EDR)
database. See Table 1 footnotes for details.

(a) Revenue, (b) Volume, and (c) Weighted Average Price, 2011-2015; gross revenue and production volume by sector are presented in the upper pair of panels

by individual crab fishery for comparison of within-fishery variation over time, and summarized over all fisheries in the lower panels to illustrate the variation

in aggregate values and relative contribution of each fishery over time. Figure does not display information for PIG fishery due to confidentiality. See Table 1

footnotes for data sources and details.

3
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Similar to ex-vessel production, the 30 percent decrease in processing sector output aggregated
over all active crab fisheries was driven in the largest part by the 35 percent decline to 25.9 million
pounds (11.8 thousand mt) of finished production in the BSS fishery, and a 30 percent decline in
finished volume in the BST fisheries to 7.2 million pounds (3.2 thousand mt).

Increases in average prices reported for both sectors continued for a second year across all crab
fisheries during 2016, substantially o↵setting production declines in the respective fisheries, resulting
in increased ex-vessel and wholesale revenues in both AIG and BBR fisheries and partially mitigating
production e↵ects in BSS and BST fisheries (Table 1). Average BBR ex-vessel price increased 32%
per landed pound to $10.67, and average first wholesale price increased 26 percent to $18.27 per
finished pound, while AIG prices increased to o $5.38 per-pound (+23%) ex-vessel and to $9.38
(+28%) first wholesale. Prices in the BST fishery increased to $3.02 ex-vessel (+15%) and $6.31
(+17%) at first wholesale, and to $2.73 average ex-vessel (+33%), and $5.97 average first wholesale
(+36%) per-pound.

The combined e↵ect of declining production levels due to catch allocations and fishery closures
with market-driven price increases across crab fisheries produced an overall 3.6 percent decrease
in gross ex-vessel revenues and 3.9 percent revenue decline in the processing sector for 2016, with
aggregate gross ex-vessel revenues of $259 million and first wholesale revenues of $349 million. The
relatively large proportional price increases and production declines in both sectors of the BSS
fishery produced gross revenue of $108 million in the harvest sector (-14%) compared to 2015, and
$155 million in the processing sector (-11%). The BST fishery produced gross revenue of $31.6
million ex-vessel and $45 million in the processing sector, both declining by 19 percent from the
previous year. In contrast, gross ex-vessel earnings increased by 13 percent to $89.6 million in the
BBR fishery, and by 8 percent to $103.7 million first wholesale, while ex-vessel revenues in the AIG
fisheries increased by 19 percent to $30.1 million and by 24 percent in the processing sector to $45.4
million. The proportional variation in aggregate gross revenue across crab fisheries from 2015 to
2016 was unexceptional relative to inter-annual variation over the last 15 years in the historically
volatile crab fisheries; longer time series for these and other measures of production and earnings
performance in crab fisheries are presented and more fully examined in the BSAI Crab Economic
Status Report currently being updated for 2017 (to be released in February, 2018).

Employment and Income

A summary of selected indicators from the most recent employment data available for Crab
Rationalization (CR) program fisheries is provided in Table 24 and depicted graphically in Figure 2.
Crab EDR data for calendar year 2016 are reported where available, but note that results are
preliminary pending completion of data validation and additional analyses.

The number of vessels operating in one or more of the CR fisheries in 2016 declined from 82 to 80.
The active fleet in the BBR and BSS fisheries were similarly reduced, to 63 and 68, respectively,
while 46 vessels participated in the BST fishery, 11 fewer compared to 2015. Based on the number
of crew onboard reported by participating vessels during each fishery (averaged over crew size values
reported in eLandings catch accounting records for crab vessels), there were an estimated 1,218 crew

4
BSAI Crab Economic Data Report (EDR) data are collected for CR fisheries only. The NSR and Pribilof Island

golden king (PIG) crab fisheries are managed by the State of Alaska under the FMP, but are not included in the CR

program.
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positions in aggregate across all 80 vessels in CR fisheries in 2016, 114 fewer than the previous year,
of which 69 were due to the smaller fleet in the BST fishery. 5

5
Note that the aggregate count of vessels indicates the total number of distinct vessels, while the count of crew

positions counts positions separately by fishery and vessel, such that individual crew members are counted more than

once.

