Longliners Pitch for Electronic Monitoring

By SHANNON HAUGLAND
Sentinel Staff Writer

A group of Sitka and Homer longliners hope to demonstrate this season that electronic monitoring can collect most of the data needed for managing the hook and line fisheries.

The pilot project is part of an ongoing effort by the Alaska Longline Fishermen’s Association and other longline groups to integrate electronic monitoring as an alternative to having observers aboard boats that longline for sablefish and halibut.

“We want to see EM move ahead,” said Linda Behnken, ALFA executive director. “There have been over 40 EM pilot programs in the U.S. but no programs have been implemented for catch monitoring.”

Five boats homeported in Sitka and five in Homer agreed to carry the electronic monitoring systems for the season, which opened earlier this month. The equipment, installed by the Canadian company Archipelago Marine Research, includes two cameras mounted on stabilizers that capture the image of every fish that comes over the rail, as well as the GPS coordinates and other data.

The feedback so far from the five Sitka longliners with EM systems aboard has been positive.

“Everything worked fine, and captains have been happy with it,” said Jason Bryan, Archipelago project manager.

The information captured will be analyzed and compiled later, based on what is requested for the project. That could include species of the fish, numbers of fish and the weight, among other options.

Other participating partners in the “limited implementation project” out of Sitka include ALFA, North Pacific Fisheries Association, Petersburg Vessel Owners Association, Southeast Alaska Fishermen’s Alliance, Saltwater Inc., and the Alaska Fisheries Science Center.

The federal observer program for larger vessels in the domestic fleet has been around since 1990. The expanded program, covering boats 40 feet and up, was approved by the North Pacific Fishery Management Council in 2011 to begin in January 2013. The National Oceanic and Atmospheric Administration manages the observer program, using funding from a 1.25 percent tax on the ex-vessel value of the groundfish and halibut. The tax is assessed on all commercial fishermen, whether they carry an observer or not.

The small-boat fleet has objected to the onboard observer requirement as expensive and intrusive. They hope to show through the pilot project that electronic monitoring — such as the system used in British Columbia and elsewhere in the world — can reduce the need for observers, especially on the smaller boats.

Starting this year vessels 40 to 57.5 feet are in the “vessel selection pool,” where they notify the National Oceanic and Atmospheric Administration if they plan to fish any time during specific two-month periods. Under this program, a percentage of boats are required to take an observer on every groundfish or halibut fishing trip during each two-month period. Vessel owners are not required to log trips with the agency.

Boats 57.5 feet and up are in the “trip selection pool,” where vessel owners log each fishing trip with the program at least 72 hours in advance of their planned departure. NMFS then randomly draws 15 percent of the trips for an observer.

Operators of longline boats in the 40 to 57.5 foot category point out that their boats lack space to accommodate an observer, and the extra person onboard disrupts day-to-day business and constitutes an added expense of doing business. They argue that the data can be collected in a way that is less burdensome and costly.

ALFA has worked over the past few years on the effort to demonstrate that an electronic monitoring system is effective in collecting data, and providing some of the information that fishery managers need about the halibut and groundfish catches.

“We think having an observer is a whole lot more expensive,” said ALFA Executive Director Linda Behnken. “We’ve been trying for three years to develop an electronic monitoring sys-

Continued on back page
The system runs the entire time the vessel is at sea, and the cameras are mounted on the side of the vessel. The cameras have straps that hold them in place until they are triggered. The camera is turned on as fish are brought alongside and the system then begins to collect catch data and video footage. The data is then transmitted to a computer on shore where it is analyzed and used for research.

The system was designed by AFMA, and the technology was developed by the National Marine Sanctuaries of the United States. The project was funded by the National Science Foundation and the National Oceanic and Atmospheric Administration. The system is being used to study the behavior of marine mammals and the impact of fishing on their populations. The data collected is helping to improve fisheries management and conservation efforts.
Jason Bryan, project manager for Archipelago Marine Research, stands next to cameras in weatherproof housing, part of an electronic monitoring system aboard the Magia in Eliasen Harbor. (Sentinel Photo)