Overview of the
Aleutian Islands
Fishery Ecosystem Plan
Aleutian Islands Fishery Ecosystem Plan writing team

Kerim Aydin, NMFS AFSC
Steve Barbeaux, NMFS AFSC
Forrest Bowers, ADF&G
Vernon Byrd, USFWS, AKRO
Diana Evans, NPFMC
Sarah Gaichas, NMFS AFSC
Carol Ladd, NOAA PMEL
Sandra Lowe, NMFS AFSC
John Olson, NMFS AKRO
Jennifer Sepez, NMFS AFSC
Paul Spencer, NMFS AFSC
Francis Wiese, NPRB

Ecosystem/food web modeling
Pollock biology, assessment
Crab and state fisheries
Birds and mammals
FEP policy, implementation
Ecosystem/food web modeling
Physical oceanography
Atka mackerel biology, assessment
Habitat, GIS
Anthropology, socioeconomics
Rockfish biology, assessment
Research, seabirds

Abbreviations

AFSC - Alaska Fisheries Science Center
ADF&G - Alaska Department of Fish and Game
AI - Aleutian Islands
AKRO - Alaska Regional Office
ESA - Endangered Species Act
FEP - Fishery Ecosystem Plan
GIS - Geographic Information Systems
NMFS - National Marine Fisheries Service
NOAA - National Oceanic and Atmospheric Administration
NPFMC - North Pacific Fishery Management Council
NPRB - North Pacific Research Board
PMEL - Pacific Marine Environmental Laboratory
USFWS - US Fish and Wildlife Service

Cover photo credits

Background: Aleutian arch, NOAA–Auke Bay Laboratories
Insets top to bottom: auklets, Ian Jones; Atka mackerel, Alaska Sea Life Center;
Steller sea lion, Anson Banks; crab pot, Kimberly Rand;
Bubble gun coral, Alberto Lindner, NMFS, NOAA
Below: cod and coral, NOAA–Auke Bay Laboratories
Foreword

The North Pacific Fishery Management Council has developed the Aleutian Islands Fishery Ecosystem Plan (FEP) as a pilot project. With national attention on fishery managers to apply an ecosystem approach to management, the Council is continually adapting its management to better accommodate ecosystem relationships and strive for ecological balance. Consistent with this, the Council has designed a FEP that is relevant and applicable to Alaskan fishery management.

The Aleutian Island ecosystem is complex, and is the least predictable of the ecosystems in which the Council manages. The FEP is intended to be an educational tool and resource that can provide the Council with both an ‘early warning system,’ and an ecosystem context for fishery management decisions affecting the Aleutian Islands area. This document should help the Council respond to changing conditions in a proactive rather than reactive mode.

The FEP is to be a living document, in which ecosystem interactions, indicator status, research priorities, and data gaps are periodically updated. This first iteration of the FEP has been prepared by synthesizing currently available information about the Aleutian Islands ecosystem. While the Council recognizes that the FEP is a work in progress, the document can immediately be used to improve management action analyses, and to provide a broader understanding of actions affecting the Aleutian Islands ecosystem. Additionally, through the identification of indicators and the assessment of risk, the FEP provides directions and priorities for further study.
What is a Fishery Ecosystem Plan?

The goal of this FEP is to provide enhanced scientific information and measurable indicators to evaluate and promote ecosystem health, sustainable fisheries, and vibrant communities in the Aleutian Islands region.

FEP Concept for Alaska*

- Policy and planning document.
- Encompasses all fisheries in the Aleutian Islands ecosystem.
- Implementation of specific changes to management continues to occur through existing fishery management plan processes.
- FEP is not a legal, binding document—it is an educational tool for the Council, to provide an ecosystem context for fishery management.

* Other regions may have a different concept and goals.