5
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Figure 2: Harvest and Processing Employment and Compensation, Selected Crab Fisheries, 2012 - 2016

Source: NMFS AFSC BSAI Crab Economic Data Report (EDR) database; ADF&G Shellfish Observer Program, Confidential Interview Form (CIF) database. See

Table 2 footnotes for details.

6
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Revenue-share payments to crab vessel crew members as a group totaled approximately $36 million
in 2016, with an additional $16 million paid to vessel captains, both declining by approximately 5%.
6 Aggregate crew and captain earnings in the BSS fishery declined by 19 percent to $15.1 million
and decreased by 14 percent to $6.7 million, respectively. Aggregate crew and captain earnings in
the BBR fisheries increased Sexpryr-1, to $11.2 million (+17%) and $5 million (+11%), respectively.
Crew and captain earnings in the BST fishery totaled $5.9 million and $2.86 million, respectively,
nearly doubling the level of earnings in 2014.

Crab processing labor input at processing plants that received IFQ and CDQ crab landings in 2016
is estimated at 788 thousand labor hours, declining 33 percent from 2015, with the number of plants
active over all CR fisheries reduced from 9 to 8. Aggregate processing labor income generated across
all CR fisheries during 2016 was $9.6 million, 29 percent less than the previous year. Processing labor
pay statistics reflect increasing hourly processing wage rates across all fisheries beginning in 2014
associated with annual incremental increases in Alaska state minimum wage. Median plant-level
hourly wage rate increased by 11 percent from 2015, to $11.93 over all CR fisheries.

IFQ Leasing

This report provides results from the BSAI Crab Rationalization Economic Data Report (EDR)
program collection of crab harvest quota allocation lease data associated with 2012 through 2016
calendar year crab fishing activity. Table 3 and Figure 3 shows aggregated results for crab fishing
quota lease volume (in pounds) and cost reported for crab vessels active during the most recent five
calendar years for CR fisheries, by fishing quota type category, including total quantities summed
over all reporting vessels, and average values (both median and mean) for volume and cost of leased
quota per vessel, and average lease price paid ($US per pound) and average lease rate (lease price as
percentage of ex-vessel price) per vessel. Both median and arithmetic mean average value metrics
are presented to provide information on the variation in reported values within each stratum, with
the higher mean values shown indicating the presence of a subset of high-value data points in these
data. Harvest quota types are categorized as the following: catcher vessel owner (CVO) Class A
IFQ; catcher vessel owner Class B IFQ and catcher/processor owner (CPO) IFQ; catcher vessel crew
IFQ and catcher/processor crew IFQ, and community development quota (CDQ).

The number of vessels reporting quota leases in the 2016 BBR fishery range from 50 vessels leasing
CVO Class A shares to 5 vessels leasing CDQ shares (out of 63 crab vessels active during the 2016/17
BBR fishery), and from 54 vessels leasing CVO Class A BSS IFQ allocation to 7 vessels leasing
CDQ allocation (out of 67 active vessels) in the BSS fishery. Total volume and cost over all vessels
leasing the respective quota types during 2016 range from 4.43 million pounds and $29.7 million for
BBR CVO Class A IFQ, to 201 thousand pounds and $1.4 million for BBR CVO and CPC crew
IFQ allocation; BSS lease volume and cost ranged from 19.6 million pounds and $26 million for
CVO Class A IFQ to 925 thousand pounds and $1.3 million for crew share IFQ allocation.

6
In addition to revenue-share payments, income is derived by some crew and many captains from royalties for

harvesting quota shares held by either the captain or crew. While this may become an increasingly important source

of income as opportunities for investment in QS ownership are advanced, there is no evidence to date that the

proportion of CR fishery quota share pools held by crab crew members has changed in recent years, following a small

amount of consolidation occurring during the initial years of the program (see NMFS Alaska Region, Restricted Access

Management Program, Bering Sea and Aleutian Islands Crab Rationalization Program Report, Fishing Year 2011/12

for information on quota allocation and transfer activity, and other current CR program administration details).
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Figure 3: Crab Harvest Quota Lease Activity; Lease Volume, Price, and Rate, Selected Crab
Fisheries, 2012 - 2016

Source: NMFS AFSC BSAI Crab Economic Data Report (EDR) database; ADF&G Shellfish Observer Program,

Confidential Interview Form (CIF) database. See Table 3 footnotes for details.