Purposes

- Integrate information from the different Aleutian Islands fishery management plans (groundfish, crab, scallop, salmon).
- Identify indicators specific to the Aleutian Islands, to evaluate the status of the ecosystem over time.
- Develop and refine tools such as ecosystem models.
- Identify sources of uncertainty and research and data needs.
- Help the Council set management goals and understand cumulative effects.
For the purposes of this Fishery Ecosystem Plan, the Aleutian Islands ecosystem is defined as the portion of the archipelago ranging from Samalga Pass (at 169°W) to the western boundary of the exclusive economic zone, at 170°E. Samalga Pass represents a known ecological boundary with the neighboring eastern Bering Sea and Gulf of Alaska ecosystems. This boundary is also approximately similar to an important management boundary for the Federal groundfish fishery.
History of the AI Ecosystem

Human history of the Aleutians

Aleuts have been present in the Aleutian archipelago for 10,000 years. At one time, there were over 100 villages in the islands, reflecting complex and flexible settlement patterns as people followed fish and marine mammal migrations. Russian contact in 1741 brought profound social change to the Aleuts, and considerable population decline due to epidemic, violent conflict, forced resettlement and impressed labor practices. Russian and American interests pursued the rich Aleutian marine resources over the next 150 years.

Population shifts occurred again with the advent of World War II, and the stationing of substantial US military forces in the islands. The US government forcibly evacuated the remaining eight Aleut villages in the archipelago, which after the war were resettled into half that many villages (Atka being the only one in the ecosystem). The military remained a presence through the decades of the Cold War, before scaling back almost entirely in the 1990s. The development of a global fishing industry began to affect Aleutian populations starting in the late 1960s.
Some early (pre-1950) biomass removals do not show up at this scale:

- An estimated 500,000 sea otters were removed from the Aleutian archipelago and the far western Gulf of Alaska between 1742 and 1792, which averages to approximately 250 tons of otters annually over this period.
- Salmon catch records show intermittent catches from 1911 through 1927 ranging from 24 to 1800 tons annually.

Historical relationships illustrate ecosystem connections

sea otters – kelp forests – marine communities

- Kelp forests support a diverse marine community, important for fish and nearshore birds.
- Sea otters prey on sea urchins, which eat kelp and prevent forests from growing.
- As kelp sites have been recolonized by recovering sea otter populations in the 20th century, kelp forests have increased.
- Recent sea otter declines will likely continue to have derivative impacts.
Physical Relationships

The Aleutian archipelago consists of hundreds of small, volcanic islands, separated by oceanic passes that connect the waters of the North Pacific with the Bering Sea.

Circulation and depth of passes in the Aleutian archipelago

- Steep rocky slopes to the north and south surround a mostly submerged mountain range resting on the Aleutian ridge.
- Cold water coral and sponge communities are found on the steep slopes.
- Benthic communities provide important habitat for fish and invertebrates.

Oceanography

(Pelagic habitat)

- Oceanic marine environment (rather than coastal), with primary influence from the Alaskan Stream.
- Fierce tidal currents within the passes allow salt, nutrients, and plankton from the deep to mix with surface water.
- Net northward transport of water from the Pacific is important to bring nutrients and biota to the Bering Sea.
- Currents may also present hazards for navigation and equipment.

Climate

(Terrestrial habitat)

- Wet and stormy maritime climate.
- Temperature variability and annual storm track determined by the strength and location of the Aleutian Low, a low pressure center.
- Contrary to the warming signal elsewhere, the Aleutian Islands have experienced a long-term cooling trend between 1956 and 2002.
The islands form a porous boundary between two ocean basins, the Bering Sea and the North Pacific. Thus, the islands are bathed by the warmer North Pacific on one side and the colder Bering Sea on the other.

Bathymetry changes dramatically over a very short distance, from the depths of the Aleutian Trench (greater than 7,000 m deep) to sea level or above over a distance of less than 150 km, providing a diverse range of habitats.

The interaction of steep bathymetry with fierce tidal currents results in mixing of the water layers (deeper and surface waters), affecting nutrient concentrations, salinity, and plankton. These vertical circulations can vary on small spatial and temporal scales, and can create areas of increased concentrations of prey for seabirds and other predators.

The proximity of onshore, nearshore, and offshore systems allows for tight physical and biological connections between the open ocean, the shelf and slope environment, and nearshore and inshore.