Median vessel-level values7 for 2016 BBR quota leased volume and cost ranged from 121 thousand
pounds and $846 thousand per vessel for the five vessels leasing BBR CDQ allocation, 75 thousand

7
Di↵erences between median and mean average values shown in Table 3 are most pronounced in the per-vessel

pounds and cost statistics; this primarily reflects the relative concentration of high-volume quota leasing activity by a

small number of vessels within each quota type category.
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pounds and $494 thousand for BBR CVO-A shares, and 4.0 thousand pounds and $34 thousand for
BBR CVO and CPO crew IFQ. BSS per-vessel averages ranged from 337 thousand pounds and $404
thousand per vessel for BSS CVO- Class A allocation to 22 thousand pounds and $31 thousand for
BSS crew share allocation.

Average (median) lease prices and lease rates in the BBR fishery shown in Table 3 have remained
quite stable over the three years for which data are available, varying slightly year-to-year and
by quota type within fishery, and with inter-annual variation in price per pound corresponding to
changes in ex-vessel prices. In the 2016 BBR fishery, median lease price ranged from $6.66 per
pound for BBR CVO Class A allocation (62% of ex-vessel value) to $7.02 per pound (median 63%
of ex-vessel value) for CDQ allocation. Median lease price and rate in the 2016 BSS fishery were
least for CVO Class A IFQ at $1.32 (median 46% of ex-vessel value), and $1.37-$1.43 for other
allocation types (ranging from median 46% to 51% of ex-vessel price).

9
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Table 1: BSAI Crab Harvesting and Processing Sector Output – Production Volume, Gross Revenue, and Average Pricea

Harvesting Sector: Ex-Vessel Statisticsa
Processing Sector: First Wholesale

Statisticsb

Year Vessels
CFEC

permits

Landed
volume
1000t

Landed
volume
million

lbs

Buyers
Gross

revenue
$million

Average
price
$/lb

Plants
Finished
volume,
1000t

Finished
volume,
million

lbs

Gross
revenue
$million

Average
price
$/lb

All

2012 113 284 46.97 103.55 26 $300.49 - 20 30.84 68.00 $410.54 -
2013 115 238 39.39 86.85 29 $265.06 - 22 25.87 57.03 $354.79 -
2014 109 256 36.73 80.97 25 $251.00 - 17 24.15 53.24 $338.25 -
2015 117 270 41.49 91.46 22 $268.98 - 15 27.45 60.51 $363.37 -
2016 118 262 29.04 64.03 21 $259.32 - 12 19.19 42.31 $349.04 -

AIG

2012 6 14 2.69 5.92 14 $24.28 $4.10 8 1.71 3.76 $30.38 $8.08
2013 6 14 2.70 5.94 13 $25.06 $4.22 7 1.71 3.77 $32.69 $8.67
2014 5 11 2.75 6.07 12 $25.16 $4.14 5 1.75 3.85 $31.38 $8.14
2015 5 12 2.63 5.80 9 $25.39 $4.38 4 1.67 3.68 $36.59 $9.94
2016 5 13 2.54 5.60 11 $30.13 $5.38 5 1.61 3.56 $45.36 $12.76

BBR

2012 64 74 3.54 7.80 17 $65.90 $8.44 12 2.39 5.27 $80.58 $15.29
2013 63 73 3.86 8.52 17 $63.33 $7.43 11 2.61 5.75 $78.58 $13.66
2014 63 72 4.48 9.87 17 $66.93 $6.78 9 3.02 6.66 $81.49 $12.23
2015 64 71 4.43 9.77 15 $79.05 $8.09 10 2.99 6.60 $95.79 $14.52
2016 63 70 3.81 8.41 17 $89.66 $10.67 10 2.57 5.68 $103.72 $18.27

BSS

2012 72 109 40.02 88.23 16 $203.21 $2.30 13 26.21 57.79 $284.95 $4.93
2013 71 90 32.07 70.69 15 $170.83 $2.42 12 21.00 46.31 $234.49 $5.06
2014 70 91 25.05 55.22 13 $134.47 $2.44 10 16.41 36.17 $185.45 $5.13
2015 70 94 27.63 60.91 14 $125.35 $2.06 10 18.10 39.90 $174.86 $4.38
2016 68 86 17.95 39.57 12 $107.97 $2.73 8 11.76 25.92 $154.82 $5.97

BST

2013 22 26 0.57 1.25 13 $3.21 $2.57 9 0.39 0.86 $5.63 $6.58
2014 40 52 4.12 9.09 13 $22.20 $2.44 9 2.82 6.23 $36.91 $5.93
2015 55 77 6.79 14.98 13 $39.19 $2.62 8 4.65 10.26 $55.29 $5.39
2016 46 63 4.74 10.45 12 $31.56 $3.02 7 3.24 7.15 $45.15 $6.31

NSR

2012 30 64 * * 3 * * 3 * * * *
2013 34 52 0.20 0.44 5 $2.64 $5.95 5 0.16 0.34 $3.40 $9.95
2014 34 65 0.19 0.42 4 $2.23 $5.35 4 0.15 0.32 $3.02 $9.40
2015 37 72 * * 3 * * 3 * * * *
2016 37 75 * * 2 * * 1 * * * *

Continued on next page.

10

1612



Table 1: Continued

Harvesting Sector: Ex-Vessel Statisticsa
Processing Sector: First Wholesale

Statisticsb

Year Vessels
CFEC

permits

Landed
volume
1000t

Landed
volume
million

lbs

Buyers
Gross

revenue
$million

Average
price
$/lb

Plants
Finished
volume,
1000t

Finished
volume,
million

lbs

Gross
revenue
$million

Average
price
$/lb

PIG
2012 1 1 * * 1 * * 1 * * * *
2013 1 1 * * 1 * * 1 * * * *
2014 1 1 * * 1 * * 1 * * * *

SMB
2012 17 22 0.72 1.59 11 $7.11 $4.46 6 0.53 1.18 $14.63 $12.45
2014 4 5 0.14 0.30 6 * * 1 * * * *
2015 3 3 * * 4 * * 1 0.04 0.08 $0.83 $10.77

Notes: Data shown for all BSAI crab fisheries by calendar year. All dollar values are adjusted for inflation to 2016-equivalent value. Information
suppressed for confidentiality where indicated by “*”, and data not available where indicated by “-”.
a Except where noted, ex-vessel results reflect total commercial sales volume and value across all management programs (LLP/open access, IFQ, CDQ,
ACA), inclusive of all harvesting sector production (CV, CP, and catcher-sellers); ex-vessel average price results are sourced from CV sector EDR data
where available (2012 to 2015 for CR program fisheries) and secondarily from CFEC gross earnings estimates (2016 for CR fisheries and all years for
non-CR fisheries); ex-vessel value of CP and catcher-seller landings are incorporated in revenue total using average CV ex-vessel price as a proxy
per-pound value, multiplied by pounds of live catch
b Counts of buyers include CPs landing and processing their own crab, but exclude catcher sellers (NSR fishery only); processing sector results inclusive
of all CP and shoreside processor output; finished volume is sourced from crab processor EDR production reports where available (2012to2015), or
eLandings ex-vessel sales volume adjusted by average product recovery rate (PRR) by fishery (2016). Wholesale price results are sourced from crab
processor EDR gross earnings reports where available (2012 to 2015) and secondarily from COAR gross earnings estimates (2016); gross wholesale
revenue estimates are derived from price and volume sourced or estimated as described.
cStatistics reported for “All BSAI Fisheries” reflect information aggregated over all FMP crab fisheries, excluding fishery-level confidential information
suppressed where indicated by “*”.
dLandings and ex-vessel revenue suppressed in years where CDQ fishery landings are confidential.
eData for Norton Sound red king crab are aggregated over the summer and winter commercial fisheries.

Source: ADF&G fish ticket data; eLandings; CFEC ex-vessel pricing; ADF&G Commercial Operator’s Annual Report (COAR) data; NMFS AFSC
BSAI Crab Economic Data Report (EDR) database.
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Table 2: CR Program Fisheries Crew and Processing Sector Employment and Earnings

Crew positionsa Crew shareb Captain share
Processing labor

hoursc
Processing labor

paymentd

Year Vessels Total
Vessel

median
Total

$million

Vessel
median
$1,000

Total
$million

Vessel
median
$1,000

Plants
Total
1,000
hrs

Plant
median
1,000
hrs

Median
$/hour

Total
$million

Plant
me-

dian,
$1,000

All CR
Fisheries

2012 83 1,081 - $40.68 - $18.64 - 13 1,261.90 71.66 $10.79 $15.05 $628.68
2013 81 1,099 - $34.46 - $15.85 - 12 955.77 53.70 $10.52 $10.30 $579.70
2014 76 1,216 - $32.49 - $14.85 - 9 905.08 103.11 $10.24 $9.78 $619.16
2015 82 1,332 - $38.32 - $16.83 - 9 1,179.34 112.90 $10.76 $13.59 $1,087.08
2016 80 1,218 - $36.33 - $16.00 - 8 788.23 95.46 $11.93 $9.66 $723.10