The narrow shelf of the Aleutian Islands fosters a strong oceanic influence on the ecosystem’s biology. This bathymetric profile distinguishes the area from the neighboring shelf-dominated ecosystems of the eastern Bering Sea (EBS) and Gulf of Alaska (GOA), whose fisheries are also managed by the Council.
Biological Relationships

Focus species for the FEP

- **Protected status or social interest** (identified from 2000s data)
 - marine mammals
 - seabirds

- **High biomass** (identified from 2000s data)
 - Atka mackerel
 - pollock
 - grenadiers
 - myctophids
 - squids

- **Commercial value**
 - king crab
 - Pacific halibut
 - Pacific cod
 - Atka mackerel
 - sablefish
 - Pacific ocean perch

The complexity of the relationships in marine food webs can be overwhelming, so the FEP focuses on key species from economic, biological, and social perspectives to illustrate relationships within the ecosystem. Among these focus species, direct connections exist to all but two of the modeled predators and prey in the Aleutian Islands food web.

This is a simplified view of the full Aleutian Islands model food web that contains 134 predator/prey groups and 15 fisheries. Some groups have been amalgamated for this view. Box size is proportional to the estimated biomass in the ecosystem, the width of lines is proportional to estimated energy flow between boxes, and the vertical distribution of boxes in the figure represents the trophic level. Groups are positioned so that benthic energy pathways originate on the left side of the figure, and and pelagic pathways are on the right side.

Food web of the Aleutian Islands ecosystem (based on early 1990s diet data)

KEY
- pisc = piscivorous
- plnkt = planktonic
- micro = micro-zooplankton
- NMFS - Federal groundfish fisheries
- ADF&G - State-managed fisheries
- IPHC - halibut fishery
Analyses possible with the food web

■ Shared prey analysis
Understanding which species (or fisheries) share a prey base can provide some information as to whether those species are likely to be competing for prey. Atka mackerel, Pacific ocean perch, and myctophids share a common zooplankton prey base along with other species. The physical processes maintaining the pelagic prey base, which dominates the ecosystem, maintain the focal species at their current levels of productivity, but these processes are poorly understood and there is only limited monitoring of the prey base.

■ Species sensitivity analysis
Simulating mortality changes within the food web model demonstrates how the impacts to one species might transmit to other species through food web relationships. For example, the Aleutian Islands ecosystem appears to be particularly sensitive to increased mortality of Atka mackerel, and relatively insensitive to increased mortality of Pacific ocean perch.

■ Role of species in the food web
Analyses of the relative interaction strengths between predators and prey can inform fishery managers when making decisions about appropriate harvest levels for species that interact.

Diet composition for species with a shared prey base
(groups with minimum 33% diet similarity)
Spatial variation within the Aleutian Islands

While the FEP focuses primarily on the Aleutian Islands ecosystem-wide spatial scale, local spatial patterns are apparent throughout the archipelago. Two main spatial patterns determine the structure of the Aleutian Islands food webs: the longitudinal gradient from east to west, and the vertical distribution of species on the shelf. Further attention to spatial variation has been identified as an area for further work.

Longitudinal variation in predator biomass and consumption
(data consolidated in 2 degree blocks)
Species Seasonality in AI Est. population size

short-tailed albatross summer and fall foragers low hundreds
Laysan albatross oceanic, year-round thousands
short-tailed shearwater oceanic in summer hundreds of thousands
mottled petrels oceanic in summer thousands
marine waterfowl winter tens of thousands
through migrant birds spring and fall thousands

Seabirds in the Aleutian Islands

albatrosses ■ shearwaters ■ murres ■ kittiwakes ■ auklets
puffins ■ fulmars ■ storm petrels ■ cormorants ■ gulls

Marine mammals in the Aleutian Islands

whales ■ seals ■ sea lions ■ sea otters

Species Seasonality in AI Est. population size Listed under ESA?

Steller sea lions year-round thousands endangered
northern fur seals spring/fall migration hundreds of thousands no
harbor seals year-round tens of thousands no
sea otters nearshore, year-round thousands threatened

whales and porpoises
resident populations, Alaska-wide range e.g., some killer whales, blue whales
migrant populations that summer in Alaska e.g., gray, humpback whales
Socioeconomic Relationships

Fishery resources harvested in the FEP area in 2005

<table>
<thead>
<tr>
<th></th>
<th>V</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atka mackerel</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>crab</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>flatfish</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>halibut</td>
<td>97</td>
<td>16</td>
</tr>
<tr>
<td>other groundfish</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Pacific cod</td>
<td>45</td>
<td>27</td>
</tr>
<tr>
<td>pollock</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>rockfish</td>
<td>47</td>
<td>29</td>
</tr>
<tr>
<td>sablefish</td>
<td>41</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>by VALUE</th>
<th>by VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atka mackerel</td>
<td>23%</td>
<td>60%</td>
</tr>
<tr>
<td>all other species</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>pollock</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>sablefish</td>
<td>10%</td>
<td>1%</td>
</tr>
<tr>
<td>halibut</td>
<td>18%</td>
<td>2%</td>
</tr>
<tr>
<td>crab</td>
<td>19%</td>
<td>2%</td>
</tr>
<tr>
<td>rockfish</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Pacific cod</td>
<td>20%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Commercial fisheries

In 2005, the Aleutian Islands ecosystem produced 216 million pounds of fish, with an estimated ex-vessel value of 60 million dollars. Fish harvested in the ecosystem was processed throughout the Aleutians, western Alaska, and the Gulf of Alaska. 32 offshore processors (including catcher-processors, motherships, and other offshore sector participants) account for 89% of the total landings from the ecosystem, comprising 56% of ex-vessel value. The majority of offshore processing volume is devoted to Atka mackerel.

Spatial distribution of the Aleutian Island groundfish fisheries by gear group

Location of 95 percent of observed groundfish fishing effort in the Aleutian Islands ecosystem in 1990-2006. The maps illustrate the number of observed non-pelagic trawl tows or longline sets within a 400 km² area. Approximately 87% of trawl tows and 70% of longline sets are observed.
Communities in the FEP area

Shemya and Attu
Shemya is the site of Eareckson Air Station, a US Air Force base, which is currently occupied by about 300 people (mostly contractor personnel). Security clearances are required to go to Shemya.

Attu hosts a Coast Guard Loran station manned by about 20 active duty personnel on yearly rotation. The station is served by Coast Guard aircraft from Kodiak Air Station.

Atka
Atka’s population by age and gender structure is most similar to the pyramidal “family shape,” displaying a relatively even distribution between genders and a general decline by age. This structure is commonly found in Native villages, and often shows a reduction of 20-29 year olds out-migrating for educational opportunities.

Adak’s population by age and gender structure resembles the “labor shape,” dominated by a bulge of working-age males, as is commonly observed for industrial towns, such as fish processing centers. The population structure of Adak is likely to change over time as the Aleut Corporation continues to actively seek to move Native families into the area.
Other human activities in the ecosystem

Tourism
Caribou hunting and bird watching represent the most significant tourism activity at the current time.

Oil and gas development
Most oil and gas development in Alaska and elsewhere affects the Aleutian Islands ecosystem through indirect effects of shipping traffic, as discussed below.

Military
The Environmental Protection Agency has been performing Superfund clean-up and restoration of Adak, and the sea-based X-band radar is scheduled to become a permanent installation there in February, 2008.

Shipping
The Great Circle shipping route passes through the Near Islands, in the FEP area, with approximately 1600 container ships per year, and approximately 30-40 tankers. The 2004 Selendang Ayu shipping disaster off the coast of Unalaska (although just outside the fishery ecosystem area) brought into sharp relief the vulnerability of the ecosystem to impacts from shipping. The State of Alaska and the US Coast Guard are developing a risk assessment for the Aleutian Islands. Climate change could increase shipping activities in the area significantly, with the possible opening of an ice-free Northwest Passage.

Research
Research accounts for much of the non-fishery activity in the Aleutian Islands area, especially in the summer months.
Management Relationships

Fisheries

The following agencies are responsible for fishery management in the Aleutian Islands:

North Pacific Fishery Management Council / National Marine Fisheries Service
- Direct management of Federal groundfish fisheries
- Oversight of crab and scallop fisheries
- Allocative management of halibut fishery

Alaska Board of Fisheries / Alaska Department of Fish and Game
- Direct management of salmon, State waters groundfish fisheries, recreational and subsistence fisheries;
- Delegated management of crab and scallop fisheries

International Pacific Halibut Commission
- Biological management of halibut fishery

Fishery management relationships in the Aleutian Islands are complex because each of the responsible entities identifies a different geographical boundary for the Aleutian Islands management area, and recognizes different reporting districts within the area.