AIG

2012 6 46 7.67 $3.61 $657.98 $1.86 $329.64 7 53.16 2.60 $10.60 $1.15 $61.69
2013 6 44 7.33 $3.45 $555.20 $1.56 $283.36 6 61.09 5.96 $10.32 $0.63 $63.73
2014 5 35 7.00 $3.32 $717.60 $1.44 $298.53 4 * * * * *
2015 5 35 7.00 $4.11 $725.17 $1.68 $350.45 3 * * * * *
2016 5 36 7.20 $4.48 $988.90 $2.05 $361.71 4 * * * * *

BBR

2012 64 428 6.68 $8.30 $105.54 $3.74 $56.17 10 100.36 6.51 $11.23 $1.22 $70.20
2013 63 418 6.63 $7.76 $97.12 $3.69 $54.68 8 103.96 10.00 $10.37 $1.23 $96.98
2014 63 422 6.70 $7.90 $108.64 $3.82 $54.00 7 129.98 21.07 $9.68 $1.44 $77.83
2015 64 441 6.89 $9.60 $138.42 $4.46 $63.83 8 127.01 14.80 $10.79 $1.61 $120.51
2016 63 423 6.71 $11.20 $157.67 $4.95 $70.09 8 129.78 8.93 $11.91 $1.69 $87.49

BSS

2012 72 502 6.97 $27.88 $386.58 $12.65 $181.51 11 1,087.26 77.94 $10.78 $12.43 $633.98
2013 71 481 6.77 $22.80 $293.40 $10.38 $146.39 10 774.12 63.55 $10.40 $8.27 $498.94
2014 70 480 6.86 $18.12 $242.13 $8.13 $112.22 8 590.39 76.01 $10.87 $6.49 $468.98
2015 70 491 7.01 $18.62 $243.44 $7.80 $113.85 8 747.40 95.42 $10.94 $8.72 $811.52
2016 68 463 6.81 $15.11 $193.75 $6.67 $95.05 6 447.00 69.40 $11.74 $5.49 $537.12

Continued on next page.
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Table 2: Continued

Crew positionsa Crew shareb Captain share
Processing labor

hoursc
Processing labor

paymentd

Year Vessels Total
Vessel

median
Total

$million

Vessel
median
$1,000

Total
$million

Vessel
median
$1,000

Plants
Total
1,000
hrs

Plant
median
1,000
hrs

Median
$/hour

Total
$million

Plant
me-

dian,
$1,000

BST

2013 22 156 7.09 $0.46 $15.02 $0.21 $7.72 6 16.58 1.86 $9.97 $0.17 $16.13
2014 41 279 6.80 $3.16 $70.83 $1.47 $31.74 7 122.27 8.51 $9.85 $1.26 $81.23
2015 55 365 6.63 $5.99 $114.43 $2.89 $46.74 7 230.41 21.84 $10.59 $2.50 $210.24
2016 46 296 6.42 $5.53 $80.15 $2.33 $39.20 6 144.87 18.44 $11.79 $1.71 $199.52

SMB
2012 17 106 6.24 $0.88 $45.56 $0.40 $23.22 6 21.12 0.76 $10.13 $0.25 $7.57
2014 4 * * * * * * 1 * * * * *
2015 3 * * * * * * 1 * * * * *

Notes: Data shown for all BSAI crab fisheries by calendar year. All dollar values are adjusted for inflation to 2016-equivalent value. Information
suppressed for confidentiality where indicated by “*”, and data not available where indicated by “-”.
a For catcher/processors, EDR reporting may be used to adjust eLandings crew size reporting in order to estimate the number of fishing crew positions.
b Crew and captain payments reflect amounts paid for labor during the crab fishery and include all post-season adjustments, bonuses, and deductions
for shared expenses such as fuel, bait, and food and provisions; payments for IFQ royalties, labor outside of crab fishery, health/retirement or other
benefits are excluded.
c Processing labor hours reflect hours worked by processing-line employees working at shoreside and floating processor sectors only, excluding
processing employees on catcher/processors and salaried workers employed in the processing sectors. //// d Pay per hour statistics reflect only the
shoreside and floating processing sectors; all other processing labor pay statistics are reported inclusive of catcher/processors