Other entities

There are many agencies (Federal, State, and local) with jurisdiction over activities (other than fisheries) affecting the marine ecosystem.

Federal
- National Marine Fisheries Service
- US Fish and Wildlife Service
- Bureau of Land Management
- Minerals Management Service
- Department of Defense/Alaskan Command/Pacific Command
- US Army Corps of Engineers
- US Coast Guard
- Department of Energy

State
- Department of Fish and Game
- Department of Natural Resources
- Department of Environmental Conservation

Local
- City of Adak
- City of Atka
Risk Assessment

Non-Quantitative Risk Assessment

This first iteration of the Fishery Ecosystem Plan relies on a non-quantitative risk assessment to provide general guidance to the Council on priority areas and issues for management attention and further research and analysis. This process still follows the classic risk assessment framework, but relies on expert opinion and the building of consensus. A quantitative risk assessment may be a part of future iterations of the Fishery Ecosystem Plan.

Map of Aleutian Islands ecosystem interactions

Steps of the Risk Assessment

- What are the key interactions in the Aleutian Islands ecosystem?
- How is risk associated with these interactions currently addressed by managers?
- What else might be done to address any risk? Is further action warranted?
- What indicators should be used to monitor these interactions?
- What are the priority data gaps and research needs for the Aleutian Islands ecosystem?
Climate and Physical

- **A** Changes in water temperature may impact ecosystem processes
- **B** Increased acidification of the ocean may impact ecosystem processes
- **C** Changes in nutrient transport through the passes and changes in the predominant current patterns that drive primary production impact ecosystem processes
- **D** Changing weather patterns impact ecosystem processes

Predator-prey

- **E** Fishing mortality and predation mortality both impact managed species
- **F** Bottom up change in ecosystem productivity impacts predators and fisheries
- **G** Top down changes in predation and fishing impact ecosystem structure and function

Fishing Effects

- **H** Total removals from the ecosystem due to fishing impact ecosystem productivity
- **I** Differences between spatial stock structure and the spatial scale of fishery management may impact managed species
- **J** Impact of one fishery on another through fishing impacts on habitat
- **K** Impact of a fishery on other biota through fishing impacts on habitat
- **L** Impact of bycatch on fisheries

Regulatory

- **M** Commercial fishery may impact subsistence uses
- **N** Changes in the population status of ESA-listed species impact fisheries through specific regulatory constraints
- **O** Sector allocations can impact the ecosystem and communities
- **P** Fishery participation permit systems (such as limited entry and harvest quotas) impact the flexibility of fishers to react to changing ecosystem conditions

Other Socio-economic Activity

- **Q** Changes in fishery activities impact the sustainability of AI communities
- **R** Coastal infrastructure and development impact the ecosystem and communities
- **S** Vessel traffic, and risk of vessel grounding and spillage, may impact ecosystem productivity
- **T** Changes in the level of military activity in the area may impact communities
- **U** Oil and gas development may impact ecosystem productivity
- **V** Research activity may impact fisheries

Likelihood of occurrence and impact assessment of the interactions

(based on the professional judgment of the Aleutian Islands Ecosystem Team)

Economic

- **Unknown**
 - **Low** permits limited, no and very little
 - **Medium** permits limited, have some
 - **High** permits limited, have many

Ecological

- **Unknown**
 - **Low** no, negligible
 - **Medium** moderate
 - **High** severe

Red boxes in upper right hand quadrant highlights those interactions with a medium to high or unknown likelihood of occurrence or impact.
Priorities and Considerations for the Council

Through the risk assessment, the FEP prioritizes the potential risk associated with the key ecosystem interactions. Some interactions are within the Council’s ability to influence (e.g., fishery removals, bycatch), and others are not (e.g., climate change). For each of the 22 interactions, the FEP identifies how that risk is currently addressed by the Council, and what other actions the Council might consider to mitigate risk.

Examples of implications for management

Climate and Physical

- **Risk assessment priority:** High

 Increased acidification of the ocean may impact ecosystem processes

 What is the Council currently doing to address risk?
 - This interaction is not within the Council’s control.
 - NOAA is researching acidification and the likely impacts in Alaskan waters.

 What else might the Council do?
 - Interact with NOAA program to encourage further investigation into the threshold effects of acidification on different parts of the ecosystem.
 - Develop adaptive management techniques to mitigate adverse impacts.

 Total removals from the ecosystem due to fishing impact ecosystem productivity

 What is the Council currently doing to address risk?
 - Accounting for total removals is currently a fishery management priority.
 - For groundfish, total removals are well managed for the joint Bering Sea/Aleutian Islands management area, but not always at the scale of the Aleutian Islands ecosystem.

 What else might the Council do?
 - Continue to evaluate the degree to which the Aleutian Islands ecosystem is distinct from the eastern Bering Sea, particularly with regard to genetic flow and trophic linkages.
 - Consider the need to develop an overall limit on removals and/or fishery timing specific to the Aleutian Islands ecosystem.

Fishing Effects

- **Risk assessment priority:** High

 Changes in fishery activities impact the sustainability of AI communities

 What is the Council currently doing to address risk?
 - Priority for the Council, embodied in the National Standards; only partially within the Council’s control.
 - The Council considers community impacts of all management actions, and conducts a transparent management process that is open to the public.

 What else might the Council do?
 - Develop a community outreach strategy to encourage and facilitate participation by community members in Council process, particularly those from remote communities with complex and expensive access to meeting locations.
Overarching considerations

- **Recognize the Aleutian Islands ecosystem as a distinct entity**
 Fishery managers should consider the Aleutian Islands area described in this FEP as an ecosystem with unique characteristics. The Aleutians are frequently considered conjointly with the eastern Bering Sea, but are subject to different processes and properties. An ecosystem-wide monitoring plan is needed to improve understanding of the area.

- **Improve the process to account for ecosystem considerations in fishery management**
 No group in the Council process is currently assigned with the primary task of integrating ecosystem information and providing ecosystem-level advice. Ecosystem information is often qualitative or interpretative, and it is up to the Council, as policy-maker, to determine how to balance risks associated with unquantifiable ‘ecosystem considerations’.

- **Dialogue with non-fishery agencies**
 It is important for the Council to interact with other agencies about activities affecting the ecosystem. The Council’s participation in the Alaska Marine Ecosystem Forum is an important step in this regard. The Council may also choose to engage individually with other agencies on particular issues.

Alaska Marine Ecosystem Forum*

Biannual meetings bring together 11 Federal and 4 State agencies to address issues of shared responsibilities related to the marine ecosystems off Alaska’s coast.

Purpose:

- Promote dialogue and information exchange.
- Improve agency coordination by sharing priorities and data.
- Allow agencies to understand the ecosystem impact of other activities.
- Provide opportunities for problem solving and joint work.

* established by Memorandum of Understanding in 2006.
Next steps for the FEP

Immediate uses

Educational tool for fishery managers

- Synthesizes available ecosystem information on the Aleutian Islands from many sources.
- FEP information will feed into the management process at all levels (stock assessment authors and fishery analysts, Council’s scientific advisory groups, Council).

Improve management analyses

- Resource for staff analyzing proposed management measures that affect the Aleutian Islands ecosystem.
- In particular, analyses should distinguish the Aleutian Islands and Bering Sea ecosystems when discussing impacts.

Indicator framework

- FEP analysis of key interactions creates framework for monitoring the Aleutian Islands ecosystem.
- Currently available indicators are identified, as well as desirable future indicators.

Ways to improve the FEP document

- The FEP is to be a living document, updated annually by the FEP team with new information, re-evaluated periodically (e.g., every 3-5 years) for ecosystem trends and key interactions.
- Some tasks for the FEP team: expand expertise on team, improve description and analyses, gather information on available indicators, seek to close data gaps.

Some directions for further work

- Quantify risk assessment, expand into comprehensive ecosystem assessment.
- Consider spatial patterns within the Aleutian Island ecosystem, also connections to surrounding ecosystems (both east and west).
- Develop Council policy on a “healthy ecosystem,” or desirable and undesirable ecosystem states, in order to provide guidance as to how to account for qualitative ecosystem considerations.