Source: NMFS AFSC BSAI Crab Economic Data Report (EDR) database, and Crew positions from eLandings.
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Table 3: Crab Harvest Quota Lease Activity, Volume, Cost, and Average Lease Prices and Rates, CR Program Fisheries

Vesselsa Pounds Leased (1000lbs) Cost ($1000)
Lease Price
($/pound)b

Lease Rate
(percent of

ex-vessel price)c

Year Total Median Mean Total Median Mean Median
Wtd
mean

Median
Wtd
mean

AIG

CVO A

2012 4 * * * * * * * * * *
2013 5 2,026.23 327.87 405.25 $3,730.16 $596.00 $746.03 $1.56 $1.84 35% 43%
2014 4 * * * * * * * * * *
2015 5 2,252.00 351.05 450.40 $5,262.67 $934.37 $1,052.53 $2.32 $2.34 49% 49%
2016 3 * * * * * * * * * *

CVO B + CPO

2012 4 * * * * * * * * * *
2013 6 1,284.80 83.15 142.76 $1,904.95 $239.64 $211.66 $1.54 $1.48 36% 37%
2014 4 * * * * * * * * * *
2015 5 1,375.30 24.30 196.47 $2,043.77 $73.56 $291.97 $1.35 $1.49 37% 36%
2016 4 * * * * * * * * * *

CVC + CPC

2012 4 * * * * * * * * * *
2013 5 151.06 27.36 25.18 $318.68 $46.51 $53.11 $1.94 $2.11 41% 49%
2014 4 * * * * * * * * * *
2015 4 * * * * * * * * * *
2016 3 * * * * * * * * * *

CDQ + ACA

2012 4 * * * * * * * * * *
2013 2 * * * * * * * * * *
2014 3 * * * * * * * * * *
2015 3 * * * * * * * * * *
2016 3 * * * * * * * * * *

Continued on next page.
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Table 3: Continued

Vesselsa Pounds Leased (1000lbs) Cost ($1000)
Lease Price
($/pound)b

Lease Rate
(percent of

ex-vessel price)c

Year Total Median Mean Total Median Mean Median
Wtd
mean

Median
Wtd
mean

BBR

CVO A

2012 50 3,618.97 65.48 72.38 $18,818.95 $322.68 $376.38 $5.46 $5.20 65% 62%
2013 51 4,425.47 78.75 86.77 $21,072.63 $357.10 $413.19 $4.67 $4.76 64% 65%
2014 50 5,229.07 88.41 104.58 $22,743.48 $381.64 $454.87 $4.31 $4.35 62% 64%
2015 49 5,128.51 90.14 104.66 $26,265.72 $441.47 $536.04 $5.00 $5.12 63% 64%
2016 50 4,433.41 75.26 88.67 $29,676.52 $493.65 $593.53 $6.66 $6.69 62% 62%

CVO B + CPO

2012 42 539.10 7.60 11.72 $3,077.73 $43.96 $68.39 $5.64 $5.78 65% 67%
2013 45 777.86 10.07 15.56 $3,848.12 $49.12 $76.96 $4.93 $4.95 65% 64%
2014 43 853.62 11.77 17.42 $3,811.95 $55.74 $77.80 $4.46 $4.47 64% 63%
2015 42 696.51 10.89 14.82 $3,858.85 $59.98 $82.10 $5.30 $5.54 63% 66%
2016 43 609.89 9.68 12.45 $4,371.69 $67.25 $89.22 $7.03 $7.17 64% 64%

CVC + CPC

2012 36 171.60 4.24 4.52 $947.71 $22.41 $24.94 $5.51 $5.52 63% 64%
2013 37 198.96 4.52 4.85 $1,012.31 $22.48 $24.69 $4.96 $5.09 66% 66%
2014 34 212.79 5.98 5.91 $947.86 $24.22 $26.33 $4.45 $4.45 65% 66%
2015 40 222.10 5.04 5.29 $1,222.23 $29.17 $29.10 $5.38 $5.50 63% 65%
2016 37 200.51 4.04 5.14 $1,395.88 $34.48 $35.79 $6.98 $6.96 64% 69%

CDQ + ACA

2012 5 368.62 70.68 73.72 $2,304.14 $457.11 $460.83 $5.70 $6.25 64% 72%
2013 8 713.42 77.40 89.18 $3,598.69 $389.18 $449.84 $5.05 $5.04 67% 66%
2014 7 826.41 117.86 118.06 $3,780.14 $514.32 $540.02 $4.56 $4.57 63% 66%
2015 5 467.90 99.74 93.58 $2,633.12 $549.12 $526.62 $5.51 $5.63 67% 68%
2016 5 550.41 120.52 110.08 $4,005.38 $846.14 $801.08 $7.02 $7.28 63% 67%

Continued on next page.
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Table 3: Continued

Vesselsa Pounds Leased (1000lbs) Cost ($1000)
Lease Price
($/pound)b

Lease Rate
(percent of

ex-vessel price)c

Year Total Median Mean Total Median Mean Median
Wtd
mean

Median
Wtd
mean

BSS

CVO A

2012 55 42,796.16 640.32 778.11 $44,954.90 $693.36 $817.36 $1.05 $1.05 46% 46%
2013 56 34,352.58 486.63 613.44 $38,362.25 $534.65 $685.04 $1.11 $1.12 46% 47%
2014 57 29,682.64 442.04 520.75 $33,060.99 $499.72 $580.02 $1.15 $1.11 46% 46%
2015 55 30,362.23 523.30 552.04 $29,847.68 $490.45 $542.69 $0.94 $0.98 46% 48%
2016 54 19,639.88 337.36 363.70 $25,954.20 $402.58 $480.63 $1.24 $1.32 46% 49%

CVO B + CPO

2012 47 6,989.61 83.97 131.88 $8,246.92 $105.93 $155.60 $1.15 $1.18 46% 48%
2013 50 7,740.91 78.48 133.46 $9,917.67 $98.37 $170.99 $1.21 $1.28 47% 50%
2014 48 5,987.69 69.15 106.92 $7,342.55 $95.85 $131.12 $1.24 $1.23 47% 56%
2015 47 6,288.75 69.80 118.66 $6,540.65 $75.80 $123.41 $0.99 $1.04 46% 48%
2016 45 3,867.74 44.16 77.36 $5,462.55 $65.39 $109.25 $1.31 $1.41 46% 50%

CVC + CPC

2012 39 1,879.88 47.96 45.85 $2,118.60 $53.17 $52.97 $1.15 $1.14 46% 46%
2013 41 1,767.02 35.03 40.16 $2,163.16 $41.49 $49.16 $1.18 $1.23 46% 48%
2014 37 1,258.30 29.13 31.46 $1,496.12 $35.19 $38.36 $1.24 $1.20 46% 47%
2015 37 1,515.74 32.75 36.97 $1,573.77 $37.36 $39.34 $1.00 $1.05 46% 49%
2016 36 925.25 21.91 25.01 $1,271.44 $31.05 $34.36 $1.31 $1.37 46% 47%

CDQ + ACA

2012 11 6,463.57 563.35 587.60 $7,699.41 $699.44 $699.95 $1.18 $1.19 49% 50%
2013 11 6,409.21 563.98 582.66 $8,304.71 $777.51 $754.97 $1.29 $1.29 54% 53%
2014 10 5,367.24 422.75 536.72 $6,474.85 $521.45 $647.49 $1.26 $1.21 49% 58%
2015 7 4,150.07 509.28 592.87 $4,449.54 $546.60 $635.65 $1.05 $1.07 51% 52%
2016 7 3,041.67 334.55 434.52 $4,339.59 $457.33 $619.94 $1.38 $1.43 51% 52%

Continued on next page.
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Table 3: Continued

Vesselsa Pounds Leased (1000lbs) Cost ($1000)
Lease Price
($/pound)b

Lease Rate
(percent of

ex-vessel price)c

Year Total Median Mean Total Median Mean Median
Wtd
mean

Median
Wtd
mean

BST

CVO A

2013 16 776.65 52.73 48.54 $565.57 $26.24 $35.35 $0.76 $0.73 28% 29%
2014 32 5,255.66 94.55 128.19 $3,507.63 $66.82 $85.55 $0.66 $0.67 28% 27%
2015 43 9,486.94 130.54 163.57 $7,262.24 $90.36 $125.21 $0.80 $0.77 28% 30%
2016 37 7,478.40 126.71 169.96 $6,732.11 $108.51 $153.00 $0.82 $0.90 28% 31%

CVO B + CPO

2013 13 130.35 6.21 8.15 $124.07 $4.68 $7.76 $0.82 $0.95 28% 47%
2014 25 819.58 11.65 21.02 $616.76 $9.45 $15.81 $0.69 $0.75 28% 34%
2015 27 1,527.35 26.10 33.20 $1,212.94 $19.48 $26.37 $0.76 $0.79 28% 33%
2016 31 1,124.51 19.40 26.15 $1,135.94 $17.32 $26.42 $0.87 $1.01 28% 33%

CVC + CPC

2013 10 41.62 1.10 3.20 $32.82 $1.21 $2.53 $0.82 $0.79 28% 31%
2014 24 427.60 2.64 11.25 $186.22 $2.05 $4.90 $0.71 $0.44 28% 17%
2015 24 381.57 5.93 8.87 $263.79 $4.01 $6.14 $0.73 $0.69 28% 26%
2016 24 440.96 7.14 12.25 $529.73 $6.52 $14.72 $0.87 $1.20 28% 29%

CDQ + ACA

2013 5 88.01 24.87 17.60 $77.23 $16.26 $15.45 $1.04 $0.88 34% 34%
2014 6 728.51 29.61 80.95 $596.77 $31.92 $66.31 $0.96 $0.82 34% 38%
2015 8 1,341.70 125.15 149.08 $1,193.51 $93.13 $132.61 $0.67 $0.89 29% 35%
2016 7 829.85 80.60 103.73 $765.37 $73.81 $95.67 $0.91 $0.92 31% 32%

Continued on next page.
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Table 3: Continued

Vesselsa Pounds Leased (1000lbs) Cost ($1000)
Lease Price
($/pound)b

Lease Rate
(percent of

ex-vessel price)c

Year Total Median Mean Total Median Mean Median
Wtd
mean

Median
Wtd
mean

SMB

CVO A
2012 17 1,149.28 49.07 67.61 $1,719.94 $69.85 $101.17 $1.45 $1.50 32% 34%
2014 3 * * * * * * * * * *
2015 3 * * * * * * * * * *

CVO B + CPO
2012 10 143.73 11.56 11.06 $219.20 $18.94 $16.86 $1.50 $1.53 32% 35%
2014 2 * * * * * * * * * *
2015 3 * * * * * * * * * *

CVC + CPC
2012 9 94.70 2.48 10.52 $47.54 $5.66 $5.28 $1.50 $0.50 34% 11%
2014 2 * * * * * * * * * *
2015 2 * * * * * * * * * *

CDQ + ACA
2012 3 * * * * * * * * * *
2014 1 * * * * * * * * * *

Notes: Other fishery data is not shown due to insu�cient observations. Lease data shown represent arms-length lease transactions reported by quota
purchasers in the EDR. Harvest quota types are categorized in this report as the following: CVO A (catcher vessel owner Class A IFQ), CVO B +
CPO (catcher vessel owner Class B IFQ and catcher/processor owner IFQ), and CVC + CPC (catcher vessel crew IFQ and catcher/processor crew
IFQ). Statistics reported represent results pooled over all quota types and/or regional designations within each category.
a Vessels column shows total count of vessel-level observations for fishery-year where both pounds and cost of quota leased were reported as non-zero
values; in a small number of observations where leased pounds was reported for a given fishery/quota type but lease cost was missing, the mean price
over all complete observations was used to impute the missing data in computing the total aggregate lease cost over all vessels.
b Average lease price statistics by fishery and quota type are calculated as the median and arithmetic mean, respectively, over all observations where
both pounds and cost for one or more quota type within the respective category were reported as non-zero values.
c Average lease rate statistics by fishery and quota type are calculated as the median and mean, respectively, of the ratio of lease price to ex-vessel
price, over all observations where both ex-vessel and lease pounds, and ex-vessel revenue and lease cost, were reported as non-zero values. Lease rate
for each quota type is calculated with respect to ex-vessel value of crab sold using the same quota type. As such, variation in lease price and lease rate
in a given fishery may not be consistent between di↵erent quota types.

Source: NMFS AFSC BSAI Crab Economic Data Report (EDR) database.
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